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Abstract. Programming languages are not an ideal 
vehicle for expressing algorithms. This paper 
sketches how a language Abstracto might be 
developed for "algorithmic expressions" that may be 
manipulated by the rules of "algorithmics", quite 
similar to the manipulation of mathematical expres- 
sions in mathematics. Two examples are given of 
"abstract" algorithmic expressions that are not ex- 
ecutable in the ordinary sense, but may be used in 
the derivation of programs. It appears that the no- 
tion of "refinement" may be replaced by a weaker 
notion for abstract algorithmic expressions, 
correspondin also to a weaker notion of "weakest 
precondition ~ . 

i. THE ABSTRACTO PROJECT 

Since December 1977 IFIP Working Group 2.1 has 
been working on the investigation of "the proper- 
ties, feasibility and usefulness of a language 
helping the specification and construction of good 
algorithms". If this description seems vague (it is 
so on purpose), it nevertheless describes "some- 
thing" that is almost tangible by its conspicuous 
absence from the programmer's tool kit. 

A programmer who is writing a program is in 
fact encoding an algorithm in a language for some 
machine. This need not be a piece of hardware; it 
can be "the" abstract machine for FORTRAN or some 
other high-level language. The development of an 
algorithm down to the machine level takes many 
steps, some of which require ingenuity, but the 
larger part of which consists of clerical manipula- 
tions and book-keeping. This is partly due to the 
(not always unjustified) wish of writing an effi- 
cient program, and partly to the fact that even the 
highest-level languages require the specification 
of details that are relevant to the machinery, but 
not to the algorithm proper. 

It would be good practice if the programmer 
would first write down the algorithm before start- 
ing to code it as a program. But now, in what way? 
Some "algorithmic" language is needed. The avail- 
able languages, however, are programming languages. 
(Hill[5] shows convincingly how unsuited natural 
language is for this purpose.) So we are back were 
we started: to write an algorithm in a programming 
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language is to write a program. 
In a nutshell, the aim of the Abstracto project 

is to fill the gap by designing a language specifi- 
cally for the purpose of describing algorithms. The 
language should be a suitable vehicle for applying 
established programming techniques, and thereby 
also for teaching such techniques, without danger 
of having to explain ideosyncracies. 

The Abstracto project is still in its early 
phase. There is not even an approximation of con- 
sensus about the basics of Abstracto. In this paper 
some ideas are presented; it should be stressed 
that these represent solely my position and may not 
be taken for opinions of WG 2.1. Although some log- 
ical formalism is used in this paper, the reader 
should be warned that this is only done for the 
purpose of conveying a meaning; nothing is alleged 
to be "proved" here. 

2. ABSTRACTO AS A PIDGIN 

When people who do not speak a common language 
establish a regular contact and want to communi- 
cate, an interesting phenomenon happens: they 
develop a "pidgin" language, clumsy but effective. 
A similar phenomenon has happened in Computer Sci- 
ence literature: a kind of pidgin ALGOL has 
developed there, from the need of authors to ad- 
dress a broad audience without having to explain 
over and over the meaning of all notations em- 
ployed. This pidgin ALGOL is a language, although 
it is not frozen, let alone formalized. In fact, it 
has some of the characteristics from natural 
languages. 

A major similarity is the property that this 
language is gradually evolving, to meet the needs 
in communicating algorithms. One may (and I do) 
take the position, thus mitigating the grimness of 
the situation sketched in the previous section, 
that pidgin ALGOL covers to some extent the need 
for an algorithmic language. Moreover, the "natur- 
al" course of evolution will be to tune the 
language to the requirements of developing program- 
ming methodology. However, we are still far away 
from what could be achieved even today. As long as 
we are faced with the situation that the language 
has to be mastered by picking it up from casual 
contacts, it will of necessity drag along trails 
that have been beaten years before. 

Viewed in this perspective, the Abstracto ef- 
fort is aimed at speeding up evolution by proposing 
and using suitable notations for important algo- 
rithmic concepts. Of course, it will be possible 
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(and maybe desirable) to take a snapshot of 
Abstracto at regular intervals, to clean up the 
picture and to present it as, say, Abstracto 84. 
But this will not stop Abstracto from evolving on. 

