
Unifying	 Models	 for	 Families	 of	
Common	 Weaknesses	

Lambert Meertens1
meertens@kestrel.edu

Kestrel Institute Technical Note KES.U.11.01

February 2011

Kestrel Institute
3260 Hillview Avenue, Palo Alto, CA 94304, USA

www.kestrel.edu

Abstract	
This technical note presents a formal, semantic model for a class of common software
vulnerabilities, identified in the Common Weakness Enumeration2 as improper input
validation3. The formalization is in terms of a failure of certain operations to commute.

Introduction	

Many software attacks exploit vulnerabilities that have identifiable and well-understood
types, as described in the Common Weakness Enumeration (CWE) repository
maintained by MITRE. The purpose of this note is to point out the existence of quite
specific and identifiable commonalities shared by some of the CWE weaknesses by
defining a model from which different weaknesses can be obtained by instantiation.

For guarding against attacks exploiting software vulnerabilities, it is essential that the
exploitable weaknesses be understood. Having precise models of such weaknesses
allows to study them and to define measures that can prevent their introduction and
facilitate their identification and removal from deployed software. More importantly,
while the CWE repository lists specific types of weaknesses only identified after attacks
based on them have been successfully mounted, models that unify exploitable
weaknesses into a family allow for a pro-active approach that can identify new types of
more specific weaknesses belonging to a family before they become actual
vulnerabilities in deployed software.

1 Funded by AFRL contract #FA8750-11-C-0005.
2 http://cwe.mitre.org/
3 CWE #20, which includes SQL injection, command injection and pathname traversal.

 2

Example	

To illustrate the concept, we define a model for a family of weaknesses that belong to
class CWE-20 (Improper Input Validation), and show that two specific weaknesses, both
listed in the 2010 CWE/SANS Top 25 Most Dangerous Software Errors, are instances.
The figure below shows the taxonomy in the CWE repository of the weaknesses
involved.

	

 CWE-20: Improper Input Validation

CWE-21: Pathname Traversal and
Equivalence Errors

CWE-22: Improper Limitation of a
Pathname to a Restricted Directory
('Path Traversal')

CWE-77: Improper Neutralization of
Special Elements used in a
Command ('Command Injection')

CWE-89: Improper Neutralization of
Special Elements used in an SQL
Command ('SQL Injection')

 3

?@.,1(*

The essence of the family of weaknesses to be specified is a confusion between
a more semantic domain of internal values and a more syntactic domain of
representations. Denoting these two domains as A (for “abstract” values) and C
(for “concrete” representations), there is an interpretation relation4 J relating
these two domains. Expressed symbolically5, we have:

J : C → A .

Domain A can be thought of as expressing intention, whereas C is used for
communication with entities that are external to the software component proper.
This includes both input (for example, supplied by a user) and output (for
example, requests to an external application, or arguments for remote procedure
calls or operating-system calls). Relation J is injective; that is, at most one
internal value may be related to any given syntactic representation. Expressed
symbolically:

(cJa ! cJa!) " (a = a!) .

As part of its regular operation, the software component receives external input
and transforms it to external output. The transformation can be described at the
abstract level of intentions as a relation:

TA : A → A .

The transformation is implemented at the concrete level as a relation:

TC : C → C .

These relations can be shown together in a diagram:

4 The reasons for using a binary relation instead of a function are as follows. For
concreteness, think of A as being the domain of numbers, and C as being the domain of
strings (sequences of characters). A number such as 7 can have multiple concrete
decimal representations as a string of characters, such as “7” and “007”. Therefore the
two domains cannot be related by a normal (single-valued) function f : A ! C.
Conversely, a given string of characters, such as “l07”, can fail to be the representation
of a number. (In this example, the problem is that the first character is the letter “l” and
not the digit “1”.) This means that the two domains cannot be related by a normal (total)
function g : C ! A either. Similarly, the transformations described later may be partial
and need to be modeled mathematically as binary injective relations.
5 The notation R : X → Y is equivalent to R # X × Y , and xRy is equivalent to (x, y) $ R.

 4

Problems arise when the concrete implementation TC does not properly capture
the intention. Specifically, let c be some element of C received as external input.
If it is related to external output c! by TC (that is, cTC c! holds), then c! must be
related by J to some internal interpretation a! related by TA to the internal
interpretation a of c, that is, the unique value related by J to c.

This mouthful can be expressed symbolically in one line:

cTC c! " ("a!,a : c!Ja! ! aTA a! ! cJa) .

Using standard operations of the relational calculus, an even more concise
formula is given by:

TC # J -1 " TA " J .

