
Synthetic Diversity:
Generating Alternative Representations and Run-time Monitors

for Robustness and Cyber-security

Kestrel Institute Technical Report

Stephen Fitzpatrick and Stephen Westfold

March 4, 2019

This report discusses: (i) generating implementations of an application that use
alternative concrete representations of abstract data types; and (ii) generating run-
time monitors from semantic constraints.

1 Introduction

An abstract data type (ADT) such as Set can be defined without regard to how it is represented
(i.e., abstractly). For example, two Sets can be defined to be equal when they have the same
members, regardless of how those members are associated with each Set, and such operations as
inserting an element into a Set or deleting an element from a Set can be defined in terms of how
they affect the Set’s membership, again without regard to how the membership is represented.

Nonetheless, an ADT must be given some representation if it is to be used in computations.
For any given ADT, there may be several possible representations — for example, a Set may
be represented using a List, with some representations allowing repetitions and others not. If
the elements can be ordered (e.g., Integers), then the List representations may be sorted —
alternatively, an Ordered Tree representation may be used. Or a Hash Map representation may
be used, with a given hash value mapped to a bucket of elements having that hash value.

Figure 1 shows alternatives for: storing documents, representing sets, finding the median of a
set of data, and algorithm schemas for optimization.

Figure 1: Various alternatives for ADTs and algorithms

1

Different representations will typically contain different code and exhibit different behaviours —
e.g., in the use of memory or CPU time, or in the use of operating system functions or third-party
libraries.

In the following, the use of alternative representations is considered for the purpose of achieving
diversity in an application’s code and behaviour. That is, given an application that uses various
ADTs, diversified implementations of the application are generated, using different combinations
of the ADTs’ representations. The different implementations will thus contain diversified code
and exhibit diversified behaviours. This may help to thwart cyber attacks that depend on
detailed knowledge of a specific implementation’s code or behaviour.

In addition, the generation of run-time monitors is considered. The run-time monitors are based
on semantic constraints contained in ADTs (e.g., pre- and post-conditions on their operations),
invariants of the concrete representations (e.g., that a particular List-based representation of Set
will not contain repetitions), and on the correspondence between an ADT and a representation.
A run-time monitor can detect violation of semantic constraints, signaling that something has
gone wrong in a computation or that a representation has become corrupt.

The semantic constraints can then be used for recovery, by repairing corrupt data or using an
alternative representation to repeat an erroneous computation. For example, if a sorted List is
found to contain out-of-order elements, then one possible repair is to remove the out-of-order
elements; another possible repair is to sort the List. Other repairs are possible.

Monitoring can be enhanced using multiple, redundant representations simultaneously, so that
they can be cross-checked; likewise, a representation that has been detected to be corrupt can
be reconstructed from a representation that is believed to be sound.

The use of monitored and diversified implementations may help to protect an application from:

• attacks that depend on low-level details of a specific representation;

• behaviour-based attacks that depend on an application’s use of a specific algorithm (e.g.,
algorithmic complexity attacks [1]);

• bugs in an algorithm that are peculiar to a specific representation;

• bugs in library routines that are used only by a specific representation.

This report focuses on the high-level principles involved in diversification and the generation of
run-time monitors and repair, mainly using examples. See [2] for more technical details.

2 Refining an Abstract Data Type into a Concrete Representation

In this report, an abstract data type, A, and a concrete representation R, are related by a
refinement morphism: each data type and operation defined in A has a corresponding data
type or operation defined in R. The names may be different; for example, in the Set ADT, the
type may be called ‘Set’, whereas in a concrete representation it might be called ‘HashSet’ or
‘SortedList’ — the morphism defines the appropriate translation. The concrete representation
may also introduce additional (auxiliary) types and operations that do not directly correspond
with any types or operations in the abstract data type.

In addition, the concrete representation must preserve the semantics of the ADT (allowing for
any renaming defined by the morphism). For example, the Set ADT (presumably) defines the
intersection of two Sets as a Set containing those elements that are members of both argument
Sets. The SortedList representation of Set must define a corresponding operation that takes

2

two SortedLists as input (each representing a Set) and produces a SortedList (representing the
intersection) that contains those members that are contained in both of the input SortedLists.
The implementation of intersection for the SortedList representation may be optimized using
the fact that each input SortedList is sorted, but regardless, it must preserve the semantics of
intersection given in the definition of Set.