The obvious advantage of freezing an Abstracto 
X is the possibility of referring to a "standard" 
when publishing an algorithm. Moreover, when a 
language is formalized, it also becomes possible to 
formalize proof rules and to prove their consisten- 
cy and completeness. These are not, however, the 
main reasons why I feel the effort of freezing a 
version of Ahstracto at some future time may prove 
worth the trouble. It seems much more important to 
me that this forces one to clarify issues that 
still appear murky, thereby deepening the under- 
standing of what is going on. Also, it may show us 
how to design better programming languages. 

3. ABSTRACTO AND TRANSFORMATIONAL PROGRAMMING 

Unlike many fads in Computer Science, the rela- 
tively recent technique of "transformational pro- 
gramming" appears to be quite promising. One should 
of course not make the mistake to expect that it 
opens up a royal road to program construction; no 
technique ever will. But the basic idea is quite 
simple and sound, its value has been demonstrated 
on diverse, sometimes even not trivial, examples, 
and it provides a framework for expressing an ex- 
panding body of knowledge about programming and for 
developing new programming techniques (or applying 
"old" programming techniques known under the col- 
lective title of Structured Programming). In 
essence, the method of transformational programming 
consists of (a) writing an algorithm, as pure and 
simple as possible, to meet a given specification 
as to correctness, and (b) next successively 
transforming the algorithm, by relatively simple 
correctness-preserving transformations, to meet 
other requirements, such as those stemming from ef- 
ficiency considerations. 

Transformations may be global, replacing the 
whole program under development by a new text, but 
the typical transformation is local, effecting only 
a small part. Ideally, the algorithm at the top 
should be identical with the correctness specifica- 
tion, but we do not know in general how to go down 
from that level by something in the spirit of a 
transformation. 

Well-known transformations are stepwise refine- 
ment and recursion removal. It may well happen, 
however, that at some stage of development recur- 
sion introduction (Bird[2]) is in order to prepare 
for a more advantageous step. 

The nature of transformational programming is 
quite aptly described by Bird: "The manipulations 
[...] mirror very closely the style of derivation 
of mathematical formulas". He also remarks: "As the 
length of the derivations testify, we still lack a 
convenient shorthand with which to describe pro- 
grams". 

It is here that Abstracto should step in, It is 
important to realize that the objects one manipu- 
lates upon are not the algorithms themselves, but 
are expressions: algorithmic expressions. In fact, 
for most steps it is impossible to maintain that 
there occurs a change in the algorithm (unless one 
refuses to admit the existence of "the" Euclidean 
algorithm, or "the" sieve of Eratosthenes). For 
these algorithmic expressions, we need notations. 

None of the existing programming languages has been 
designed with a design objective as ease of manipu- 
lation. On the contrary; if one would not know 
better, one would in many cases be tempted to be- 
lieve they were designed on purpose to be transfor- 
mation resistent: the semantic peculiarities often 
make it devilishly hard to verify that a particular 
step is applicable. Moreover, the verbosity of ex- 
isting notations makes it aggravating to write down 
the derivations and makes it hard to keep track of 
what is happening. It is to be expected that the 
introduction of better notations will prove as im- 
portant for the development of "algorithmics" as it 
has been for mathematics. 

4. DESIGNING ABSTRACTO 84 

To make Abstracto catch up with the state of 
the art, it seems wise to go through the motions of 
designing a language from scratch. One should have 
the freedom of ignoring established but cumbersome 
notations and conventions. 

There is, however, a much more important degree 
of freedom that should be explored and exploited: 
unlike any programming language, Abstracto is ex- 
empt from the requirement that its texts should be 
understandable to an automaton, let alone that it 
should be possible to coerce it to execute the pro- 
cess described by an algorithmic expression from 
Abstracto merely by proceeding to feed it the 
source text. Rather than trying to extend the 
machine to higher levels of abstraction by erecting 
scaffolds from the hardware, we can start in the 
blue sky and go down from there. It is nice, of 
course, if we can reach solid ground, but this is 
not a prerequisite. 

