
JFP 14 (6): 759–763, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005210 Printed in the United Kingdom

759

FUNCTIONAL PEARL

Calculating the Sieve of Eratosthenes

LAMBERT MEERTENS

Kestrel Institute, Palo Alto, CA, USA

and

Utrecht University, Utrecht, The Netherlands

(e-mail: lambert@kestrel.edu)

1 The Sieve of Eratosthenes

The Sieve of Eratosthenes is an efficient algorithm for computing the successive

primes. Rendered informally, it is as follows:

1. Write down the successive “plurals”: 2, 3, 4, . . .

2. Repeat:

(a) Take the first number that is not circled or crossed out.

(b) Circle it.

(c) Cross out its proper multiples.

3. What is left (i.e. the circled numbers) are the successive prime numbers.

Here are the first few rounds shown in action:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

2© 3 4�� 5 6�� 7 8�� 9 ��10 11 ��12 13 ��14 15 ��16 17 ��18 19 ��20 . . .

2© 3© 4�� 5 6�� 7 8�� 9�� ��10 11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20 . . .

2© 3© 4�� 5© 6�� 7 8�� 9�� ��10 11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20 . . .

Although formulated in an imperative style, this algorithm must be executed

somewhat lazily, for otherwise the process will hang already in the first step. For

manual execution by calculating non-prodigies the main efficiency gain is in the

avoidance of division, since ‘manual’ division takes considerably more effort than

addition. As this is not a big issue for modern electronic computers, we shall ignore

this aspect. What remains then as the essence of this sieve algorithm is this: it

produces a stream of primes, and that stream is used while it is being produced to

filter itself. Thus, each number being tested for primality is only tested for divisibility

by smaller primes, instead of all smaller plurals.

There is a well-known two-line functional program embodying this sieve. Although

not the most efficient functional program for Eratosthenes’ Sieve, this elegant little

program may be considered part of the folklore of functional programming. When

first confronted with this program, many a student of functional programming

finds it hard to understand “why” it works. In fact, most may not know how to

approach this other than by the error-prone technique of building a mental model



760 L. Meertens

of the behaviour of the program under the standard operational semantics. Yet it

is possible to give simple and precise arguments not employing operational notions,

and among those, derivation by program calculation is perhaps the most satisfying

and convincing. So, what we set out to do in the remainder is to construct that

folklore functional program by calculation.

In order to do so we recapitulate some standard theory about streams and about

primes in the following two sections.

2 Streams

For our present purposes, a stream is always an infinite list.

The data type of streams can be viewed as the so-called carrier of a final coalgebra.

The corresponding general anamorphism (Malcolm, 1990; Meijer et al., 1991) – in

particular for streams also known as an unfold – with suitably typed ingredient

functions f and g is the function h satisfying

h x = f x : h (g x) (1)

Informally, the value computed by function h applied to argument x is the stream

[f x, f (g x), f (g (g x)), . . . ]. Note that equation (1), given functions f and g, fully

characterizes anamorphism h. In other words, viewed as a functional equation in

unknown h, (1) has a unique solution. A notation for that function is [(f � g)].

A particular case is the anamorphism [(f � (+1))], where the second ingredient

function (+1) is the successor function on the naturals. We prove that

[(f � (+1))] n = map f [n . . ] (2)

by verifying that the right-hand side, viewed as a function of n, satisfies (1) with

ingredients f := f and g := (+1). So we calculate:

map f [n . . ]

= { definition of ‘ . . ’ }
map f (n : [n+1 . . ])

= { definition of map }
f n : map f [n+1 . . ]

Since the solution to (1) is unique, to establish that some function h equals λn →
map f [n . . ] it now suffices to show that it satisfies the equation h n = f n : h (n+1).

All Haskell lists used explicitly or implicitly in what follows will actually be

ascending streams of naturals.

3 Characterizing the primes

The stream of primes can be described as:

primes = map nthPrime [0 . . ] (3)

using the fact that there is an inexhaustible supply of primes: nthPrime 0 = 2,

nthPrime 1 = 3, nthPrime 2 = 5, etc. Of course, this needs to be supplemented by a

characterization of function nthPrime.



Functional pearl 761

What is a prime number? A plural is a natural number that is at least 2. The

stream of all plurals is given by [2 . . ]. A prime is then a plural that is not divisible

by any other plural. Using the fact that a natural divisor of a plural p is at most

p, this can equivalently be restated as: a prime is a plural that is not divisible by

any smaller plural. It follows immediately from this characterization that 2 is prime.

Since a non-prime plural (a.k.a. a composite) is divisible by a smaller plural, it is

divisible by some smaller prime. This is the first step towards the proof of the prime

factorization theorem, but here we use it for yet another characterization of the

primes, one that is geared towards the Sieve:

a prime is a plural that is not divisible by any smaller prime.

In an ascending stream smaller is the same as prior. Therefore, nthPrime n is the

head of the stream of plurals that remain after removing from [2 . . ] the multiples of

the primes nthPrime 0, nthPrime 1, and so on, up to but not including nthPrime n.

