
,
,• "kW

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

Department of Computer Science N o t e CS-N8406 J u n e

3ibbothook
0
5
.
4
1
W
I
Z
T
O
I
C
•
o
i
V
I
i
f
:
R
u
n
d
e
o
t
t

eltratsvtlarn

-
M
A
Z
O
L
A
,
"

-
V
O
R
I
O
N
M
O
-
O
L
M
A

Meertens, S. Pemberton

An implementation of the B programming language

' 1 8 2 2 6 . 4
. .
A M P I S

Oad

AN IMPLEMENTATION OF THE B PROGRAMMING LANGUAGE

n
,
u
A
W
M
p

L .G.L .T. MEERTENS, S . PEMBERTON

Centre f o r Mathematics and Computer Sc ience, Amsterdam

B is a new programming language designed for personal computing. We describe some of the
decisions taken in implementing the language, and the problems involved.

Note: /3 is a working title until the language is finally frozen. Then it will acquire its definitive
name. The language is entirely unrelated to the predecessor of C.

A version o f this paper wil l appear in the proceedings o f the Washington USENIX Conference
(January 1984).

1982 CR CATEGORIES: 69D44.

KEY WORDS & PHRASES: p rog ramming language imp le me n t a t io n , p rog ramming e n v i -
ronments, 8 .

Note CS-N8406

Centre f 8 r Ma themat ics an d Computer Scie n ce
P.O. B o x 4079, 1 0 0 9 AB Amsterdam, The Ne th e rla n d s

alalttrolitz,

• : ' , W
I R W '
w , %
% A t k
g a t i a
i t t

ZIEMP"

The programming language B
B is a programming language being designed and implemented at the CWI. I t was originally

started in 1975 in an attempt to design a language for beginners as a suitable replacement for
BASIC While the emphasis of the project has in the intervening years shifted from "beginners" to
"personal computing", the main design objectives have remained the same:

• simplicity;
• suitability for conversational use;
• availability of tools for structured programming

The design of the language has proceeded iteratively, and the language as it now stands is the third
iteration o f this process. Th e first two iterations were the work of Lambert Meertens and Leo
Geurts of the Mathematical Centre in 1975-6 and 1977-9, and could be described as both easy to
learn and easy to implement However, there are two sides to ease and simplicity. I f something is
easy to learn and define, it does not necessarily imply that it is also easy to use BASIC is testimony
to this i t is fine for tiny programs, but for serious work, it is like trying to cut your lawn with a
pair of scissors.

The th ird iteration o f B, designed in 1979-81 with the addition of Robert Dewar o f New York
University, adopts a new characteristic: it is still easy to learn, by having few constructs, but is now
also easy to use, by having powerful constructs, without the sorts of restrictions that professional
programmers are trained to put up with, but that a newcomer finds irritating, unreasonable or silly.
Thus compared to most existing languages that supply you with a set of primitive tools, with which
you can then build your more powerful tools, B does it the other way round by supplying you with
high-level tools, which you may also use for primitive purposes if you wish.

One consequence of this approach is of course. that the language is no longer so straightforward to
implement. Another is that, although the language was designed with non-professionals in mind, it
turns out to be of interest to professionals too: several people in our institute now use it in prefer-
ence to other languages.

The sort o f computers that we are aiming at are the very powerful personal computers just now
appearing at the top end of the market. Wi t h such power at your disposal, you want a language
that minimises your effort, not the computer's. I t is not, and has never been, our intention to imple-
ment B on 8-bit micros. Th is would have been "designing for the past".

A taste of B

It is not the purpose of this paper to give a complete description of B, but the main features
need to be described to explain the issues involved in the implementation. Fo r further details of the
language see reference [Geurts].

/3 is strongly typed, but variables do not have to be declared. There are two basic data types,
numbers and texts, and three constructed types, compounds, lists, and tables. A l l types are
unbounded. Thus numbers may have any magnitude, texts, lists and tables any length, within, of
course, the confines of memory. There are no 'invisible' types like pointers; thus all values may be
written.