Nevertheless, it should be possible to write 
more or less conventional programs in Abstracto al- 
so. This means that a piece of program like 

z:=l ; x:=2 ; z:=z.x 

is fine. This leads to the question of types and 
data structures in Abstracto 84. 

It is desirable that the programmer can use ob- 
jects of any type conceivable. Rather than creating 
some heavy mechanism for adding user-defined types 
to the language, it is far easier to allow the de- 
finition of any new type, including the semantics 
of the operations characterizing the type, as pre- 
liminaries to the algorithm. If the type under con- 
sideration is well established (e.g., integers), 
there will often be no need to explain beforehand 
the various operations used. So Abstracto 84 has no 
predefined types (with the exception of truth 
values, and maybe other types linked up with con- 
trol structures). Operations on objects fall out- 
side the realm of Abstracto 84 proper. Apart from 
these "application oriented" types, there are types 
constructed from existing types (e.g., sets). 
Abstracto 84 may suggest some unification in the 
notations for some classes of such types; the ques- 
tion whether this "belongs" to Abstracto 84 or not 
is not particularly relevant. 

As a consequence, all of established mathe- 
matical notation is welcome in an Abstracto 84 pro- 
gram. The syntax of Abstracto 84 will not attempt 
to define what may appear on the right-hand side of 
an assignment. Remember that this is acceptable, 
since Abstracto 84 texts are not required to be in- 
terpretable by machine. 
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The same liberal attitude can be taken for the 
whole of Abstracto 84. The rule would be: any nota- 
tion or convention that is sufficiently clear may 
be used, provided that its meaning, if not self- 
evident, is explained in the preliminaries. The ef- 
fort in designing Abstracto 84 should go in estab- 
lishing which new, or not yet commonly accepted, 
notations are sufficiently important to exempt them 
from the requirement of preliminary explanation for 
use in Abstracto 84 expressions. When designing a 
language (especially by committee) it is often 
quite hard to keep the language from being clogged 

by a multitude of things, for none of which indivi- 
dually there is a particularly compelling reason to 
ban it. Thus, the liberal rule may save many tears: 
cherished notations may be used anyway, even if no 

part of Abstracto 84 proper. In fact, it is my 
feeling that this rule is essential for the viabil- 
ity of the project. Just consider what would happen 
to a language Mathematico 84 for mathematical ex- 

pressions that took a rigid and exclusive attitude 

as to what was allowed: the inevitable expressive 
shortcomings would be as many reasons to shun it. 

In the sequel, "Abstracto 84" will refer to 
Abstracto 84 proper, the core of an extensible 

language - where the extension mechanism is not 
part of the language. An "algorithmic expression" 
(or, for short, "expression") is a piece of text 
written in the, possibly extended, language. It may 
be helpful to think of expressions as "statements", 
since they describe a process to be executed. Some- 
thing like "z.x", conventionally called an expres- 
sion, will be called a "unit" in the sequel of this 
paper. 

It is well known that many mathematical nota- 
tions are potentially ambiguous. In practice, this 
is not harmful: if a given mathematical expression 
turns out ambiguous, parentheses will do. Ambiguity 
here does not mean that there is more than one 
parse, but that there exist two or more plausible 
parses with different meanings. Similarly, one 
should not worry too much about potential ambigui- 

ties for algorithmic expressions. If priority con- 
ventions are established, their purpose is to save 
the writing of parentheses, not to compel insertion 
where the intended meaning is already clear enough. 

So the syntax of Abstracto 84 is abstract rather 
than concrete. 