2.1 Worked Example: Complex Numbers

The rest of this report will use for worked examples a simple ADT for complex numbers,
Complex. The ADT includes some typical observers:

• real : Complex→ Real, which gives the real part of the Complex Number;

• imag : Complex→ Real, which gives the imaginary part;

• rad : Complex → Real, which gives the radius; i.e., the magnitude, constrained to be
non-negative;

• arg : Complex → Real, which gives the argument; i.e., the angle, constrained to be in the
range [0; 2ı).

The rad observer gives a constrained value, as does the arg observer. In addition, these two
observers are mutually constrained so that the argument is zero if the radius is zero:

∀C : Complex · rad(C) = 0 =⇒ arg(C) = 0 :

When the radius is 0, the argument does not matter, and may even be considered to be unde-
fined. Choosing to make it 0 simplifies development.

The observers real and imag form a set of canonical observers — two complex numbers are equal
if and only if their real parts are equal and their imaginary parts are equal.

∀C1; C2 : Complex ·C1 = C2 ⇐⇒ real(C1) = real(C2)
∧ imag(C1) = imag(C2)

Likewise, rad and arg are also canonical:

∀C1; C2 : Complex ·C1 = C2 ⇐⇒ rad(C1) = rad(C2)
∧ arg(C1) = arg(C2)

Note that this is true only because arg is constrained to the range [0; 2ı) — otherwise the
definition of equality would need to allow for two complex numbers that have the same radius
but angles that differ by a multiple of 2ı. Likewise, if arg were not constrained to be 0 when
the radius is 0, then the definition of equality would need to allow for two complex number that
both have radius 0, but different angles.

So far, there is no connection between the two sets of observers. Now some mutual constraints
are introduced — ∀C : Complex:

real(C) = rad(C)× cos(arg(C))
imag(C) = rad(C)× sin(arg(C))

rad(C) =
q
real(C)2 + imag(C)2

arg(C) = tan−1(imag(C); real(C))

(The final constraint assumes that the inverse tan function returns 0 when both of its arguments
are 0.)

The basic arithmetic operations can now be defined:

3

• Addition, Complex×Complex→ Complex:

∀C1; C2 : Complex · real(C1 + C2) = real(C1) + real(C2)
∧ imag(C1 + C2) = imag(C1) + imag(C2) :

• Subtraction, Complex×Complex→ Complex:

∀C1; C2 : Complex · real(C1 − C2) = real(C1)− real(C2)
∧ imag(C1 − C2) = imag(C1)− imag(C2) :

• Product, Complex×Complex→ Complex:

∀C1; C2 : Complex · real(C1 × C2) = real(C1)× real(C2)− imag(C1)× imag(C2)
∧ imag(C1 × C2) = real(C1)× imag(C2) + imag(C1)× real(C2) :

• Division, Complex×Complex→ Complex:

∀C1; C2 : Complex · rad(C1=C2) = rad(C1)= rad(C2)
∧ arg(C1=C2) = arg(C1)− arg(C2)

where the radius of the second parameter cannot be 0.

2.2 A Concrete Representation: Cartesian

The preceding section did not define a concrete representation for Complex — it defined ob-
servers, which should be implemented regardless of the representation, and it defined arithmetic
operations in terms of the observers.

In this section, the standard Cartesian representation, based on the real and imaginary parts,
is defined:

Cartesian = {rl : Real; im : Real} :

This definition means that the concrete representation Cartesian has two fields, of type Real,
called ‘rl’ and ‘im’. Access to the fields is indicated using ‘.’ notation: for an instance C of
Cartesian, C: rl and C: im give the values of the fields.

For a concrete representation, a constructor is needed to produce instances, viz. mkCartesian :
Real×Real→ Cartesian:

mkCartesian(r; i) = {rl = r; im = i} :

This definition means that mkCartesian creates an instance of Cartesian that has the value r in
its field rl and the value i in its field im.