Numbers are kept exact as long as possible. Thus as long as you use operations that yield exact
results, there is no loss of accuracy. Th is includes division, so that (1 /3)*3 is exactly 1 Cle a rly
however, operations such as square root cannot in general return an exact answer, and in such cases
approximate numbers are used, rounded to some length.

Texts are strings o f characters. There are operations to jo in texts, t rim them, select individual

• TV"I' MfM1&
,,,

W IVV i N k ,C M

MWWW

on.

control commands

MILUASSEMEMMUMEME

PUT { 1 . . 1 0 } I N l i s t

input/output
WRITE " L i s t= " , l i s t

DELETE ta bl e [" P e te r "]

FOR v a lue I N l i s t :
WRITE 2 *v a lue

READ ta b l e EG {V J ohn# : 2 1)
data-structure modification

INSERT 10 I N l i s t

IF v a lue i n l i s t :
WRITE v a lue
REMOVE v a lue FROM L i s t

M I S M A N I C O N E S T . 7 " ' "

characters (themselves texts of length one), and so forth.

Compounds are the equivalent of records, for instance in Pascal, but without field names.

Lists are ordered lists of elements. The elements must be all of one type, but otherwise may be of
any type. Thus you may have lists of numbers or texts, but also of compounds, of other lists, and
so on L ists may contain duplicate entries (thus they are bags or multisets, rather than sets). There
are operations to insert an element in a list, remove one, determine if an element is present, and so

Tables are generalised arrays, mapping elements of any one type to elements of any other one type.
Again there are no restrictions on the types involved. Yo u may insert entries in a table, modify or
delete them, enquire i f an entry is present, and so on. There is an operator, ke ys , that when
applied to a table delivers the indexes of the table as a list.

Typical commands of B are assignment
PUT count+1 I N co u n t

PUT a.,13 I N b , a

WHILE answer n o t / i n {"y e s " ; " no") :
WRITE "Please answer w i th yes o r n o " /
READ answer RAW

And there are also means to define your own commands and functions.

An example
Here are the two major routines for a cross-reference generator. Th e first is used to save

words and the list of line numbers that each word occurs a t The second is used to print out the
resulting table. No te that in /3 indentation is used to indicate nesting, rather than using explicit
BEGIN-END brackets.

HOWITO SAVE wo rd AT l i n e n o I N x r e f :
IF wo rd n o t / i n ke ys x r e f :

PUT U I N x re f [wo rd]
INSERT L in e ln o I N x re f [wo rd]

HOW/TO OUTPUT x r e f :
FOR wo rd I N ke ys x r e f :

WRITE word<<20, # : #
FOR n o I N x re f [wo rd] :

WRITE no>>1.
WRITE /

3
1
•
4

\ i f n o t y e t i n t h e t a b l e
\ s t a r t e n t r y w i t h empty L i s t
\ i n s e r t i n t h e L i s t

\ t r e a t each wo rd i n t u r n
\ o u t p u t i t L e f t — j u s t i fi e d
\ f o r each number i n t h e L i s t
\ o u t p u t r i g h t — j u s t i fi e d
\ o u t p u t a newt me

Implementations
The original B implementation was written in 1981. I t was explicitly designed as a pilot sys-

tem, to explore the language rather than produce a production system, and so the priority was on
speed of programming rather than speed of execution. A s a result, it was produced by one person
in a mere 2 months, and while it was slower than is desirable, it was still usable, and several people
used it in preference to other languages. I t was written in C, but there was no attempt to make it
operating system independent.

The second version, just completed, is aimed at wider use, and therefore speed and portability
have become an issue, though the system has also become more functional in the rewrite. I t is also
written in C and was produced by first modularising the pilot system, and then systematically
replacing modules, so that at all times we had a running B system. I t was produced in a year by a
group of four.

An important decision taken very early in the rewrite was to write the code as quickly and as
simply as possible, without striving for code-speed before we had any information about where to
optimise. We knew that such optimisations would only be needed in a very few places, and could
easily be added later, by taking profiles of the system. I n the event this decision paid off hand-
somely: first runs of the system showed that one single routine was unexpectedly consuming 90% of
the run time Th is was quickly rewritten optimally, giving a great increase in speed. We deemed it
worthwhile to optimise a couple of other routines which from the profiles were clearly usually being
called for very particular purposes, but this was more in the field of fine tuning.

