
Geniaal programmeren
– Generic programming at Utrecht –

Johan Jeuring

Lambert Meertens

Technical Report UU-CS-2009-001

January 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Geniaal programmeren∗

– Generic programming at Utrecht –

Johan Jeuring and Lambert Meertens

Generic programs are programs that abstract over types. Generic
programs can be used to address several common programming
patterns. This paper discusses why generic programming is use-
ful, gives applications of generic programming, and discusses the
history of generic programming and current generic programming
activities at Utrecht University.

Constructing software.
One of the central issues in software technology, studied at the computer sci-
ence programme of Utrecht University and many other universities, is the ef-
ficient construction of correct software. How do you construct software that
does what it should do? There are many aspects to software construction.
First you have to know what to construct. What are the user requirements of
the software? Such requirements are functional requirements, such as that the
software sorts a list of book titles in dictionary order, and non-functional re-
quirements, such as that it must return the sorted result within a reasonable
amount of time. Once the requirements are known, the actual construction
can start — assuming that the software is not available somewhere, or is too
expensive to buy. How do you construct software that satisfies the given re-
quirements?

Generic programming.
In the development of software, structuring data plays an important role. Many
programming methods and software development tools center around creat-
ing a datatype (or XML schema, UML model, class, grammar, etc.). Once the
structure of the data has been designed, a software developer adds function-
ality to the datatypes. There is always some functionality that is specific for a
datatype, and part of the reason why the datatype has been designed in the

∗This title was shamelessly stolen from Arthur Baars, Martin Broere, Bastiaan Heeren, and
Erwin Jansen, who used it as a title for their project in the 1999 version of the course on
Generic Programming at Utrecht Unversity.

1

first place. Other functionality is similar or even the same on many datatypes,
following common programming patterns. Examples of such patterns are:

• in a possibly large value of a complicated datatype (for example for rep-
resenting the structure of a company), applying a given action at all oc-
currences of a particular constructor (e.g., adding or updating zip codes
at all occurrences of street addresses) while leaving the rest of the value
unchanged;

• serializing a value of a datatype, or comparing two values of a datatype
for equality, functionality that depends only on the structure of the datatype;

• adapting data access functions after a datatype has changed, something
that often involves modifying large amounts of existing code.

Generic programming addresses these high-level programming patterns.1 Us-
ing generic programming, we can easily implement traversals that apply an
action only to relevant parts of a possibly large value, functions thar are nat-
urally defined by induction on the structure of datatypes, and functions that
automatically adapt to a changing datatype.

Of course, other programming paradigms aim to address similar program-
ming patterns. In the object-oriented programming world, classes have been
introduced to promote reuse and data abstraction, and design patterns to de-
scribe often occurring programming patterns. Generic programming addresses
most of these patterns, but sometimes in an entirely different way [3].

Applications of generic programming.
As a programmer, you don’t want to write the same code twice. Ideally, you
describe the essential aspects of the problem you want to solve in your code,
and all other “boilerplate” code is derived automatically for you. Generic pro-
gramming supports focussing on the essential aspects in your code, and in
that sense, applications of generic programming are everywhere. The remain-
der of this section describes a concrete example of such an application. In the
next section we work out another example.

At the Open University NL (OUNL) and Utrecht University, we are develop-
ing several so-called exercise assistants: programs that offer assistance to a
student doing an exercise, typically in some mathematically formalized do-
main, requiring problem solving using precisely defined methods. We have
developed an exercise assistant that supports interactively solving a system
of linear equations [15], and another assistant that supports calculating the
disjunctive normal form (DNF) of a logical expression [10]. Extensions of the
former tool are used in linear algebra courses at the technical universities of
Delft and Eindhoven, while the second tool is used in the discrete mathemat-
ics course in the Computer Science curriculum of the OUNL. A screenshot of

1We also use the term datatype-generic programming to distinguish the field from Java generics,
Ada generic packages, generic programming in C++ STL, etc. Another term used for the
same is polytypic programming.

2

Figure 1: The Online Exercise Assistant

the assistant for calculating DNFs of logical expressions is shown in Figure 1.
Besides these exercise assistants we have built assistants for several other do-
mains. A distinguishing feature of our assistants is that they give very good
feedback. Although giving good feedback is generally acknowledged to be
vital for learning [14], current e-learning systems that support incrementally
solving exercises typically lack sophisticated techniques for giving feedback.
We hope to improve upon this situation.