The real and imag observers are trivially defined on this representation:

real(C : Cartesian) = C: rl
imag(C : Cartesian) = C: im :

Definitions for the other observers, rad and arg, follow from the constraints on the observers:

rad(C : Cartesian) =
q
real(C)2 + imag(C)2 =

p
C: rl2+C: im2

arg(C : Cartesian) = tan−1(imag(C); real(C)) = tan−1(C: im; C: rl) :

Since the arithmetic operations are based solely on the observers, their definitions can be car-
ried over from Complex to Cartesian without modification other than renaming the type (from

4

Complex to Cartesian). Optionally, the division operation can be defined directly in terms of the
real and imaginary parts instead of the radius and argument:

∀C1; C2 : Complex · real(C1=C2) = [real(C1)× real(C2) + imag(C1)× imag(C2)]=r
2
2

∧ imag(C1=C2) = [imag(C1)× real(C2)− real(C1)× imag(C2)]=r
2
2

where r2 =
q
real(C2)2 + imag(C2)2 :

Since all of the operations now have definitions for their real and imaginary parts, they can
be used to construct instances of Cartesian. For example, the above definition of division is
straightforward to convert into a call to the mkCartesian constructor:

C1=C2 =
let r2 =

p
(real(C2)

2 + imag(C2)
2) in

let r = (real(C1)× real(C2) + imag(C1)× imag(C2))=r
2
2 ;

let i = (imag(C1)× real(C2)− real(C1)× imag(C2))=r
2
2 in

mkCartesian(r; i)

All of the operations are now defined in fully executable form on Cartesian, and this concrete
representation can be used to carry out computations defined in terms of Complex.

2.3 An Alternative Concrete Representation: Polar

An alternative representation for Complex is Polar, which has a field for the radius and a field
for the argument:

Polar = {rd : Real; ar : Real}
where the following constraints apply:

• rd ≥ 0 — that is, the radius cannot be negative;

• 0 ≤ ar < 2ı — that is, the argument is normalized into the range [0; 2ı);

• rd = 0 =⇒ ar = 0 — that is, if the radius is zero, then so too is the argument.

These constraints directly correspond to the constraints imposed on the rad and arg observers
in Complex.

As with Cartesian, two observers correspond directly with the fields, and so are trivially realized:

rad(C : Polar) = C: rd
arg(C : Polar) = C: ar :

A constructor is defined, viz. mkPolar : Real×Real→ Polar:

mkPolar(r; a) = {rd = r; ar = a} :

The other observers follow from the constraints defined in Complex:

real(C : Polar) = rad(C)× cos(arg(C)) = C: rd× cos(C: ar)
imag(C : Polar) = rad(C)× sin(arg(C)) = C: rd× sin(C: ar) :

As was the case for Cartesian, the arithmetic operations can be carried over as is to operate on
Polar. However, it may be preferable to give an alternative definition for the product operation
that should be more efficient than the definition given for the ADT:

∀C1; C2 : Polar · rad(C1 × C2) = rad(C1)× rad(C2)
∧ arg(C1 × C2) = arg(C1) + arg(C2) mod 2ı :

5

Of course, this alternative definition is constrained to produce the same results as the original
definition.

The concrete representation Polar can now be used to carry out computations defined using the
Complex abstract data type.

3 A Simple Application: Solving Quadratic Equations

As a simple example of an ‘application’, consider a solver of quadratic equations. Given an
equation in the form ax2 + bx + c = 0, where the coefficients a, b and c are complex and a is
not zero, there are two (possibly equal) solutions for x , given by x = −b ±

√
b2 − 4ac=2a.

The complex square root can be defined using:

∀C : Complex ·(
√
C)2 = C :

Note that this does not uniquely define the square root, since if x2 = C then (−x)2 = C.

For the Polar representation, the complex square root can be given a more computation-oriented
definition:

∀C : Polar · rad(
√
C) =

p
rad(C)

∧ arg(
√
C) = arg(C)=2 :

This uniquely defines the complex square root, assuming the usual convention that on Real
numbers

√
denotes the positive square root.

Likewise for the Cartesian representation [3]:

∀C : Cartesian · real(
√
C) =

√
2
2

p
r + real(C)

∧ imag(
√
C) = sign(imag(C))

√
2
2

p
r − real(C)

where r =
q
real(C)2 + imag(C)2 :

Given these definitions, the solver application can be implemented using either the Cartesian
or the Polar representation.

4 Generating Run-time Monitors

The definition of Complex contains various semantic constraints — e.g., each of the arithmetic
operations constrains its output with respect to its inputs, and for the divide operation, the
second argument (the divisor) cannot be zero. In addition, the Polar representation constrains
its fields that represent the radius and argument.