In the above diagram, the lower, direct path from C to C must be contained in the
upper path leading from C to C , going against the direction of the arrow for the
last step from A to C .

If all is well, c , c!, a and a! are related as indicated below:

*

There are several ways in which the required containment could be violated. If,
for given c and c!, there is no a! such that c!Ja! holds, this means that c! is invalid
as input to the external entity it is intended for. If that entity properly validates its
input and reports any issues detected, and the software component under
scrutiny properly deals with such reports, there is no immediate vulnerability,
although relying on external entities to guard against security risks is generally
not robust and ill-advised. It is even possible that there is no internal
interpretation a of c, which ought to be detected and reported back to the entity
supplying input c, signalling that the input could not be interpreted.

 a

 c

J

a!

c!

J

TA

TC

A

 C

J

A

 C

J

TA

TC

 5

If, however, there are interpretations a! and a such that both c!Ja! and cJa hold,
but containment is violated, this means there is a second interpretation a!!,
related to a by TA , that differs from a!. (For simplicity we assume that TA is a
total relation, that is, given a $ A there is some value a!! such that a!!TA a holds.)
In words, the external output to which the internal input is transformed does not
reflect the intention of the transformation. Shown in a picture, we have:

This may create a vulnerability. A malicious attacker could possibly exploit this
by creating input that gets transformed to output that does not fit within the
parameters determined by security considerations. A security risk even exists if
no malice is involved: harmful effects might also arise unintentionally.

$%&'(&%)*4,-./*

In this section we model the theory as a Metaslang6 specification:

ACmatch = spec
 import /Library/General/Relation

 type A
 type C

 op J : Relation(C, A)

 op T_A : Relation(A, A)
 op T_C : Relation(C, C)

 axiom A_C_match is
 T_C <= inverse(J) o T_A o J

end

This specification closely follows the presentation of the theory given above. The
axiom A_C_match specifies the requirement that the implementation TC captures
the intention of the transformation TA .

6 Metaslang is the specification language of Kestrel Institute’s Specware system.

c!

a!
a!!

 a

 c

J J

TA

TC

mismatch

 6

8-.%9&'(&%)*>,9.%9&3/*A.37%.00.0*

To identify potential weaknesses in existing programs requires determining data-
flow paths where information flows from (untrusted) external input channels to
(unhardened) external output channels (taint propagation). This can be done
automatically, using well-understood and standard data-flow analysis techniques,
and the concrete transformation TC the data is subjected to can automatically be
extracted from the program and expressed as a relation.7

It further requires defining the relevant interpretation relations and intentional
transformations, that is, relations J and TA . This can, in general, not be
automated.

56<B""*CDE39@*?13F.103/GH*30*3%*&%093%;.*

The domain involved in CWE-22 is that of a pathname (or, for short, “path”) in a
file system. In many systems (e.g. Windows and Unix/Linux) a path consists of a
list of path segments, corresponding to the hierarchical structure of the file
system. A path defines an access to a resource, ususally a file or a folder. Paths
may be relative, starting from a given access point, or absolute, starting from the
root of a file system. The syntactic notation may vary between file systems, such
as Windows’ \projects\RCP\reports vs. Unix’ /projects/RCP/reports,
but to simplify the presentation we abstract from the syntactic details. Examples
will employ forward slashes.

Path segments are strings such as projects and RCP. There are two strings
that have a special significance, the so-called “dot segments” consisting of one or
two dots: . and .. . Before a path is used to access a resource, it has to be
normalized; a full (absolute) normalized path no longer contains any dot
segments. The details are not relevant to the present exposition, but essentially
this comes down to two rules, which are applied left-to-right:

1. Any dot segment of the form . is elided.
2. Any dot segment of the form .. is elided, together with the preceding

segment (if any)

For example, aa/./bb/cc/../dd is thereby normalized to aa/bb/dd.

The transformation in the application forms an absolute path from a relative path
supplied as input by prepending a given absolute path prefixPath that forms the
top-level starting point in the hierarchy for this application for accessing

7 The full generality of relations may not be needed in many cases, but there is a
completely standard way of embedding functions in the world of relations, namely by
mapping function f to the relation Rf such that x Rf y holds precisely when y = f (x).

 7

requested resources, all of which have a path of which prefixPath is a prefix. At
the intentional level, this prefix is prepended to the intentional interpretation of the
input path supplied, that is, the path obtained by normalization.