To develop an exercise assistant, we need three domain-specific main compo-
nents: a domain description (for example: systems of linear equations over
the field of real numbers, or first-order logical expressions), together with a
concrete representation of the domain (how are the expressions presented to
the student); rules for reasoning about the domain (for example: multiplica-
tion distributes over addition, de Morgan for logical expressions); and one or
more strategies for solving exercises in the domain (for example: first move
occurrences of ¬ inwards until they are in front of a logical variable, and then
distribute ∧ over ∨ to obtain an expression in DNF). We do not want to imple-
ment a separate exercise assistant for each domain, of which there are many: in
mathematics, logic, computer science, physics, biology, statistics, etc. Further-
more, the implementation of the different exercise assistants is very similar:
the user interface, the web application, the communication between the dif-
ferent components, etc., are all exactly the same. The only difference between
the assistants is in the domain-dependent parts. We want to generate an exer-

3

cise assistant given the three domain-specific main components, in particular
the domain description. The components that differ per exercise assistant are
components that deal with:

• generating arbitrary expressions,

• rewriting expressions,

• determining the distance between two expressions,

• traversing expressions,

• selecting within expressions.

We have written generic programs for each of these components.

Example: generic data compression.
Intelligent Compression Technologies Inc. (ICT), a subsidiary of ViaSat, is a
company that develops compressors that exploit advance knowledge of stan-
dard file formats to decompose and analyze files on-the-fly, determining and
applying the best algorithm, or sequence of algorithms, for optimal compres-
sion. The result is the highest compression rates possible on first (“cold cache”)
download. One of the most important idea behind these compressors is to take
the format (or the type) of the data into account when compressing data.

The main idea behind ICTs compressors is as follows. As markup is added
to the content, XML documents may become (very) large. Fortunately, due
to the repetitive structure of many XML documents, these documents can be
compressed by quite a large factor. This can be achieved if we use information
from the DTD (or Schema) of the input document in the XML compressor. For
example, consider the following small XML file (we consider only XML files
which are valid with respect to a DTD):

<book lang="English">
<title> Dead famous </title>
<author> Ben Elton </author>
<date> 2001 </date>
<chapter> Nomination </chapter>
<chapter> Eviction </chapter>
<chapter> One Winner </chapter>
</book>

In this file, 130 bytes are used for markup (not counting line breaks), and only
90 bytes for content (or 52 when not counting spaces purely serving a layout
purpose). This file may be compressed by separating the structure (markup)
from the contents, and compressing the two parts separately. For compress-
ing the structure we can make good use of the DTD. If we know how many
different elements and attributes, say n, appear in the DTD, we can replace
each occurrence of the markup of an element in a valid XML file by dlog2 ne

4

bits.2 The DTD for the above document contains 6 elements and attributes, so
we need 3 bits per element or attribute. Since there are eight occurrences of
elements and attributes in the above document, 24 bits (3 bytes) are needed for
the markup, compared to 130 bytes in the original file. The (small) price that
has to be paid is that the strings that appear in the data have to be separated
by a special separator symbol. Even further reduction is possible. Markup
only needs to be recorded if a choice between different tags can be made. In
the above document, we have choices for the language of the book and the
number of its chapters. All other elements are compulsory and can be inferred
from the DTD, so they do not need to be encoded. Using this idea, we need
only 5 bits (1 byte) to represent the markup in the above document.

We now develop an encoding function implementing this idea in Haskell. A
first step is to use an XML data binding to map an XML document onto a value
of a Haskell datatype that is used to represent values of a particular schema.
For example, for a DTD or an XML schema describing the structure of books,
we might get the following datatypes:

data BOOK = Book BOOKATTRS TITLE AUTHOR DATE [CHAPTER]
data BOOKATTRS = BookAttrs{bookLang :: LANG}
data LANG = English | Dutch
newtype TITLE = Title STRING

newtype AUTHOR = Author STRING

newtype DATE = Date STRING

newtype CHAPTER = Chapter STRING

An encoding function maps a value of the datatype BOOK to a pair consisting of
the list of content strings of the document, and a value denoting the structure
of the XML document. The structure is represented by a list of choices: each
time there is a choice in the structure, for example between the English or Dutch
language, a value of type CHOICES tells which choice has been made.