If S 1 and S 2 are expressions, than so is Si;S 2. 
Expressed in operational semantics, the meaning is 
sequential execution. By the above rule, since 

(Si;S2);S 3 is clearly equivalent to Si;($2;$3), we 
may write Si;$2;$3, and so on. Other control 
mechanisms in Abstracto 84 are given by the guarded 
command constructs of Dijkstra[4]. However, for the 
ease of manipulation, we write "..." and "*(...)" 
rather than "IF ... FI" and "DO ... OD". So we have 

bl--~S 1 U ... 0 bn-->S n, 

meaning (operationally) that some i is selected 
such that the guard b i holds, whereupon S i is exe- 
cuted. If no such i exists, the meaning is unde- 
fined (the same as that of an infinite loop). The 
meaning of the loop expression 

* (b-->S) 

is the same as that of 

b --> S;*(b-->S) D -Tb --> skip. 

Although it is envisaged that more control 
structures may be needed in Abstracto 84, it is 
helpful if their meaning is defined in terms of 

simpler expressions, so that an existing body of 
transformations becomes automatically available. 
For expressing concurrency (parallel execution), 
however, this is impossible with the concepts given 
so far. A possible notation is not hard to devise; 
the problem is to select a proper synchronization 

mechanism. 

A basic type of algorithmic expression is the 

assignment expression. Following Dijkstra again, 
Abstracto 84 allows parallel assignment expressions 

such as 

x,y := -y,x. 

This is quite natural, since the assignment expres- 
sion might result from transforming an assignment 

expression 

z := iz 

using z = x + iy. 

5. ABSTRACT ALGORITHMIC EXPRESSIONS AND REFINEMENT 

So far we have seen nothing exciting. If it is 
claimed that Abstracto 84 is of a higher level than 
SETL, say, this is not because it usurps by exten- 

sion the notations of SETL. The reason is, rather, 
that expressions in Abstracto 84 need not be exe- 
cutable in the usual sense. 

Let us consider for a moment what we mean by 
"executable". It is the property of an expression 
that makes it possible to have it executed by a 
computer. Now, if we have a mathematical expression 
like "21/7", we know that its meaning is: a number 
x such that 7x = 21. So we can view "21/7" as a 
concise problem specification: find a number x such 
that 7x = 21. There exists a well-known algorithm 

to solve this type of problem. In many computers it 
is implemented in the hardware. High-level program- 
ming languages allow for notations to invoke that 
algorithm. The usual notation for that is "21/7". 

This is a concise specification for the solution to 
the above problem: divide 21 by 7; the result will 
be the required number. Obviously, it is a matter 
of viewpoint whether "21/7" specifies a problem or 
a solution. We have almost forgotten that it may be 
considered as a problem, although at some time in 
our lives we have certainly done so. In general, a 
problem specification for a problem that falls in a 
class where there exist known algorithms to solve 
the problem, may be considered simultaneously as a 
solution specification. In mathematical practise, 
the distinction between the two is very vague, a 
matter of taste. This vagueness is in fact benefi- 

cial. 

Similarly, we need the same vagueness in 
Abstracto 84. It may happen that a given expression 
looks so suspiciously like a program that we may 
successfully feed it to a compiler and have it run. 
Now consider the subset FEA (Executable Abstracto) 
of expressions for which this works. It is claimed 
that EA is a fuzzy set. As time proceeds, more and 
more algorithms may be incorporated in the seman- 
tics of programming languages to cover parts of 
Abstracto that were, until then, deemed "unexecut- 
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able". By that act, EA grows. Thus, the experience 
gained by using Abstracto may serve as a guideline 
for the development of programming languages. 

Abstracto 84 should provide expressive capabil- 
ities for a broad range, covering very clearly 
problem specifications on one end, and very clearly 
solution specifications on the other. The notion of 
"algorithmic expression" encompasses the whole 
range. By applying the arts and techniques of Algo- 
rithmics, these expressions may be manipulated. (To 
my taste the term "algorithmics", by analogy to 
"mathematics", is far better than the usual 
"Transformational Programming". After all, mathe- 
matics is more than "Transformational Arithmetic", 
even though much mathematical effort is aimed at 
evaluating expressions). The field of algorithmics 
is still underdeveloped, of course; mathematics 
could only take its flight when suitable notations 
came to be developed. 

It may prove that the most important part of 
Abstracto 84 is the in-between range: no longer 
clearly a problem, but not yet clearly a solution. 
This is the part where notations are most lacking. 