Moreover, each concrete representation is constrained by the abstract data type that it rep-
resents. For example, the definition of the product operation in Polar may differ from the
definition in Complex, but the former must conform to the latter. Likewise for the definition of
the division operator in Cartesian compared with the definition in Complex.

Furthermore, the constructive definitions of square root in Cartesian and Polar must conform to
the non-constructive definition in Complex (i.e., the result squared must equal the argument).

Many such semantic constraints can be used to generate monitors that check the constraints at
run-time. For example:

6

• A constraint on an operation’s arguments can be checked when computation of the oper-
ation begins. For example, the complex division operation can check that the divisor is
non-zero.

• If the Polar representation is used, then the fields can be checked against their constraints:
e.g., that the radius is non-negative and that the argument is in the range [0; 2ı).

• A constraint on an operation’s result can be checked when computation of the opera-
tion completes. For example, the operation to solve a quadratic equation produces two
supposed solutions; the equation can be evaluated and confirmed for each of the solutions.

• A computation using a concrete representation can be checked against the definition in
the abstract data type. For example, the computation of a square root using Cartesian
can be checked against the definition in Complex (i.e., the result squared should equal the
original value).

There are several caveats: a constraint may quantify over a domain that cannot be effectively
checked (e.g., all functions or all integers); a constraint may involve real numbers which are only
approximately represented in a computation (e.g., as finite-precision floating point numbers), so
different algorithms that are supposed to be equivalent might produce slightly different values.

In addition, constraints involving large data structures may be checkable, but incur significant
overhead. For example, a Set of Integers may be represented by a sorted List. In principle,
every operation on the sorted List could check that the List is indeed sorted, to try to detect
corruption of the List. However, if the List is long, then the time required to repeatedly check
may be too high.

To reduce overhead, monitoring can be performed using sampling techniques. For example:
an operation’s arguments can be checked at random, with some suitable probability; or some
small subset of the elements in a supposedly sorted List can be selected for comparison with
neighbouring elements.

4.1 Augmenting a Representation to Enhance Monitoring

Unlike the Polar representation, the Cartesian representation is internally unconstrained: no
matter what real numbers the real and imaginary fields contain, they together represent some
complex number. Consequently, useful monitors cannot be generated from the representation
per se.

However, a representation can be augmented with additional fields that are derived from the
original fields, and that thus introduce semantic constraints. For example, the Cartesian rep-
resentation can be augmented with an additional field that stores the radius of the complex
number:

CartesianWithRadius = {rl : Real; im : Real; rd : Real}
where rd =

p
rl2+ im2 :

The added semantic constraint can be used to check the integrity of instances of the augmented
type, CartesianWithRadius. The added field may also be used to simplify computations: for
example, the rad operation can now be optimized to return the value of the rd field instead of
calculating the radius from the real and imaginary parts.

Of course, any added fields must be properly initialized when an instance of the representation
is constructed. Code to do this can be automatically generated.

7

Adding the rd field is an example of a domain-specific augmentation. Other examples include
adding a field to record the sum of the elements in a numeric List (the sum being incrementally
maintained as elements are added or removed), or adding a field to record the minimum and
maximum elements in a List of words.

In contrast, a generic augmentation is adding a field to record some hash code of the other
fields. For example:

CartesianWithHash = {rl : Real; im : Real; h : Integer}
where h = hash(rl; im) :

With this augmentation, run-time monitors can check the validity of instances by evaluating
hash(rl; im) and comparing the result with that stored in the field h.

Of course, a hash field can be added to representations that already have semantic constraints,
such as Polar.

4.2 Using Multiple Representations for Cross-Checking

In addition to augmenting a single representation, run-time monitoring can be enhanced by
using multiple representations simultaneously and cross-checking the representations.

For example, given the Cartesian and Polar representations for Complex, a cross-checking repre-
sentation, ComplexCX can be generated that incorporates both representations:

ComplexCX = {ct : Cartesian; pl : Polar}
where ct = pl :

The equality of the ct and pl fields can be defined using any canonical set of observers (e.g., real
and imag).

For each operation that is defined on Complex, an operation can be generated on ComplexCX that
computes the operation using both the Cartesian and Polar representations, and then confirms
that they agree. For example, consider the product operation:

∀C1; C2 : ComplexCX · C1 × C2 =
compute the product using the Cartesian representations

let car = C1:ct × C2:ct;
compute the product using the Polar representations

let pol = C1:pl × C2:pl ;
check the two products against each other

in if car = pol thenmkComplexCX(car; pol) else error

where error represents some value that denotes an error condition.

