Experiments on Dense Graphs with a Stochastic, Peer-to-Peer Colorer

Stephen Fitzpatrick & Lambert Meertens

fitzpatrick@kestrel.edu & meertens@kestrel.edu

Kestrel Institute
3260 Hillview Avenue,
Palo Alto, California, U.S.A.
http://ants.kestrel.edu/

Motivation: large coordination problems in soft real time
Framework: distributed constraint optimization
– specialized to distributed, approximate graph coloring
Normalized metric: degree of conflict
Algorithm: peer-to-peer constraint maximization
Experimental results
Motivation: Large Networks of Simple Sensors

• Scenario: many small, cheap sensors scattered over terrain
• Sensors equipped with low-power radio transmitters & receivers
 – permit broadcast communication between geographically close sensors
 • every sensor within range of a transmitting sensor may receive a message
 – latency is high enough that data/control variables are essentially distributed
• Autonomous coordination is required
 – sensors must be activated & deactivated appropriately to allow long periods of unattended operation with limited energy
 – the quality of data from a single sensor is low so multiple sensors must collaborate to acquire complimentary data
Challenges

• Scalability
 – up to 10^5 sensors

• Real-time adaptivity
 – sensor coordination must keep pace with target behavior
 – good collaboration soon is better than excellent collaboration eventually
 – 5 seconds

• Wide load range
 – number of targets may quickly change from none to many

• Robustness
 – failure of even a significant fraction of the sensors must not cause catastrophic failure of the whole system

• Communication efficiency
 – transmission consumes energy and reveals location
 – 1 message per sensor per second
Distributed Constraint Optimization

• Set of labeled vertices v_i
 – domains Δv_i

• Set of labeled hyper-edges $E \equiv \{ j \rightarrow e_j \}$
 – a hyper-edge is an order sequence of vertices
 • or their labels
 – $e_j \equiv (v_{j1}, v_{j2}, \ldots, v_{jr})$
 – where jr is the edge’s rank

• Each edge is labeled with a penalty function
 – $f_j: \Delta v_{j1} \times \Delta v_{j2} \times \ldots \times \Delta v_{jr} \rightarrow [0,1]$

• Each vertex is to choose a value to minimize the mean penalty ("degree of conflict")
 – $\gamma \equiv \Sigma_j f_j / |E|$
Examples

• Vertex k-Coloring
 – $\Delta v_i \equiv \{1 \ldots k\}$
 – rank of each edge is 2
 – penalty functions are all the equality function
 $\delta_k(x,y) \equiv$ if $x=y$ then 1 else 0
 – penalty functions are symmetric

• Leader election under broadcast communication
 – $\Delta v_i \equiv \{\text{Off}, \text{On}\}$
 – a hyper-edge connects each vertex to all other vertices within a given distance
 – penalty function: let n be number of vertices with value On in edge j
 • $f_j(n=0) = 1$
 • $f_j(n=1) = 0$
 • $f_j(n>1) = 1-1/n^2$
 – penalty functions are symmetric
Normalized Metric

• Expected value of γ over random assignments
 – $[\gamma] = \sum_j f_j / |E|$
 – related to the tightness of the constraint

• Normalize: $\Gamma \equiv \gamma / [\gamma]$
 – $\Gamma=0$ is typically perfect
 • not achievable in over-constrained systems
 – $\Gamma=1$ is as good/bad as random
 • in a distributed system, a random assignment requires no coordination or communication
 – $\Gamma>1$ is worse than random
 • indicates a problem with coordination

Vertex k-Coloring

$[\delta_k] = 1/k$
$[\gamma]= 1/k$

loose constraint
independent of graph density

$\Gamma = k\gamma$

<table>
<thead>
<tr>
<th>δ_3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Algorithm Overview

• Local degree of conflict $\gamma_i \equiv \sum_{j \in \Delta E(i)} f_j / |E(i)|$
 – where $E(i)$ is the subset of the hyper-edges involving vertex i

