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Abstract	  
This technical note presents a formal, semantic model for a class of common software 
vulnerabilities, identified in the Common Weakness Enumeration2 as improper input 
validation3. The formalization is in terms of a failure of certain operations to commute. 

Introduction	  
 
Many software attacks exploit vulnerabilities that have identifiable and well-understood 
types, as described in the Common Weakness Enumeration (CWE) repository 
maintained by MITRE.  The purpose of this note is to point out the existence of quite 
specific and identifiable commonalities shared by some of the CWE weaknesses by 
defining a model from which different weaknesses can be obtained by instantiation. 
 
For guarding against attacks exploiting software vulnerabilities, it is essential that the 
exploitable weaknesses be understood.  Having precise models of such weaknesses 
allows to study them and to define measures that can prevent their introduction and 
facilitate their identification and removal from deployed software.  More importantly, 
while the CWE repository lists specific types of weaknesses only identified after attacks 
based on them have been successfully mounted, models that unify exploitable 
weaknesses into a family allow for a pro-active approach that can identify new types of 
more specific weaknesses belonging to a family before they become actual 
vulnerabilities in deployed software. 

                                            
1 Funded by AFRL contract  #FA8750-11-C-0005. 
2 http://cwe.mitre.org/ 
3 CWE #20, which includes SQL injection, command injection and pathname traversal. 
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Example	  
 
To illustrate the concept, we define a model for a family of weaknesses that belong to 
class CWE-20 (Improper Input Validation), and show that two specific weaknesses, both 
listed in the 2010 CWE/SANS Top 25 Most Dangerous Software Errors, are instances.  
The figure below shows the taxonomy in the CWE repository of the weaknesses 
involved.
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Command ('SQL Injection') 
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The essence of the family of weaknesses to be specified is a confusion between 
a more semantic domain of internal values and a more syntactic domain of 
representations.  Denoting these two domains as A  (for “abstract” values) and C   
(for “concrete” representations), there is an interpretation relation4 J relating 
these two domains.  Expressed symbolically5, we have: 
 

J : C  → A . 
 
Domain A  can be thought of as expressing intention, whereas C  is used for 
communication with entities that are external to the software component proper.  
This includes both input (for example, supplied by a user) and output (for 
example, requests to an external application, or arguments for remote procedure 
calls or operating-system calls).  Relation J is injective; that is, at most one 
internal value may be related to any given syntactic representation.  Expressed 
symbolically: 
 

(cJa ! cJa! ) " (a = a! ) . 
 
As part of its regular operation, the software component receives external input 
and transforms it to external output.  The transformation can be described at the 
abstract level of intentions as a relation: 
 

TA : A → A . 
 
The transformation is implemented at the concrete level as a relation: 
 

TC : C → C . 
 
These relations can be shown together in a diagram: 

                                            
4 The reasons for using a binary relation instead of a function are as follows.  For 
concreteness, think of A  as being the domain of numbers, and C  as being the domain of 
strings (sequences of characters).  A number such as 7 can have multiple concrete 
decimal representations as a string of characters, such as “7” and “007”.  Therefore the 
two domains cannot be related by a normal (single-valued) function f : A ! C.  
Conversely, a given string of characters, such as “l07”, can fail to be the representation 
of a number. (In this example, the problem is that the first character is the letter “l” and 
not the digit “1”.)  This means that the two domains cannot be related by a normal (total) 
function g : C ! A either.  Similarly, the transformations described later may be partial 
and need to be modeled mathematically as binary injective relations. 
5 The notation R : X  → Y  is equivalent to R # X × Y , and xRy is equivalent to (x, y) $ R. 
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Problems arise when the concrete implementation TC  does not properly capture 
the intention.  Specifically, let c be some element of C  received as external input.  
If it is related to external output c! by TC (that is, cTC c! holds), then c! must be 
related by J to some internal interpretation a! related by TA to the internal 
interpretation a of c, that is, the unique value related by J to c. 
 
This mouthful can be expressed symbolically in one line: 
 

cTC c!  "  ("a!,a : c!Ja! ! aTA a! ! cJa) . 
 
Using standard operations of the relational calculus, an even more concise 
formula is given by: 
 

TC   #  J -1 " TA  " J . 
 
In the above diagram, the lower, direct path from C  to C  must be contained in the 
upper path leading from C  to C , going against the direction of the arrow for the 
last step from A  to C . 
 