The usual file-system facilities will already normalize any path presented as an
argument of a system call, so it may seem that for the transformation at the
concrete level no normalization is needed, and that just prepending the prefix
path – assumed to be normalized itself – should be fine. In other words, it is
tempting to assume that the effect of prepending a prefix followed by
normalization is the same as the effect of normalization followed by prepending a
prefix. However, it is possible to construct input for which this is not the case: the
following example shows how a resource outside the project space set aside for
project RCP could become exposed and accessible to an external agent.

It should be clear that CWE-22 is an instance of the general model for this family
of weaknesses.

56<BIJ*CDKLM*8%N.;9&,%GH*30*3%*&%093%;.*

While in Path Traversal the abstract domain A and the concrete domain C were
both taken to be paths, in modeling SQL Injection it is more profitable to use text
strings for the concrete domain and SQL syntax trees for the abstract domain of
intentions. The interpretation relation is given by the parsing relation that maps
strings, provided they are valid SQL, to SQL syntax trees.

As an example we take a simple case in which an input key K is transformed to
the SQL query The input key is a string literal, which stands for itself, so at the
input side the interpretation relation is simply the identity. This is to be
transformed into the SQL query

 “SELECT name FROM list WHERE ID = 'K '”,

which shoud select the name field from relation list for the tuples for which the
ID field is equal to the user-supplied input key.

 /projects/RCP/secret
prepend

prefix

prepend
prefix reports/../../secret /projects/RCP/reports/

 ../../secret

normalize

 /projects/secret secret

normalize

mismatch

 8

The intentional transformation is as in the following diagram:

Suppose further that the concrete implementation has been realized by naively
substituting the input key textually in the query:

Then if the key is, for example, “A123' OR '1' = '1”, we get the following
mismatch:
*

 K TC SELECT name FROM list
 WHERE ID = 'K '

SELECT

ID K

= name list
 K TA

A123' OR '1' = '1

 SELECT name FROM list
 WHERE ID = 'A123'
 OR '1' = '1'

A123' OR '1' = '1

parse

substitute parse

substitute

=

ID A123' OR '1' = '1

SELECT

name list

SELECT

name OR

=

ID A123

=

1 1

list

mismatch

 9

M&9.139:1.

[Kes09] Kestrel Institute. Specware Language Manual and Specware User

Manual. 2009. Online at www.specware.org.

[Khe09] Khedker, Uday, Amitabha Sanyal and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press, 2009.

[Mee76] Meertens, Lambert. “From Abstract Variable to Concrete

Representation”. In S. A. Schuman, editor, New Directions in
Algorithmic Languages 1976, pp. 107–133, 1977.

[MIT10] MITRE. “2010 CWE/SANS Top 25 Most Dangerous Software Errors”.

Online at cwe.mitre.org/top25.

 10

O>>.%-&=

Details:

ACmatch = spec
 import /Library/General/Relation

 type A
 type C

 op J : Relation(C, A)

 op T_A : Relation(A, A)
 op T_C : Relation(C, C)

 axiom A_C_match is
 T_C <= inverse(J) o T_A o J

end

ProgramFragment = spec
 import /Library/Base/String
 import /Library/Base/List

 type PathSegment = String
 type Path = List PathSegment

 op prefixPath : Path

 op buildFilePath : Path -> Path
 def buildFilePath p = prefixPath ++ p

end

ProgramFragmentRel = spec
 import /Library/General/Relation
 import ProgramFragment

 op [a,b] f2R : (a -> b) -> Relation(a, b)
 def f2R f (x, y) = (f x = y)

 op normalizePath : Path -> Path
 def normalizePath = ...

 op normalizePathRel : Relation(Path, Path)
 def normalizePathRel = f2R normalizePath

 11

 op buildFilePathRel : Relation(Path, Path)
 def buildFilePathRel = f2R buildFilePath

end

CWE22_safe = morphism ACmatch -> ProgramFragmentRel {
 A +-> Path,
 C +-> Path,
 J +-> normalizePathRel,
 T_A +-> buildFilePathRel,
 T_C +-> buildFilePathRel
}

CWE22_obligations = obligations CWE22_safe

The obligations are the proof obligations engendered by the claim that the name
translation specified in CWE22_safe results in a morphism from the ACmatch
model to the relational description of the program fragment. Using the Specware
show command they can be made visible:

CWE22_obligations = spec
 import ProgramFragmentRel

 conjecture A_C_match is
 buildFilePathRel <= inverse(normalizePathRel)
 o buildFilePathRel
 o normalizePathRel

end

There is just a single proof obligation, namely the obligation to prove the stated
conjecture. Even assuming an axiom that prefixPath itself is already in
normalized form, this will fail, thereby raising a red flag.

