
INCREMENTAL POLYMORPHIC TYPE CHECKING IN B

Lumbert Meertensf

Mathematical Centre

P.O.B. 4079, 1009 AB Amsterdam, The Netherlands

Abstract

The programming language B has been designed for personal
computing. In B, variables need not be declared, nor formal parame-
ters speatied. Nevertheless, B is strongly typed. All type require-
ments can be checked statically. To signal type violations on the spot
during edting, the computations can be organized so that local
modifications to the source text require a modest amount of recom-

putation.

0. INTRODUCTION

The programming language B (MEERTENS [9]) has been

designed for personal computing. The aim has been to pro-

vide an alternative to popular languages such as BASIC, which

combine simplicity with a deplorable lack of support for

structured-prograrnrnin g methods. One of the design require-

ments for B was that it had to be strongly typed, including the

possibility of checking the type requirements completely stati-

cally. On the other hand, the freedom from the duty of

declaring variables is certainly an attractive property for a

language to be used for personal computing. The power of

type-finding algorithms for weakly typed languages (see, e.g.,

TENENBAUM [13]) if the programs adhere to a self-imposed

type discipline led to an investigation into the possibility of

combining the two desiderata. Informal arguments convinced

us of the feasibility. So we designed B so that variables need

not be declared, nor formal parameters specified. Neverthe-

less, it was proclaimed that B is strongly typed, and that all

type requirements could be checked statically. Only after-

w~ds, when we started to worry about an algorithm-for the

type check, did we become aware that essentially the same

idea, known as “type polymorphism”, had already been imple-

mented successfully (MILNER [10]).

t Address until September 1983: Courant Institute of Mathematical
Sciences,New York, New York.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the tdle of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1983 ACM 0-89791-090-7/83/001/0265 $00.75

Another design criterion for B was that it should fit snugly

into a B-dedicated environment. As in APL, B “units”, as

procedure definitions in B are called, exist in a workspace.

Units can be invoked from other units, but also directly by the

user. So B itself can be used as the command language for

such an environment, and instead of “files”, ordinary B values

kept in the workspace will do. An important part of this

environment is the editor for composing B units. The editor

should know enough about B itself to assist the user. It is

desirable that the editor can warn the user on the spot about

type violations. This is only feasible if the computations

involved in type checking can be organized “incrementally”,

i.e., so that a small modification requires a small amount of

(recomputation.

This paper shows how this may be done. Sections 1 to 4

may also be read as an informal treatment of type polymor-

phism that is easier to follow for language designers and

implementers than the rather formal treatment of MILNER [10].

The organization of the paper is as follows. Section 1 gives

just enough information about B to make the examples in the

following sections understandable. Section 2 discusses the

semanti& of types and type requirements. The necessary

theory is similar in content to that given by MILNER [10], but

the approach is rather different. Section 3 relates the

Unification Algorithm of ROBINSON [11] to type checking.

Section 4 gives the non-incremental algorithms for computing

the type requirements for a set of units. Section 5 shows how

to organize the computations for incremental type checking.

Section 6 deals with ‘some issues specific to polymorphic type

checking in B. Finally, the relationship to other work and

issues for further study are discussed in section 7.

1. TYPES AND UNITS IN B

1.1. The types of B

Much of the ease of use of B is due to its type system.

The basic types are numbers and texts, Several values may

be grouped in a tuple to form a “compound” value. The type

of such a compound is determined by the types of its fields. If

a unit contains a command

PUT 1, ‘one’, ‘een’ IN ved

(the PUT command is the assignment in B), then the variable

ved must have the type “compound-with-numeric-textual-

textual-fields”. An attempt to put a value of a different type

265

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

in veal, as in Finally, B units may contain “refinements”, as in

PUT 2, 1+1, ‘twee’ IN ved

constitutes a type violation.

“Lists” are another way of grouping values, but these

values must all have the same type, and this determines the

type of the list. In fact, alistis abag (multiset).

“Tables” are generalized arrays (maps): under “keys”

(indexes) of any type, “associates” (again of any type) may be

stored. For a given table, all keys must have the same type, as

must its associates (though not necessarily the same type as

the keys).

1.2. Units

Units di%ne a command or a function. They correspond to

what are usually called “procedure definitions”. The following

unit introduces a new, user-defined SWAP command to swap

the contents of two variables:

HOW’TO SWAP a AND b:

PUT b, a IN a, b.

Once defined, this command may be used to swap the contents

of two numeric variables, of two textual variables, or of any

two variables of the same type. It is a type violation to

attempt to swap, e.g., a numeric variable with a textual vari-

able.

Commands and functions may not be transmitted as

parameters inn. This restriction makes impossible to obtaina

complete type checking system. “Completeness” means that

semantic compliance with the strong typing requirements of a

set of units implies that they are also syntactically acceptable.