data CHOICE = L | R
type CHOICES = [CHOICE]
encodeBook :: BOOK → ([STRING], [CHOICES])
encodeBook book = (contents book, structure book)

The contents of a BOOK is simply obtained by collecting all strings that appear
in a value of type BOOK.

contents :: BOOK → [STRING]
contents (Book bookAttrs (Title title) (Author author) (Date date) chapters) =

[title, author, date] ++ map (λ(Chapter chapter)→ chapter) chapters

The resulting list of strings can be post-processed by some standard string
compression algorithm, such as LZW. For a single book, this will not pay off,
but the gain for a whole library catalogue may be considerable.

2Using a variable length, as for example in Huffman coding, sometimes a lower average can
be reached.

5

The structure of a BOOK is obtained by registering the choices that have been
made in constructing a value. For a BOOK the only choices that have to be
registered are the choice between the two languages, and the choice between
a non-empty and an empty list.

structure :: BOOK → [CHOICES]
structure (Book (BookAttrs lang) title author date chapters) =

choicesLang lang : choicesChapters chapters
choicesLang :: LANG → CHOICES

choicesLang English = [L]
choicesLang Dutch = [R]
choicesChapters :: [CHAPTER]→ [CHOICES]
choicesChapters [] = [[R]]
choicesChapters (c : cs) = [L] : choicesChapters cs

The resulting list of choices can be efficiently represented by viewing the con-
structors L and R as bits, and storing the bits in bytes.

A generic program for encoding a value of an arbitrary datatype can be de-
fined in Haskell or in Generic Haskell [5]. Several students taking the Generic
Programming course in the Software technology master have implemented
variants of encoders, for example using arithmetic coding or Huffman coding,
for their practical assignments.

How does it work?
How can we define a generic function: a function that works on arbitrary
datatypes? It would lead too far to explain the details of how we define generic
functions, but we will explain the main idea behind generic functions in this
section.

Datatypes possess structure. Complex datatypes are defined by constructing
them from basic types such as integers, characters, etc., by operations such as
sum (for a choice between different component types) and product (for com-
bining several component types). Other (static) type-building operations are
type abstraction and type application. For example, a PUBLICATION datatype
could be defined as being a BOOK, or a JOURNALARTICLE, or a REPORT (using
the sum operation), where a BOOK may be defined as comprising BOOKATTRS,
a TITLE, an AUTHOR, a DATE, and a list of CHAPTERs (using the product oper-
ation). To define a generic function, it suffices to specify how to handle sum
and product, and how to deal with the basic types. This provides sufficient
information to generate a specialization of the generic function for any given
datatype defined as described above.

We have developed several languages and libraries in which generic functions
can be defined. The tools for these languages and libraries take care of au-
tomatically transforming values of datatypes to some internal representation
which can be used by generic functions, and back again.

6

More information about how to define generic functions can be found in sev-
eral tutorials [8, 1, 6, 9].

History of generic programming.
Traditionally, the Netherlands has had a strong position in program construc-
tion methods and programming languages. Dijkstra developed his calculus
for program construction in the sixties, and some of the important people be-
hind Algol 68, notably van Wijngaarden, were Dutch.

Meertens also contributed to Algol 68, and since then started thinking about
how to further improve and simplify program construction. He started with
designing more abstract programming languages, but slowly moved to pro-
gram transformation methods. In the beginning of the eighties he joined forces
with Richard Bird of Oxford University to develop what later became known
as the “Bird-Meertens formalism”. The main idea of this formalism is to spec-
ify a programming problem as an obviously correct, but possibly very ineffi-
cient program, and then to transform this program into an efficient program
by means of program transformation laws.

For example, sorting a list can be specified as: calculate all permutations of
the input list, and return the first of those that is sorted. This is a runnable
specification, but it is terribly inefficient. We can transform this program into
a more efficient program by applying programming laws on the datatype of
lists. One of the simplest such transformations results in the insertion-sort
algorithm.