Even though the notion of "executability" is 
fuzzy, it is useful to have some terminology to in- 
dicate the concept. Since I prefer a more neutral 
terminology, I propose to call an expression "con- 
crete" if it is free of "unexecutable" notations, 
and "abstract" otherwise. The task of a programmer 
is to derive concrete expressions from abstract 
ones. 

It should be stressed that "abstract" does not 
imply "vague". An abstract expression may have a 
very precise meaning. But this meaning need not be 
defined in terms of: first do this, next that, and 
SO on. 

In order to search for powerful abstract ex- 
pressions, we must have an idea in what way we want 
to use them. In mathematics, the central notion is 
that of equality. In algorithmics, however, anoth- 
er, asymmetric relationship plays a central role: 
that of refinement. Speaking informally, an expres- 
sion S is refined by another expression S" if any 
concrete realization of S" is also a concrete real- 
ization of S. Note that this does not exclude the 
possibility that S is concrete and S" is abstract. 

It is necessary to define the meaning of re- 
finement more formally. For p and q assertions, and 
S an expression, let the correctness formula 
{p}S{q} stand for: a concrete realization of S, ex- 
ecuted with precondition p, will terminate and 
result in the postcondition q. S is then refined by 
S" if 

for all p and q, if {p}S'{q}, then {p}S{q}. 

This definition is, however, circular, since a con- 
crete realization of S is a concrete expression C 
such that S is refined by C. We need an independent 
characterization of the semantics of abstract ex- 
pressions. From the various, more or less 
equivalent, methods for defining semantics, that of 
weakest preconditions seems quite convenient, since 
it allows in a natural way to express the indeter- 
minacy of the meaning of abstract expressions. Let 
wp(S,q) stand for the weakest precondition of S en- 
suring termination with q. Then S -< S" means: 

for all q, wp(S,q) implies wp(S;q). 

This notion of refinement is identical to that in 
the work of Back[l], which provides a rigorous 
mathematical foundation. It is obvious that the re- 
lationship is reflexive and transitive: 

s<s; 
if S < S" and S" < S'; then S < SO'. 

A very important property is the following. Let 
f(S) be an algorithmic expression, containing S as 
a component expression. Then we have: 

if S < S; then f(S) < f(S'). 

(This property crucially depends on the way the 
meaning of expressions is defined in terms of the 
meanings of their component expressions. A suffi- 
cient condition is that the weakest precondition of 
a composite expression is a positive monotone func- 
tional of the weakest preconditions of its com- 
ponents. This is certainly the case for all conven- 
tional composition methods. ) 

It appears that the notion of <-refinement is 
stronger than is necessary for abstract expres- 
sions. Let C be restricted below to the set of con- 
crete algorithmic expressions. Then we can define 
S <" S" to mean: 

for all C, if S" < C, then S < C. 

This corresponds to the original informal defini- 
tion. Clearly, if S < S', then S <" S'. The con- 
verse need not hold. The important thing to notice, 
however, is that S _<" C implies S _< C. In other 
words, if it is possible to derive a concrete ex- 
pression for S using --<'-refinement, this is also a 
correct derivation under <-refinement. It may be 
possible that the weaker type of refinement does 
lead us into blind alleys, but in no way does it 
lead to incorrect programs. 

It is clear that we have lost some "guidance", 
so a legitimate question is what we have gained. 
First, one should realize that the original refine- 
ment definition is no guarantee against blind al- 
leys in the derivation process. In many cases, one 
proceeds with a goal in mind, knowing beforehand 
that this road leads to success. The gain is know 
that, hopefully, the weaker requirements for the 
applicability of a refinement step are easier to 
verify. 

It is possible to define a corresponding type 
of (weaker) weakest preconditions: 

wp'(S,q) = h wp(C,q). 
S <C 

Then S _<" S" is equivalent to 

for all q, wp'(S,q) implies wp'(S;q). 