This issue is further discussed in section 7.

Next to units defining commands, B has function

definitions, as in

YIELD cosh X:

PUT exp x IN ex

RETURN (ex+l/ex)/2.

The easiest way to treat these is to observe that a function

definition can retransformed toa command definition, asin

HOW’TO COSH X GIVING y:

PUT exp x IN ex

PUT (ex+l/ex)/2 IN y.

For all formulae involving the function, anew temporary vari-

able is created taking its place, and a call of the command is

inserted with that temporary variable as the result parameter.

This makes it possible to explain the type checking of B in

terms of command units only.

Balso allows’’parameter passing” through global variables.

These variables have to be listed at the start of the unit, fol-

lowing the keyword SHARE, asin

HOW’TO PUSH V:

SHARE stack

PUT v IN stack[#stack+l]

An easy way to treat these is to make the parameter explicit,

as in

HOW’TO PUSH v ON stack:

PUT v IN stack[#stack+l].

All calls of PUSH have to beamended toincorporate the extra

parameter. This will, in general, necessitate the introduction

of extra parameters in other units invoking PUSH directly or

indirectly.

YIELO cosh X:

RETURN (ex+l/ex)/2

ex: RETURN exp x.

Here, ex is an expression whose meaning is defined by a

refinement, given as the last line of the unit. Command

refinements require no special measures. Expression

refinements can be handled similarly to function definitions.

2. TYPES AND TYPE REQUIREMENTS

2.1. Thestructure of types

To make the theory of type polymorphism apply to a

language, it must be possible to express its types as built from

a set of formation rules, each of the form

type: <atom, type], , type,>, n>O.

For a given atom, there is one formation rule. The types are

formed by applying these rules a finite number of times, start-

ing from the basic types of the form <atom>. The rules may

be interpreted as constituting a context-free tree grammar, and

the types are then trees whose nodes are labeled with atoms.

The leaf nodes are basic types.

For B, we have the rules

type: <NUMBER>;

< TEXT>;

<C0kiPoUND2, type,, typel>;

<CoNfPouND3, type,, typez, type,>;

<COMPOUNDi, type,, type2, ... , type,>;

<LIST, type,>;

<TABLE, type,, typej>.

An example of a type that may be built from these rules is

<TABLE, <TEXT>, <LIST, <NUMBER>>>.

This would be the type of a table, indexed by texts, under

which lists of numbers are stored.

2.2. Type requirements

Suppose thatwe have allunit

HOW’TO SHOW t AT k:

WRITE t[k].

From the expression t[k] we see that t is a table, and that

a selection on that table is performed, using as selection key

the value of k. This gives information about the type of t

(some table) andarelation between the types of t and of k

(the type of the keys of t must be that of k). If we denote

the type of t by T and that of k by K, this information may

be expressed in one logical formula:

=CXl,az: T=< TABLE, a,, rq>&K= a,.

The bound variablescr, and a, range, of course, overall types.

The formula may reexpressed still more conveniently (in view

of later developments) as

~a:(’T,K) = (<TABLE,a,,az>, a,).

a ranges over all pairs of types, and, in the general case, over

all tuples of types for all components ai occurring in the for-

mula. This formula contains all information we can hope to

266

glean from the unit about the types of its formal parameters. written thus to achieve uniformity with the following formulae.

It can be interpreted, for the t~rne being, as a condition that

must be satisfied at run time: the types of any actual parame-

ters provided (at run time) for t and k must then fit the

given pattern forsome typesal anda2. Note that this posesa

requirement not only on t and k individually, but also on the

combination. For example, the following two combinations are

both acceptable astypes fortheactual parameters toa SHOW

command:

(i) (7=, K,) = (<TABLE, <NUMBER>, <TEXT>>,

<NUMBER>);

(ii) (7., ..) = (<TABLE, <TEXT>, <NUMBER>>,

<TEXT>):

but this third one does not fit the pattern, even though it is

made up from pieces taken from the acceptable combinations

(i) and (ii):

(iii) (T., ICa) = (<TABLE, <NUMBER>, <TEXT>>,

<TEXT>).

The requirement imposed on t by the use of i as running

variable for the FOR command is

S a: (u, U, 1) = (a,, aj, <NUMBER>).

Note that the bound variable al in the previous formula does

not correspond to a, in this one, but to a2. In general, bound

variables in one formula need not correspond to identical vari-

ables in another formula. The reason why this obvious fact is

nevertheless stressed will become apparent later on.