5 Diversifying an Application

Given:

• an application that uses some abstract data type D: A(D);

• and multiple representations of D: Ri , for i = 1; : : : ; n;

8

multiple implementations A(Ri) of the application can be generated, one for each representation.

For example, if Q(Complex) is the quadratic equation solver discussed above, then possible
implementations include:

• Q(Cartesian),

• Q(Polar),

• Q(CartesianWithRadius),

• Q(CartesianWithHash),

• Q(PolarWithHash), and

• Q(ComplexCX).

Clearly there are other representations of Complex that could be used to extend this list of
implementations.

If an application uses multiple abstract data types, each with multiple representations, then each
combination of one representation per abstract data type may generate an implementation. So
if there are n ADTs, with ADT j having rj implementations (j = 1; : : : ; n), then

Q
j=1;:::;n rj

implementations may be generated.1

5.1 Example: Clustering

This section considers a somewhat larger application for diversification: clustering. Clustering is
a machine-learning technique for grouping points in some space into groups (clusters), such that
points in the same group are close together, while points in different groups are well-separated.

There are several widely used algorithms for clustering, two of which are considered here:

• k-Means [4] (also known as LLoyd’s algorithm) is an iterative technique in which each
point is assigned to the nearest of a set of k cluster centres, and then the points assigned
to each centre are averaged to update the centre. This is repeated until the centres stop
changing. The initial centres may be generated randomly.

Figure 2: k-Means clusters

1This assumes that representations do not themselves use abstract data types. Counting the number of imple-
mentations is more complex if this is not the case. Nonetheless, the essential notion still holds that multiple
ADTs, each with multiple representations, generate a combinatorial number of implementations.

9

• DBSCAN (density-based spatial clustering of applications with noise) [5] determines if a
point is part of a cluster based on the number of points within a certain distance, merging
overlapping clusters together.

Figure 3: DBSCAN clusters (from WikiPedia)

k-Means is well suited to data sets that are generated by Gaussian processes, whereas DBSCAN
is perhaps better for clusters that may not be symmetric.

Figure 4 shows possible diversified implementations of a clustering application.

• The first level of diversification uses either k-Means or DBSCAN.

• The algorithms use various ADTs. One is Sequence, which may be represented using
either Tree or Array.

• Another ADT is Set, which may be represented using Hash Table or Unordered List.

• The Ordered Set ADT may be represented using Ordered Tree or Ordered List.

• Finally, the algorithms use contiguous blocks of coordinate spaces, which may be repre-
sented as Bounding Boxes (specified as the ‘lower-left’ corner and the ‘upper-right’ corner)
or as Products of Intervals (with one interval per spatial dimension).

These possibilities, which are certainly not exhaustive, combined give 48 implementations.

5.2 Spatial and Temporal Diversity

Given multiple implementations of an application, the implementations can be deployed one at
a time or simultaneously.

• Deploying the implementations sequentially, on a single computer, may be referred to as
temporal diversity. The transfer from one implementation to another may be triggered
when a run-time monitor detects a problem, or periodically, or when the cumulative
activity reaches some threshold, etc.

• Deploying multiple implementations simultaneously to multiple computers may be referred
to as spatial diversity.

Of course, a deployment scheme may use a mixture of both temporal and spatial diversity.

10

Figure 4: Diversified implementations of clustering

11

5.3 Translation between Representations

If the application requires communication between concurrent instances, then it is likely that
two different implementations will need to exchange data. Since the implementations are using
different representations, some form of translation is required. For example, an implementation
using the Cartesian representation may need to send complex numbers to an implementation
using the Polar representation.

Depending on how the implementations are communicating (e.g., shared memory vs. network),
then either a direct translation (Cartesian to Polar) or a translation via an intermediate form
(e.g., Cartesian serialized to bit sequence and then deserialized to Polar) may be required.

Direct translation is straightforward if all of the representations have a common constructor and
a common set of observers. These may be defined in the abstract data type, though implemented
differently in each representation.

For Complex, two pairs of canonical observers were defined above: real and imag form one pair,
and rad and arg the other pair. Suppose that the former pair is chosen for translation purposes.

No canonical constructor was defined for Complex, but one is simple to add, matching the chosen
canonical observers — say mkComplex : Real×Real→ Complex:

∀r; i : Real · real(mkComplex(r; i)) = r
∧ imag(mkComplex(r; i)) = i

All of the representations for Complex already implement the chosen observers.