A problem that we still have is with code size: a lesson that we are only now learning is that macros
in C are extremely expensive. Certain very inoffensive looking pieces of code have been found to
produce great welters of code, which on investigation have been due to the use of macros. Replac-
ing the macros with routines usually reduces the code size significantly.

3

Modules

A B implementation can be broadly divided into four parts: Values, Parsing, Interpretation,
and Environment. B has high-level data-types, and so some effort has to go into the values module,
but once it is written the fu ll semantic power of B types is available to a ll modules, which is no
small advantage.

•

Values

All values in 13, with the exception of compounds, are dynamic. I n the pilot implementation
values were implemented as pointers to contiguous stretches of store. Th is made for easy program-
ming but slow speeds if the size of a value got large, with times 2 (n
2
).Copying of values was implemented using the scheme of Hibbard, Knuevert and Leverett [Hibbard]
as a basis, where each value has a reference count. Copying then consists merely of copying a
pointer and updating reference counts. When a count reaches zero, the associated space can be
returned to the free list. O n the other hand, i f a value is to be modified, such as by inserting a
value in a list, i f its reference count is greater than one then one level of the value must first be
'uniquified' by copying i t to a fresh area of store. (On ly one level need be copied because for
instance if the list is a list of tables, the tables need only have their reference counts updated, since
they are not changed themselves.) Already unique values may be modified in situ.

This scheme has one outstanding feature, that the cost of copying is independent of the size of the
value. Therefore there is a size of value above which reference counting becomes cheaper than ordi-
nary copying. Th is critical size is rather small, and since B values easily become large, it is advanta-
geous. Furthermore, assignments are typically the most executed sort of statement in programs, and
so choosing a method that favours copying is to one's advantage.

Since all values were implemented as contiguous areas of store, inserting or deleting parts of a value
involved shuffling the rest of the value up or down to make room for the new elements or to take
the place of the old. Wh ile this was only on one level of the value, its cost was still proportional to
the length of the value.

The new implementation still uses the reference count scheme, but ,
i n s t e a d o f c o n t i g u o u s
a r e a s o f
store now uses B trees (no relation) [Krijnen] to store the values. These are a form of balanced
trees, and the cost of modifying an element is only 0(log n). Instead of having to copy a whole
level of the value on modification, now only a sub-section of the tree needs to be copied.

Additionally two essential optimisations for B were added: representing lists such as {1 I 0 } only
by their upper and lower bound; this is essential for cases like

FOR i I N {1 . . 1 0 0 0 0 0 0 }:
PROCESS

and representing the result of the ke ys operator in a special way to prevent copies being taken
(essentially the reference count of the table is incremented, and the result marked as a keys value);
this optimisation is essential for cases like:

IF k I N ke ys t :
WRITE t [k]

The final change to the values module in the new implementation was in the numeric package. B
has unbounded exact rational arithmetic, but for simplicity of implementation the pilot implementa-
tion used only pairs of real numbers to represent rational numbers, using the in-built floating point
facilities of the machine Th is was replaced in the rewrite by a proper unbounded-arithmetic pack-
age.

Use of values by the rest of the system.
As mentioned before, it is no small advantage to have the facilities of B values at your dispo-

sal in the rest of the system. I t means for example that identifiers can be implemented using texts,
with no problems about limiting the length of identifiers, and more interesting, that 'environments',
which are the mapping of the identifiers of variables onto their contents, can be implemented as

a'AV 41„,1V maz awari

4

NS, Za\A •••$V
,
1

5

tables mapping texts onto other B values. Furthermore, in certain places the semantics o f B
demand that such environments be copied (for instance to prevent side-effects when evaluating an
expression); this is consequently a very cheap operation.

A notable feature of B is the so-called permanent environment. A l l global variables in a session sur-
vive logout, so that when you come back to your program later, a ll the variables have the same
values as before. Th is obviates the need for files in B. The implementation of this was very simple.
Since environments are just B tables, the permanent environment can just be written in the normal
B way, using the equivalent of the WRITE command, but to a standard file. O n re-starting, this can
be read by the equivalent of the READ command. Th is has remained essentially the same in both
versions, though there is now a plan to load permanent targets only when they are needed, to reduce
start-up times for large permanent environments.