The development of programs from specifications and the development of
program transformation laws was a very active research area in the eighties
and early nineties. The STOP (Specification and Transformation Of Programs)
project in the Netherlands was the centre of this research from 1988 to 1992.
Many PhD students were funded by the STOP project, and several groups
joined the meetings of the project to also work on these topics. The computer
science department of Utrecht University, in particular Doaitse Swierstra and
Lambert Meertens, played a central role in the STOP project. Many people
received part of their PhD education within the STOP project at Utrecht Uni-
versity, such as Erik Meijer (now at MicroSoft), Johan Jeuring (who returned
to Utrecht after a period at Chalmers in Sweden), and Oege de Moor (now at
Oxford University).

Another community in which program transformation played an important
role was the IFIP Working Group 2.1. This working group originally devel-
oped Algol 68, but since then moved on to program calculation. Meertens,
Bird, and many other researchers are members of this group.

Together, Richard Bird and Lambert Meertens developed a theory of lists, in-
cluding program transformation laws for programs on lists [2, 13]. Examples
of such laws are that the composition of two maps is a map again, and that
the composition of a function with a fold is a fold again, provided the func-

7

tion satisfies some distributivity conditions — in algebraic terms, it has to be
a homomorphism. Using concepts from category theory, in particular func-
tors and functor-algebras, this work was generalized by Grant Malcolm in
Groningen [12] and others to programming laws on arbitrary datatypes. These
generic laws are about functions that work on arbitrary datatypes, such as
(generic) folds and maps.

The program calculus thus developed could be used to calculate solutions to
many software problems. As a spin-off, the theory described programs that
could be implemented in a standard, but different, way on datatypes that can
be described as initial functor-algebras. No general-purpose programming
language supported such typed, generic functions, so these functions had to
be implemented over and again for different datatypes.

Using the structure of functors, Jansson and Jeuring at Chalmers, Gothenburg,
designed PolyP [7], an extension of the lazy, higher-order functional program-
ming language Haskell [16]. A generic function is defined by means of in-
duction on the structure of functors. Using this programming language, they
not only defined the recursive combinators from the program calculus, such as
folds and unfolds, but also generic programs for unification, term rewriting,
pattern matching, etc.

PolyP supported the definition of generic functions on datatypes that can be
described as initial functor-algebras but do not involve mutual recursion. While
sufficient for proof-of-concept demonstration purposes, this last restriction was
a severe limitation on the practical applicability of PolyP. Generic program-
ming is particularly attractive in situations with large datatypes, such as the
abstract syntax of programming languages, and such datatypes are usually
mutually recursive. To support generic functions on sets of mutually recur-
sive datatypes, Hinze, Jeuring, and Löh developed Generic Haskell from 2000
onwards at the computer science department of Utrecht University [4, 11].
Generic functions defined in Generic Haskell can be applied to values of al-
most any datatype definable in Haskell. The fixed-point structure of datatypes
is lost however, and thereby the capability of defining the generic fold func-
tion.

Meanwhile, Haskell, or, more precisely, compilers supporting various Haskell
extensions, evolved considerably since PolyP was developed. With respect to
types, GHC, the Glasgow Haskell Compiler, now supports multiple-parameter
type classes, generalized algebraic datatypes (GADTs), type families, etc. Us-
ing these extensions, it is now possible to define generic functions in Haskell
itself, using a library for generic programming. Since 2000, around 10 of such
libraries have been developed world-wide [18]. Three of these libraries are
maintained by the Software Technology group in Utrecht. Since — from a
generic programming perspective — the expressiveness of these libraries is al-
most the same as the special purpose language-extensions, and since such li-
braries are much easier to develop, maintain, and ship, these libraries may
make generic programming available to a wider audience.

8

Using type families and GADTs, it is possible to solve another open generic pro-
gramming problem. Alexey Rodriguez and others [17] showed how to obtain
a fixed-point representation of possibly mutually recursive datatypes, bring-
ing the generic fold function back into the fold. Thus we can define the fold
function for the abstract syntax of a programming language, bringing generic
programming in reach for compiler writers.

Challenges.
New ideas in program development take time to find their place in mainstream
program development methods. For example, the concept of parametric poly-
morphism existed more than 25 years before it was added to a mainstream
programming language like Java, in the form of Java Generics. We expect that
the appearance of generic programming techniques in mainstream program-
ming language will likewise take a while. We see the following as the main
challenges for generic programming:

• To show how generic programming can be applied in many situations,
and how using generic programming in software development improves
productivity, maintainability, and safety.

• To show that generic programming is not just tied to Haskell, but is a
general concept that can be applied in any high-level programming lan-
guage with a developed type concept.