The preceding is deemed part of elementary number theory. We can express it

in Haskell, as follows. The operation of removing the multiples of primes prior to

nthPrime n from a stream is given by removeTo n, using this definition of removeTo:

removeTo 0 = id (4)

removeTo (n+1) = filter (notdiv (nthPrime n)) · removeTo n (5)

where

notdiv d n = n `mod ` d �= 0 (6)

So, applying this filter to the plurals and taking the head of the resulting stream, we

have:

nthPrime n = head (removeTo n [2 . . ]) (7)

The intermediate stream removeTo n [2 . . ] corresponds, for successive values of n,

to the ‘untouched’ plurals (i.e. neither circled nor crossed out) in successive rounds

of the Sieve as shown in action in Section 1. Actually, (4)–(7) constitute a ludicrously

inefficient, but nevertheless effective, Haskell program for computing the primes. It

is so inefficient because the smaller primes are recomputed again and again, and so

the time to compute the next prime roughly doubles each time. If function nthPrime

is ‘tabulated’ or ‘memoized’ (Bird, 1980), this program is tolerably inefficient. In a

sense, memoizing is what the Sieve does: it ‘reuses’ the previously computed primes.

Note that, for each natural n, removeTo n is a filter, i.e., a function on streams

that can be expressed in the form filter r for some predicate r. In general, if f is a

filter, and h = head (f [2 . . ]), it holds that f [2 . . ] = h : f [h+1 . . ]. This property

of filters, which we state without proof, can be used to strengthen (7) to a property

of the stream removeTo n [2 . . ]:

removeTo n [2 . . ] = nthPrime n : removeTo n [(nthPrime n) + 1 . . ] (8)



762 L. Meertens

4 Calculating the solution

A straightforward generalization of (3) is:

primesFrom n = map nthPrime [n . . ] (9)

So, by (2), primesFrom = [(nthPrime � (+1))]. We want to find an algorithm in sieve

form for this, meaning that it uses the stream of primes it produces to filter the very

same stream. To find such a solution we let ourselves be guided by the fact that it

has to satisfy (1) for f := nthPrime and g := (+1), or

primesFrom n = nthPrime n : primesFrom (n+1) (10)

An ‘inspired guess’ is now that we can express function primesFrom in sieve form

by:

primesFrom n = sieve (removeTo n [2 . . ]) (11)

for some function sieve. This guess is, of course, informed by the form of (7).

The remaining task is to find a suitable definition for sieve. Let us substitute the

right-hand side of (11) for primesFrom in both sides of (10) and see how far we can

symbolically evaluate the results. For the sake of brevity ‘nthPrime n’ is abbreviated

throughout by ‘p’. For the left-hand side we calculate then:

primesFrom n

= { (11) }
sieve (removeTo n [2 . . ])

= { (8) }
sieve (p : removeTo n [p+1 . . ])

= { abbreviating ‘removeTo n [p+1 . . ]’ to ‘ns’ }
sieve (p : ns)

For the right-hand side:

p : primesFrom (n+1)

= { (11) }
p : sieve (removeTo (n+1) [2 . . ])

= { (5), definition of ‘·’ }
p : sieve (filter (notdiv p) (removeTo n [2 . . ]))

= { (8) }
p : sieve (filter (notdiv p) (p : removeTo n [p+1 . . ]))

= { abbreviating as above }
p : sieve (filter (notdiv p) (p : ns))

= { notdiv p p = False, definition of filter }
p : sieve (filter (notdiv p) ns)

So (10) holds if the final expressions in these two calculations are equal. If we treat

p and ns in these expressions as ordinary variables rather than abbreviations for

any specific expressions, and take the equation equating these two final expressions

as the definition of sieve, the desired equality is certainly achieved.



Functional pearl 763

For primes we find then:

primes

= { (3) }
map nthPrime [0 . . ]

= { (9) }
primesFrom 0

= { (11) }
sieve (removeTo 0 [2 . . ])

= { (4), definition of id }
sieve [2 . . ]

The final program is now

primes = sieve [2 . . ]

sieve (p : ns) = p : sieve (filter (notdiv p) ns)

notdiv d n = n `mod ` d �= 0

a two-line program if notdiv is expanded in place. Note that primesFrom has

departed from the stage, having played its role as a catalyst for the calculations.

5 Conclusion

We have arrived at a well-known functional program for the Sieve of Eratosthenes.

Clearly, the initial definitions were set up to facilitate the steps leading to this

particular solution, and there is no intended claim that invention ab initio might

have proceeded equally smoothly. The derivation uses, apart from pure formal

equational reasoning as originally proposed for program derivation in Burstall &

Darlington (1977), and a few snippets of elementary number theory, only the fact

that equation (1) is a characterization (also known as a universal property). There

are other proof methods that will establish the same result (for a comparison of

proof methods, see Gibbons & Hutton (1991)), but the present one is arguably the

simplest, and without doubt the easiest to teach. It deserves to be better known.

References

Bird, R. S. (1980) Tabulation techniques for recursive programs. Comput. Surv. 12(4), 403–417.

Burstall, R. M. and Darlington, J. (1977) A transformation system for developing recursive
programs. J. ACM, 24(1), 44–67.

Gibbons, J. and Hutton, G. (1999) Proof methods for structured corecursive programs.
Proceedings 1st Scottish Functional Programming Workshop, Stirling, Scotland.

Malcolm, G. R. (1990) Algebraic Data Types and Program Transformation. PhD thesis,
Department of Computing Science, Groningen University, The Netherlands.

Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (editor), Proceedings ACM Conference

on Functional Programming Languages and Computer Architecture: LNCS 523, pp. 124–144.
Springer-Verlag.