Parsing
In the pilot version the user's 'units' (procedures and functions) were stored on separate files in

a directory. On running the B system all units in the current directory were loaded into a big buffer
in main store, and represented quite literally as a stream of characters, with a special character to
mark the end of each unit (this could cause problems for directories with many units, as start-up
time then became rather long). Parsing then proceeded in a top-down fashion by identifying for the
construct being parsed its 'skeleton' (such as PUT I N f o r an assignment; { } f o r a
list o r table display) and then passing on the sub-strings for the inner constructs to be parsed. N o
attempt was made to produce a parse-tree or other internal representation; only the literal text form
was used.

The new implementation uses the same scheme of storing units on individual files, but now only
loads them on demand, i.e. when they get used the first time Furthermore, although the same pars-
ing scheme is used, an internal parse-tree is formed, and therefore only one text line at a time need
be present in main store. The parse-tree has been designed to suit all purposes in the system (such
as interpretation, and reconstructing the source from its internal representation) so that there need
be only one canonical representation throughout the system. Th e representation is a fairly tradi-
tional abstract syntax tree; so, for example, a for-command representation has a node-type indicat-
ing it is a for command, and then has three sub-trees for the identifier, the expression, and the body
of the for. Naturally, a parse-tree is represented using B values, by using nested compounds.

A feature of B relevant here is that expressions do not have a context-free grammar. I n order to
allow expressions like s i n x , it is not always possible to decide if an expression like f — 1 is a
call of a function (—1) , or the subtraction of 1 f rom a variable Is I n the pilot implementation
this could be ignored since expressions were parsed from context at the time of execution. We know
of no case where this produced other than the effect intended, but it was possible in principal at
least to construct an expression, fo r instance in a loop, which on the first iteration was parsed
differently to the later iterations.

The new implementation takes the possibility of ambiguity into account, and the parser produces a
special kind of node for expressions it cannot resolve. Just before executing a unit that contains
such nodes, the ambiguity is resolved and the nodes replaced, o r an error message is produced
(which only happens when a unit uses a function that hasn't yet been defined).

Interpretation
In the pilot version parsing and interpretation were not separated. Thus there was a boolean

variable that indicated whether the current command should be executed, and if so execution pro-
ceeded at the same time as parsing. Th is meant that during the execution of a WHILE for instance,

U f a ,

M
P
L
a
n
t
,

V E R E S I M I L S M V

The B Environment

B is an interactive language, and consequently allows you to modify your units during a ses-
sion. The pilot version did this by writing the unit out to its file, and then calling an editor (of your
choice) as a subprocess to edit the unit. O n return the unit was re-read, and re-parsed immediately
(without execution) so that the user could have immediate feed-back about errors. I t was then
straightforward to re-enter the editor to fix the errors.

The new implementation now uses a dedicated B editor, which furthermore you use all the time and
not just for editing units. The editor knows much about the syntax of B, and thus checks the syntax
while you type, actually maldng impossible the standard sorts o f mistyping such as unmatched
brackets, and missing quotes.

Additionally it helps in reminding you with commands: when you are typing in a command, and
you type a “p" as the first letter of the command, (upper or lower case), it guesses that you want a
PUT command, and so displays on your screen

PUT ? I N ?

(the underline shows where you currently are). I f you did indeed want a PUT command, then you
need only press the 'tab' key, and the cursor moves to the first of the two 'holes', and you can type
in an expression and press tab again to move to the second hole. Similarly, the editor supplies
matching brackets, so typing P I tab I (gives

which could have been typed as F I tab i [tab {1 . 1 0
Another difference from usual editors is that the cursor, called the focus in the B system, can

focus on large parts of text, such as a whole command. The focus is displayed by using some aspect
of the terminal such as underlining, reverse video, or a different colour. Th e major advantage of

&41.w "NAIMPA

newline

the body would be parsed and reparsed each time round the loop.