If all is well, c , c!, a and a! are related as indicated below: 
 
 
 

*
 
There are several ways in which the required containment could be violated.  If, 
for given c and c!, there is no a! such that c!Ja! holds, this means that c! is invalid 
as input to the external entity it is intended for.  If that entity properly validates its 
input and reports any issues detected, and the software component under 
scrutiny properly deals with such reports, there is no immediate vulnerability, 
although relying on external entities to guard against security risks is generally 
not robust and ill-advised.  It is even possible that there is no internal 
interpretation a of c, which ought to be detected and reported back to the entity 
supplying input c, signalling that the input could not be interpreted. 
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If, however, there are interpretations a! and a such that both c!Ja! and cJa hold, 
but containment is violated, this means there is a second interpretation a!!, 
related to a by TA , that differs from a!.  (For simplicity we assume that TA is a 
total relation, that is, given a $ A  there is some value a!! such that a!!TA a holds.)  
In words, the external output to which the internal input is transformed does not 
reflect the intention of the transformation. Shown in a picture, we have:
 
 
 
 
 
 
 
This may create a vulnerability.  A malicious attacker could possibly exploit this 
by creating input that gets transformed to output that does not fit within the 
parameters determined by security considerations.  A security risk even exists if 
no malice is involved: harmful effects might also arise unintentionally. 

$%&'(&%)*4,-./*
 
In this section we model the theory as a Metaslang6 specification: 
 

ACmatch = spec 
  import /Library/General/Relation 
 
  type A 
  type C 
 
  op J   : Relation(C, A) 
 
  op T_A : Relation(A, A) 
  op T_C : Relation(C, C) 
 
  axiom A_C_match is 
    T_C <= inverse(J) o T_A o J 
 
end 

 
This specification closely follows the presentation of the theory given above. The 
axiom A_C_match specifies the requirement that the implementation TC  captures 
the intention of the transformation TA  . 
 

                                            
6 Metaslang is the specification language of Kestrel Institute’s Specware system. 
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To identify potential weaknesses in existing programs requires determining data-
flow paths where information flows from (untrusted) external input channels to 
(unhardened) external output channels (taint propagation).  This can be done 
automatically, using well-understood and standard data-flow analysis techniques, 
and the concrete transformation TC  the data is subjected to can automatically be 
extracted from the program and expressed as a relation.7 
 
It further requires defining the relevant interpretation relations and intentional 
transformations, that is, relations J and TA .  This can, in general, not be 
automated. 

56<B""*CDE39@*?13F.103/GH*30*3%*&%093%;.*
 
The domain involved in CWE-22 is that of a pathname (or, for short, “path”) in a 
file system. In many systems (e.g. Windows and Unix/Linux) a path consists of a 
list of path segments, corresponding to the hierarchical structure of the file 
system. A path defines an access to a resource, ususally a file or a folder.  Paths 
may be relative, starting from a given access point, or absolute, starting from the 
root of a file system.  The syntactic notation may vary between file systems, such 
as Windows’ \projects\RCP\reports vs. Unix’ /projects/RCP/reports, 
but to simplify the presentation we abstract from the syntactic details.  Examples 
will employ forward slashes. 
 
Path segments are strings such as projects and RCP. There are two strings 
that have a special significance, the so-called “dot segments” consisting of one or 
two dots:  .  and  .. .  Before a path is used to access a resource, it has to be 
normalized; a full (absolute) normalized path no longer contains any dot 
segments.  The details are not relevant to the present exposition, but essentially 
this comes down to two rules, which are applied left-to-right: 
 

1. Any dot segment of the form  .  is elided.  
2. Any dot segment of the form  ..  is elided, together with the preceding 

segment (if any) 
 

For example, aa/./bb/cc/../dd is thereby normalized to aa/bb/dd. 
 
The transformation in the application forms an absolute path from a relative path 
supplied as input by prepending a given absolute path prefixPath that forms the 
top-level starting point in the hierarchy for this application for accessing 

                                            
7 The full generality of relations may not be needed in many cases, but there is a 
completely standard way of embedding functions in the world of relations, namely by 
mapping function f  to the relation Rf  such that x Rf y holds precisely when y = f (x). 
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requested resources, all of which have a path of which prefixPath is a prefix.  At 
the intentional level, this prefix is prepended to the intentional interpretation of the 
input path supplied, that is, the path obtained by normalization. 
 