Unfortunately, it is not clear how a calculus 
might be developed for wp'. A practical approach 
may, however, be found along the following lines. 
Let cr ("concretely realizable") stand for any 
predicate over the expressions, chosen such as to 
satisfy 

(i) for all C, cr(C) holds, and 
(ii) for all S, wp(S,true) implies cr(S). 

Take for wp* any predicate transformer satisfying 
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wp(S,q) = wp*(S,q) & cr(S). 

Any wp* thus defined satisfies 

wp(S,q) implies wp*(S,q), and 
wp*(S,q) implies wp'(S,q). 

Now define S ~* S" by: 

for all q, wp*(S,q) implies wp*(S%q). 

This ~*-refinement has again all desirable proper- 
ties, like reflexivity and transitivity. The free- 
dom in choosing cr is quite large. One extreme is 
to choose cr(S) identically true for all S; this 
leads to wp* = wp. The other extreme is to consider 
termination a prerequisite for concreteness, and to 
choose cr(S) = wp(S,true). This allows the choice 
for wp* of the weakest precondition for partial 
correctness (without termination). In general, 
given a choice for cr, the range of choice for 
wp*(S,q) has as extremes at the strong end wp(S,q), 
and at the weak end cr(S)Dwp(S,q). The freedom of 
choice should be used to obtain manageable formulas 
and rules. 

It may appear that cr also has to satisfy 

if S ~* S" and cr(S'), then cr(S). 

In fact, this is not necessary. It is sufficient if 
we have: 

if S ~* C, then S ~ C. 

This is indeed the case, as is easily verified. 

Dijkstra[4] gives rules for computing wp for 
compound expressions. It is desirable that the same 
rules go through for wp*, even if the component ex- 
pressions are abstract. (However, for the loop ex- 
pression we need the weaker precondition given by 
Boom[3], because of the indeterminacy allowed in 
abstract expressions.) Also, for an expression like 
Si;S2, we want cr(Sl;S 2) to hold whenever cr(S I) 
and cr(S 2) both hold, and so on. This turns out 
possible. If we choose 

cr(Sl;S2) = 
cr(S I) & (wp~(Sl,true)~wp*(Sl,cr(S2)) , 

then it is straightforward to verify that 

wp*(Sl;S2,q) = wp*(Sl,Wp*(S2,q) ) 

is acceptable as definition. Similarly, one can 
take 

cr(bl-->S 1 D b2-->S 2) = 
(b IDcr(SI)) & (b 2~cr($2)) 

as definition and obtain the usual formula for wp ~, 
and so on. 

6. EXAMPLES OF ABSTRACT ALGORITHMIC EXPRESSIONS 

Before giving two examples of abstract expres- 
sions, one notation has to be explained. Let A 
stand for an algorithmic expression or an asser- 
tion, v for a list of variables and u for a list 
(of the same number of elements) of units. Then the 
notation 

A Iv: =u| 

stands for A with all free occurrences of v in A 
replaced by u. A more conventional notation would 
be A[u/v]. However, if other than simple variables 
are allowed, the implied substitution should not be 
performed literally. For example, 

(a[4] > O) [a[2+2] :=b] = (b > 0). 

Using this notation, we can express the weakest 
precondition of assignment expressions quite 
elegantly: 

wp(v:=u,q) = q~v:=u]. 

Let us start at a high point. Many problems can 
be described as the task of going from a precondi- 
tion p to a postcondition q. Thus, we are led to 
consider problem descriptions of the form 

{p}?{q}. 

There is, however, something essential lacking. 
This can be seen by looking at the description 

{x=xo,y=yo}?{x=x0,y=y0,z=GCD(x,y)}. 

This has many presumably unintended solutions, like 

x,xo,y,y0,z := i,i,i,i,i. 

There should be a way of indicating the variables 
that may be changed in the process. This leads to 

{p}v:=?{q}. 

This would do, but it is cumbersome. A better nota- 
tion for this "problem " " expresslon is 

v:=[p~q], 

where v stands for a list of variables. (Warning: 
[p~q] is not a unit list, so a substitution 
~v:=[p~q]] is meaningless.) In pseudo-operational 
semantics, the meaning is: set v to some value such 
that, if initially p held, then now q holds. If p 
does not hold, any value will do. (One might also 
not require termination in the latter case; the 
merits of this variant definition have not been ex- 
plored sufficiently.) 