The new version uses a recursive-descent interpreter that traverses the parse-tree. There is a main
routine that is called with any particular node, which then splits the node into its sub-fields and uses
the node-type to index a table of routines and call the relevant routine with the right number of
parameters. Th is routine can then execute the node, calling the main routine where necessary to
execute the sub-nodes.

PUT (?) I N ?

You get similar treatment with text quotes.
I f you didn't want a PUT command, but instead wanted to invoke an existing unit of your

own, called say PRINT, with one parameter, then typing an " r" after typing the “p ” replaces the
suggestion and gives you the following on the screen:

PRINT ?

and you can use tab in the same way. Actually, you can ignore this guessing if you want: i f you
type all the characters of each command, without using the 'tab' facility, you will still get the right
result.

Another feature of the editor's knowledge of B is that it knows where there must be indenta-
tion, and so supplies it for you: i f you type in the first line of a FOR command, followed by a new-
line, it automatically positions the cursor at the right position, for example,

FOR i I N (1 _ 1 0) :

„ , •"•'<s •••4,' N ." " „ •
•
• "
,
o

References
[Brookes] F.P . Brookes, The Mythical Man Month, Addison Wesley, 1975.

' 4 V M R , R W a V a r
,

S E r

such a focus is that it makes the editor command set very small. You no longer need separate keys
for moving over characters, words, lines, paragraphs etc., and separate keys fo r deleting each
category, but only keys for adjusting the size and position of the focus, and one key for deleting. I t
additionally alleviates such traditional problems with structured editors of changing an I F into a
WHILE. •

Apart from the addition of this editor to the new system, it was also made possible to edit the con-
tents of permanent variables as well as units. Since such variables replace the traditional use of files
in B, and are typically large, this facility is very welcome.

Availability of the Implementation
The Mark 1 implementation runs under Unix. I t currently runs on V A X 11/780, VAX

11/750, PERQ, Philips PMDS, Bleasdale, and other 68000 systems running Unix. There is a project
underway to put it on an IBM PC.

The operating system interface is localised in three files (interface with signals and interrupts, inter-
face with the file-store, and machine parameters such as word-length) and thus transporting the sys-
tem to another sufficiently large machine should cause few problems.

There is a version that runs on PDP 11/45's and similar, but it has some restrictions (such as no un-
bounded arithmetic) and is slower.

The system is available at nominal cost in 'tar' format (preferably) or ANSI standard labelled tape
format.

The future

The B group is now engaged on the next version. Th is will feature further efficiency improve-
ments, such as speeding-up sequential access to a data-structure, by far the most common case, but
will mainly involve functional improvements. First of all a full B-dedicated environment will be im-
plemented, rather the current embryonic one F o r instance, the editor will know about the seman-
tics as well as the syntax of B, and thus many semantic checks will be performed before your unit is
run. Additionally, there will be extensions such as graphics added to the system.

Conclusions

We are rapidly approaching the time when all personal computers will have the power of a
VAX o r greater. Wi t h power like that available, there wil l be less demand fo r languages that
squeeze the last drop of power out of your processor. O u r implementation project has shown that
you can design a language with programmer ease as top priolity and implement it with good perfor-
mance.

F.P.Brookes advises in his excellent book [Brookes]: "Plan to throw one away; you will anyway”.
This sound advice has served us well Wi t h relatively low initial cost we produced a prototype im-
plementation that, while not perfect, allowed us to test our ideas, observe B programming practice,
and note where optimisation was necessary and where not. Wi t h this information we could then
proceed to a new version with relative ease.

" a • .,„

8

[Geurts] L . Geurts, An Overview of the B Programming Language, or B without Tears, SIGPLAN
Notices, December 1982.

[Hibbard] P.G. Hibbard, P. Knueven, B.W. Leverett, A Stackless Run-time Implementation Scheme,
in Proc. 4th Int. Conf. on Design and Implementation of Algorithmic Languages, ed.
R.B.K. Dewar, Courant Institute, New York, 1976.

[Krijnen] T . Krijnen and L. Meertens, Making 13 Trees Work for 13, Report IV/ 219/83, Mathemat-
ical Centre, Amsterdam, 1983.