• To further develop the theory of generic programming.

Generic programming captures a number of important programming patterns
that appear in many programs. It makes it easier to construct, maintain, and
adapt software. It will probably find its way to Java in about 15 years from
now.

Generic programming at Utrecht University.
Within the Software Technology group at Utrecht University a very active
group is working on generic programming, currently consisting of Johan Jeur-
ing, Andres Löh, and Lambert Meertens, four PhD students (Sean Leather,
José Pedro Magalhães, Alexey Rodriguez Yakushev, and Americo Vargas), and
several more MSc students. Andres Löh completed his PhD thesis within the
group in 2004, and Alexey Rodriguez will finish in 2009. We are involved in
several research projects related to generic programming, and are currently
working on libraries for generic programming, generic programming using
dependently typed programming languages, and applications of generic pro-
gramming. Each year we teach a course on generic programming within the
Software Technology master programme.

9

References

[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic program-
ming — an introduction. In Advanced Functional Programming, AFP’98,
volume 1608 of LNCS, pages 28–115. Springer-Verlag, 1999.

[2] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, volume F36 of NATO ASI
Series, pages 5–42. Springer-Verlag, 1987.

[3] J. Gibbons. Datatype-generic programming. In R. Backhouse, J. Gib-
bons, R. Hinze, and J. Jeuring, editors, Spring School on Datatype-Generic
Programming, volume 4719 of Lecture Notes in Computer Science. Springer-
Verlag, 2007.

[4] R. Hinze. Polytypic values possess polykinded types. Science of Computer
Programming, 43(2-3):129–159, 2002.

[5] R. Hinze and J. Jeuring. Generic Haskell: applications. In Generic Program-
ming, Advanced Lectures, volume 2793 of LNCS, pages 57–97. Springer-
Verlag, 2003.

[6] R. Hinze and J. Jeuring. Generic Haskell: practice and theory. In
Generic Programming, Advanced Lectures, volume 2793 of LNCS, pages 1–
56. Springer-Verlag, 2003.

[7] P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 470–
482. ACM Press, 1997.

[8] J. Jeuring and P. Jansson. Polytypic programming. In J. Launch-
bury, E. Meijer, and T. Sheard, editors, Advanced Functional Programming,
AFP’96, volume 1129 of LNCS, pages 68–114. Springer-Verlag, 1996.

[9] J. Jeuring, S. Leather, J. P. Magalhães, and A. Rodriguez Yakushev. Li-
braries for generic programming in Haskell. Technical Report UU-CS-
2008-025, Department of Information and Computing Sciences, Utrecht
University, 2008.

[10] J. Lodder, J. Jeuring, and H. Passier. An interactive tool for manipulating
logical formulae. In M. Manzano, B. Pérez Lancho, and A. Gil, editors,
Proceedings of the Second International Congress on Tools for Teaching Logic,
2006.

[11] A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell. In
O. Shivers, editor, Proceedings of the International Conference on Functional
Programming, ICFP’03, pages 141–152. ACM Press, August 2003.

[12] G. Malcolm. Data structures and program transformation. Science of Com-
puter Programming, 14:255–279, 1990.

[13] L. Meertens. Algorithmics — towards programming as a mathematical
activity. In Proceedings of the CWI Symposium on Mathematics and Computer

10

Science, volume 1 of CWI Monographs, pages 289–334. North–Holland,
1986.

[14] E. Mory. Feedback research revisited. In D. Jonassen, editor, Handbook of
research for educational communications and technology, 2003.

[15] H. Passier and J. Jeuring. Feedback in an interactive equation solver. In
M. Seppälä, S. Xambo, and O. Caprotti, editors, Proceedings of the Web
Advanced Learning Conference and Exhibition, WebALT 2006, pages 53–68.
Oy WebALT Inc., 2006.

[16] S. Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Re-
port. Cambridge University Press, 2003. A special issue of the Journal of
Functional Programming.

[17] A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic
programming with fixed points for mutually recursive datatypes. Techni-
cal Report UU-CS-2008-019, Department of Information and Computing
Sciences, Utrecht University, 2008.

[18] A. Rodriguez Yakushev, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov,
and B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Haskell ’08: Proceedings of the first ACM SIGPLAN symposium
on Haskell, pages 111–122, New York, NY, USA, 2008. ACM.

11