An example of a problem expression is 

y:=[x~0 ~ y2=x & y~0]. 

This could be realized by the concrete expression 

y:=sqrt(x). 

If we compute the precondition by transposing 
this in the formalism of Back[l] and using his 
rules, we obtain 

wp(v:=[p~q],r) = 
(p~(3v': q~v:=v'J)) & 
(Vv: qDr). 

Clearly, we may take 

cr(v:=[p~q]) = pm(~v': q[v:=v']) 

and 
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wp*(v:=[p=~q],r) = Vv: q m r. 

In fact, cr(v:=[p~q]) = wp(v:=[p~q],true). 

Some properties of the new type of expression 
are given by the following list of rules: 

(a) If p implies p" and q" implies q, then 
v:=[p~q] ~* v:=[p'~q']; 

(b) v:=[p~q] ~* v,v':=[p~q], where v" is a fresh 
list of variables; 

(c) v:=[p~r] ~* v:=[p=~q]; v:=[q~r]; 

(d) v:=[PlVP2 ~ q] ~* 

pl-->v:=[pl~q] ~p2--~v:=[p2~q]. 

Rule (a) corresponds to the usual rule of conse- 
quence. Rule (b) allows the introduction of auxili- 
ary variables. As to (c) and (d)~ these correspond 
to the usual rules for sequential and conditional 
composition. 

The verification is quite straightforward, but 
is left as an exercise to the interested reader. 

The next abstract expression is less of a prob- 
lem specification, but still quite abstract. It is 
the "bound expression" 

SJv:p ,  

where v is a list of variables, p is an assertion 
and S is another algorithmic expression not con- 
taining elements of v in the left-hand side posi- 
tion of an assignment expression, problem expres- 
sion or otherwise (if more expressions with the na- 
ture of an assignment are introduced). Informally, 
its meaning is: execute S where v is chosen such 
that p is satisfied. An example is given by 

y:=v J v: x~0 ~ (vZ~x & v>_0). 

The variables in v are bound to the expression. The 
semantics is given by computing wp: 

wp(Slv:p,q) = (Bv: p) & (Vv: p ~ wp(S,q)). 

We may take 

and 

cr(Slv:p) = 3v: p 

wp*(Slv:p,q) = Vv: p ~ wp(S,q). 

We can now express some more rules, where 
S =* S" stands for S <* S" & S" <* S. 

(e) v:=[p~q] =* v:=v" I v': p D q[V:=V'~, where v" 
is a list of fresh variables of the same length 
as v; 

(f) v:=[p ~ p&-Tb] =* 
*(b --> v:=v" I v': 

p&b m ptv:=v'] & 0(v') < 0(v)), 
where v" is again a list of fresh variables of 
the proper length, and 0 is a mapping from ob- 
jects of the type of v to the elements of some 
well-ordered set (e.g., the ordinals), which 
may be chosen freely; 

(g) If p" implies p, then Slv:p ~* Slv,v':p', where 
v" is a (possibly empty) list of fresh vari- 
ables; 

(h) Slv:p ~* S|v:=u~ Iv':p~v:=u], where u is a list 
of units of the proper length and v" is a list 

of variables that are either fresh or an ele- 
ment of v, sufficiently large to bind all vari- 
ables of v that remain present after the step; 

(i) Sle:true <* S (where e stands for the empty 
list). 

Rules (e) and (f) allow the elimination of 
problem expressions. If the variant definition 
hinted at above is adopted, we would only have re- 
finement in one direction. Rule (f) is probably the 
most powerful one in practice. It corresponds to 
rules in other proof systems that cover the WHILE 
loop. The mapping 0 ensures termination. It can be 
shown that mapping to the natural numbers (the ini- 
tial segment of the ordinals) gives the same power, 
but at the cost of introducing mappings that are 
sometimes much more complicated than necessary (cf. 
Boom[3]). In (g) we find another application of the 
rule of consequence. It might have been combined 
with (h); for the sake of simplicity, this has not 
been done. Rule (h) is also quite powerful. By ap- 
plication of this rule one may arrive at (i), where 
the bound expression is eliminated. One has to go 
through this rule once for each abstract expression 
introduced. 