For the Cartesian representation, the mkComplex constructor is trivial to express using the native
mkCartesian constructor.

For the Polar representation, the implementation of mkComplex needs to compute the radius
and argument from the real and imaginary parts before calling the native mkPolar constructor.

In general, when implementation R1 needs to send a complex number to implementation R2,
R1 writes into memory the values returned by the chosen set of canonical observers, e.g., real
and imag; R2 then reads these values from memory and passes them to its implementation of
the canonical constructor, mkComplex.

Translation through serialization can be treated similarly, with canonical serialization and de-
serialization operators.

6 Recovering from Corrupted Data or Errors

When a runtime monitor discovers a violation of a semantic constraint (e.g., a data type invariant
or a pre- or post-condition), it raises an error. There are several ways in which the error can be
handled:

• The error can be allowed to terminate the application. This might be more acceptable
in some deployment contexts than allowing the application to proceed with corrupt or
erroneous data.

• If the violation occurs during the computation of an operation (for example, one of
the computation’s intermediate values has a violated invariant, or the operation’s post-
condition is violated), then:

12

– The computation can be retried, in case the violation was the result of a transient
problem (e.g., a race condition, a time out or a hardware glitch).

– The representation in which the error arose (e.g., CartesianWithHash) can be replaced
with a different representation (e.g., Polar) and the computation restarted.

– If the representation is redundant (e.g., ComplexCX) then the erroneous represen-
tation can be reconstructed from the sound representations and the computation
allowed to proceed.

• If the error is a data type violation, then the data can be repaired and the computation
allowed to proceed — see below.

In each of the above cases, code can be automatically generated to catch and handle the error.

6.1 Data Repairs

When a violation of a data type invariant is detected, it may be possible to repair the data
such that the repaired data has no violations. For example, a value of type Polar has three
constraints:

1. The radius must be non-negative.

2. The argument must be in the range [0; 2ı).

3. If the radius is 0, then the argument must be 0.

Suppose the radius is detected to be negative. There are several possible repairs:

• The radius’s sign can be flipped.

• The radius can be given the closest value (according to some metric) that eliminates
the violation. In this case, the closest value may be 0. However, using that value may
introduce a violation of constraint #3, so perhaps some small, positive value might be
used.

• The complex number could be given some value that is known, in context, to be safe.

Likewise, if the argument is outside its valid range, it could be snapped to the closest value (0
if it is negative, or 2ı if it is too large) or it could be mapped into the valid range modulo 2ı.
And if the radius is 0, then a non-zero argument could be made 0.

Without further information about the cause of the constraint violation, it is generally not
possible to determine which repair is best. However, choosing some repair may be safer than
allowing the application to continue with data that is corrupt.

Some repairs are generic (e.g., ensuring that a number is within some range) and can be auto-
matically introduced. Other repairs, such as using a value that is safe in context, are application-
specific; nonetheless, they can be stated declaratively and code generated to make use of them.

7 Conclusion

This report gives a high-level overview of how multiple representations of a data type can be used
to generate diversified implementations of an application. It illustrates how run-time monitors
can be generated from semantic constraints in the abstract data type and the representations.

13

It illustrates how representations can be augmented to enhance monitoring. Finally, it shows
how data can be repaired when monitoring detects corruption.

The synthetic diversity discussed in this report lies on a spectrum of diversification techniques
ranging from instruction set randomization and variable layout randomization to the use of
multiple protocols and architectures — see Figure 5.

Figure 5: A spectrum of diversification techniques

References

[1] Algorithmic Complexity Attack.
https://en.wikipedia.org/wiki/Algorithmic_complexity_attack

[2] Stephen Fitzpatrick, Cordell Green, Stephen Westfold and James McDonald. Using Soft-
ware Generation and Repair for Cyber-defense. Report #AFRL-RI-RS-TR-2014-111, Final
Technical Report, May 2014, Kestrel Institute.
https://apps.dtic.mil/dtic/tr/fulltext/u2/a599889.pdf

[3] Eric W. Weisstein. Square Root. From MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/SquareRoot.html

[4] k-Means Clustering
https://en.wikipedia.org/wiki/K-means_clustering

[5] DBSCAN
https://en.wikipedia.org/wiki/DBSCAN

14