• Main idea: each vertex continually adjusts its own value to minimize its own γ_i
 – each vertex communicates changes to its neighbors
 – per vertex costs vary with number of neighbors (for bounded domain)
 – robust due to highly distribution and local interaction
 – anytime algorithm generically suited to soft real time
 – convergence to stable solution rather than termination

• Assumption: if every vertex minimizes γ_i then overall solution will be good
 – good enough for sensor coordination
 – though probably not a true minimum
Fixed Probability Algorithm
(synchronous, conservative version)

• The vertices repeatedly execute the following steps in lockstep
• Every vertex determines simultaneously whether or not to activate
 – it activates iff $\gamma_i > 0$ and random[0,1) < p
 • where the activation probability p is a fixed number in [0,1]
• If a vertex activates, it attempts to minimize its local degree of conflict
 – according to what it believes are the values of adjacent vertices
 – the method of minimization depends on the nature of the domain
• All vertices that have changed value inform adjacent vertices
 – communication latency is always 1

Vertex k-Coloring
Vertex computes a histogram of neighbors’ colors and chooses a minimum
Effect of Activation Probability

- Activation probability p can be adjusted to balance speed of adaptation against coherence.
- High p causes simultaneous changes by neighbors
 - incoherence due to outdated information
- Low p causes slow adaptation

- 500 vertices
- Mean degree 14.0
- 4-colorable graphs in 2-D space
 randomly partition the vertices into 4 equivalence classes
 randomly add edges between vertices in different classes (that are sufficiently close)

CFP 0.1 (bottom) & CFP 0.9 (top)
Effect of Density

- For sparse graphs, regions of agreement quickly grow
 - but may not entirely reconcile with each other
 - most easily seen in 2-colorings of regular graphs
- As the density increases, the coupling between regions increases
 - initially, reconciling regions becomes more difficult so conflicts increase
 - eventually, the graphs have a small diameter so everything is local and proper colorings crystallize

Γ vs. time

- 900 vertices
- 10-colorable graphs (no spatial aspect)
- edge density varying from ~0.01 to ~0.89
- CFP 0.2
Effect of Density (cont.)

- Can summarize results for a given run by summing Γ
 - equivalent to area under curves in preceding plots

- Moderate activation probabilities (~0.25) provide good overall performance
 - even for high density graphs

- 900 vertices
- 10-colorable graphs (no spatial aspect)

![Graph showing total Γ (summed over 10000 steps) vs. mean degree for different activation probabilities (p=0.1, p=0.2, p=0.3, p=0.4, p=0.5).]
Communication Costs

- Single-step communication cost: fraction of vertices that change color
 - in a distributed system, each color change must be communicated
- For low density, costs vary linearly (approx.) with activation probability
 - more activity leads to more change
- For high density, costs increase more rapidly with activation probability
 - can be viewed as overhead caused by incoherence

- 900 vertices
- 10-colorable graphs (no spatial aspect)

Total communication cost (summed over 10000 steps)
Comparison with Sequential Algorithms

- 900 vertices
- 4-colorable graphs (no spatial aspect)

Non-strict sequential hill-climber
 - 5% tolerance

Greedy heuristic
 - order vertices by decreasing degree
Conclusions

• CFP coordination is simple to implement and cheap to use
 – random number generator probably does not need to be high quality
• Challenge is to adjust the activation probability
 – for many problems, an experimental approach is probably feasible
 – but ideally an optimal probability would be computed from graph characteristics
• Quality of solutions obtained by local optimization can be good
 – for sparse graphs, quality rapidly increases towards optimal
 • well suited to real-time systems
 – for dense graphs, final quality is optimal but initial improvement is poor
 • typically not well suited to real-time systems
• More complex algorithms?
 – could probably do better by coercing larger regions
 – would be difficult to achieve scalable, real-time results