Again, the verification is left to the reader. 
A simple proof of (f) is found by separating par- 
tial correctness and termination. 

7. AN EXAMPLE 

The usefulness of the abstract expressions in- 
troduced in the previous section may not be obvi- 
ous. The test can only be the application to prac- 
tical examples. In fact, they have been used on a 
variety of problems of diverse complexity, general- 
ly reasonably succesfully. There are two aspects in 
judging the measure of success. One is how natural- 
ly the original problem may be expressed, and one 
is how easy it is to massage the resulting expres- 
sion in the intended direction of concreteness. 
Note, however, that the expressions themselves give 
no guidance as to what refinement steps are best 
applied. The freedom of choosing u in rule (h) is 
beneficial only if one has some expertise in pro- 
gramming (or algorithmics). 

No attempt has been made yet to apply the 
present modest approximation of Abstracto to a 
large-scale, real-life problem from the top to the 
bottom. Therefore it is not known how well it will 
stand up. In theory, any program may be derived 
that can be written with WHILE loops, but the actu- 
al effort may be quite impractical. However, I have 
some confidence that the situation will not be that 
bad. 

The use of algorithmic expressions will now be 
demonstrated on a very simple example, treated by 
Dijkstra[4] and also by Back[l]. The problem is to 
compute X Y, where Y is a natural number, without 
using the exponentiation operator. 

This problem can be specified by the abstract 
expression 

z:=[true ~ z=xY]. 

Using (b) and (c) of Lemma i, we refine this to 

(Sl) z,x,y := [true ~ z-xY=XY]; 
($2) z,x,y := [z-xY=X Y ~ z=xY]. 
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First we proceed with the easy part, (Si). Where 
the refinements are given here in two steps, a 
trained algorlthmician would immediately jump to 
the final version, much like a mathematician is 
used to do. From (e) we obtain 

z,x,y := z',x',y" I z%x',y': z'.x'Y'=x Y. 

By using the unit list u = i,X,Y in (h), this sim- 
plifies to 

z,x,y := i,X,Y I E: true. 

This gives us the final, concrete expression, since 
now rule (i) is applicable: 

z,x,y := i,X,Y. 

As to ($2), this fits (f) with the assertion 
z.xY=X Y for p and y#O for b. For the mapping 0 we 
can. simply take the identity, since the "goal" is 
to get y to 0. We thus refine ($2) to 

*(y#0 --> z,x,y := z',x',y" I z',x;y': 
z.xY = X Y & y@0 ~ z'.x'Y'=X Y & y'<y). 

Using (g), this may again be refined to 

*(y#0 --> z,x,y := z',x;y" I z',x',y',r: 
z "= z-x r & x'= x-x & y=2y'+r & 

(r=0 v r=l)). 

If operations / and % are available, satisfying y = 
2(y/2)+(y%2) and (y%2=0 v y%2=i), the use of the 
unit list u = ZZ,x.x,y/2,y%2 in (d) of Lemma 2, 
where ZZ is shorthand for (y%2=0-->z 0y%2=l-->z.x), 
allows to simplify this to 

*(y#0 --> z,x,y := ZZ,x.x,y/2). 

Here (i) has also been applied. It has now been 
shown that 

z:=[true ~ z=X Y] < 
z,x,y := I,X,Y; 
*(y#0 --> z,x,y := ZZ,x.x,y/2). 

(Note that we may use "<" rather than "<*" since 
the right-hand side is concrete.) 

This proof is admittedly quite lengthy (and 
boring) for the feat it performs. But this would 
also be the case for attempts to determine an inde- 
finite integral, say, by following the rules from 
the calculus book step for step and displaying all 
intermediate results. A more appropriate proof 
might read: "this concretization is obtained by 
keeping z.xY=X Y invariant". 
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