The usual file-system facilities will already normalize any path presented as an 
argument of a system call, so it may seem that for the transformation at the 
concrete level no normalization is needed, and that just prepending the prefix 
path – assumed to be normalized itself – should be fine.  In other words, it is 
tempting to assume that the effect of prepending a prefix followed by 
normalization is the same as the effect of normalization followed by prepending a 
prefix.  However, it is possible to construct input for which this is not the case: the 
following example shows how a resource outside the project space set aside for 
project RCP could become exposed and accessible to an external agent. 
 
 
 
 
 
 
 
 
 
 
 
It should be clear that CWE-22 is an instance of the general model for this family 
of weaknesses. 

56<BIJ*CDKLM*8%N.;9&,%GH*30*3%*&%093%;.*
 
While in Path Traversal the abstract domain A  and the concrete domain C  were 
both taken to be paths, in modeling SQL Injection it is more profitable to use text 
strings for the concrete domain and SQL syntax trees for the abstract domain of 
intentions.  The interpretation relation is given by the parsing relation that maps 
strings, provided they are valid SQL, to SQL syntax trees. 
 
As an example we take a simple case in which an input key K is transformed to 
the SQL query The input key is a string literal, which stands for itself, so at the 
input side the interpretation relation is simply the identity.  This is to be 
transformed into the SQL query 
 
 “SELECT name FROM list WHERE ID = 'K '”,  
 
which shoud select the name field from relation list for the tuples for which the 
ID field is equal to the user-supplied input key. 
 

 /projects/RCP/secret 
prepend 

prefix 

prepend 
prefix  reports/../../secret  /projects/RCP/reports/ 

           ../../secret 

normalize 

 /projects/secret  secret 

normalize 

mismatch 
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The intentional transformation is as in the following diagram: 
 
 

 
 
 
 
 
Suppose further that the concrete implementation has been realized by naively 
substituting the input key textually in the query: 
 
 
 
 
 
Then if the key is, for example, “A123' OR '1' = '1”, we get the following 
mismatch: 
*

 K TC SELECT name FROM list 
  WHERE ID = 'K ' 
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ID K 

= name list 
 K TA 
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 SELECT name FROM list 
  WHERE ID = 'A123'  
    OR '1' = '1' 
 

A123' OR '1' = '1 
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substitute parse 
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ID A123' OR '1' = '1 
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= 
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Details: 
 

ACmatch = spec 
  import /Library/General/Relation 
 
  type A 
  type C 
 
  op J   : Relation(C, A) 
 
  op T_A : Relation(A, A) 
  op T_C : Relation(C, C) 
 
  axiom A_C_match is 
    T_C <= inverse(J) o T_A o J 
 
end 

 
ProgramFragment = spec 
  import /Library/Base/String 
  import /Library/Base/List 
 
  type PathSegment = String 
  type Path = List PathSegment 
 
  op prefixPath : Path 
 
  op  buildFilePath : Path -> Path 
  def buildFilePath p = prefixPath ++ p 
 
end 

 
ProgramFragmentRel = spec 
  import /Library/General/Relation 
  import ProgramFragment 
 
  op [a,b] f2R : (a -> b) -> Relation(a, b) 
  def      f2R f (x, y) = (f x = y) 
 
  op  normalizePath : Path -> Path 
  def normalizePath = ... 
 
  op  normalizePathRel : Relation(Path, Path) 
  def normalizePathRel = f2R normalizePath 
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  op  buildFilePathRel : Relation(Path, Path) 
  def buildFilePathRel = f2R buildFilePath 
 
end 
 
CWE22_safe = morphism ACmatch -> ProgramFragmentRel { 
  A   +-> Path, 
  C   +-> Path, 
  J   +-> normalizePathRel, 
  T_A +-> buildFilePathRel, 
  T_C +-> buildFilePathRel 
} 
 
CWE22_obligations = obligations CWE22_safe 
 

The obligations are the proof obligations engendered by the claim that the name 
translation specified in CWE22_safe results in a morphism from the ACmatch 
model to the relational description of the program fragment.  Using the Specware 
show command they can be made visible: 

 
CWE22_obligations = spec 
  import ProgramFragmentRel 
 
  conjecture A_C_match is  
    buildFilePathRel <= inverse(normalizePathRel) 
                        o buildFilePathRel 
                        o normalizePathRel 
 
end 

 
There is just a single proof obligation, namely the obligation to prove the stated 
conjecture.  Even assuming an axiom that prefixPath itself is already in 
normalized form, this will fail, thereby raising a red flag. 

 