Finally, we come to the invocation of SHOW. The type of

the actual parameters, (o, 1), has to fit the pattern derived ear-

lier on for the type of the formal parameters. This gives rise

to the formula

3a: (u, L) = (< TAIILE, al, a2>, al),

obtained by substituting (o, 1) for (7, K) in the formula derived

for SHOW. This can be brought in the same format as the two

formulae already found:

Now consider another unit, invoking the SHOW command
~a: (v, u, t) = (a}, <TABLE, cq, a~>, al).

whose type requirement we have just analyzed: To summarize, we have now three requirements:

HOW’ TO PRODUCE n FROM s:

FOR i IN {1. .n]: SHOW s AT i

The expression { 1 . . n } informs us that v, the type of n,

must be that of 1, which is manifestly <NUMBER>. Now, if

the value of n (at run time) is not positive, the list of values

through which i must run is empty, and no value is put in

the variable i, nor will the SHOW command be executed. It

might appear that (since we do not know the value of n in

advance) we cannot impose restrictions on s. This would be

true if we were just do~ng an analysis for a language without

strong typing, to see if some dynamic type checks may be fore-

gone. But because we are concerned with strong (static) type

checking, our requirements are stronger. We require the type

of the actual parameters for SHOW to be consistent (i.e., fitting

the pattern) with the formal parameters, whether or not that

command will be actually reached. Similarly, we require the

type of i to be <NUMBER> (or, equivalently, to be the same

as v), even though we do not know if i will, dynamically,

receive a value. Even if we could deduce that i would never

receive a value —e,g., if the range expression were

{ n+l . . n] —the requirement would still be the same. This is

consistent with the static typing requirements in languages

with declarations: in ALGOL 60, for example, the block

‘Q=WJ~Lfy 1;
:. n+l ~ 1 until n &

show (s, i)

I@

contains a type violation.

We are now ready to proceed with the type analysis for the

unit defining the PRODUCE command. We want to retrieve

information ‘from the body about v and u, the types of the for-

mal parameters, but also- about t, the type of” ~he local vari-

able. The latter will no longer be of interest after the analysis

is done, but is needed during the analysis, both to check the

type consistency of the various uses of i, and because it

serves as an intermediary to express local information about v

and u. The information derived from the expression (1.. n }

may be expressed by

3a: (r,u,~) = (<NUMBER>, a,, CXj).

(i) 3rr: (v, u,t) = (<NUMBER>, a,, cr2);

(ii) ~a: (v, o,,) = (al, a,, <NUMBER>);

(iii) 3(x (u, o, 1) = (al, <TABLE, a2, aJ>, a2).

These three requirements must be satisfied simultaneously,

which can be expressed by the conjunction (i) & (ii) & (iii).

For longer units, the formula expressing the type requirements

would then soon grow very fast, making polymorphic type

checking impractical. Fortunately, the conjunction is again

equivalent to a formula of the same form as its constituents,

viz.

~a: (v, u, t) = (<NUMBER>, <TABLE, CNUMBER>, a, >,

<NUMBER>).

As we shall see, it is not a coincidence that the conjunction

may be so expressed.

Now the analysis is done, we lose our interest in L: the unit

defining PROOUCE is by itself correct, but might be invoked

incorrectly. This depends only on the types of the actual

parameters substituted for v and o, so we take the “projection”

of the “internaf” type requirement on these two, to obtain the

“external” type requirement. This yields, finally,

3a: (v, u) = (<NuMBER>, <TABLE, <NUMBER>, al >),

It is, of course, not always possible to bring a conjunction

into the desired format. Otherwise. we would never find a

type violation. One example is given by

(i) 3a: (Q = (<NuMBER>);

(ii) 3a: (f) = (< LIST, rXl>).

This is a straightforward type clash. There are more compli-

cated situations that may arise, a simple example of which is

given by

(i) 3a: (g, q) = (< LIST, CI,>, al);

(ii) ~a: (f, rJ) = (al, <LIST, al >).

If there were an infinite type <LIST, <LIST, <LIST, ...>>>. it

would be a — in fact, the unique — type satisfying both formu-

lae when substituted for $ and TJ. However, it is understood

that types are built from the formation rules by applying these

a jinite number of times, so that no types can satisfy the two

formulae simultaneously.

This formula could be expressed much more concisely, but is

267

2.3. Polytypes

For the further discussion, we must be able to talk about the

kind of “type schemas” that figured in the formulae:

“unfinished” type forms still containing variables.

Let the set of “polytypes” be the set of forms that can be

generated from the formation rules for types, if to the given

rules also are added the rules

type: a,, i = 1,2,

In other words, we also allow type variables in polytypes. Just

as with types, polytypes may be viewed as trees, but now the

leaves may also be type variables. The original types, not con-

taining type variables, will from now on be called “mono-

types”. (Note that monotypes are a special case of poly-

types.) The Greek letter ~ will denote a polytype. It is

expedient to identify a tuple of polytypes (rT,,... , IT.) with the

singleton polytype < COMPOUNDn, r,, ..., Tn >. (We drop here

the requirement from B proper that n > 2.) This makes it

unnecessary to refer each time to tuples. The formulae found

above are then all of the form

(*) 3a: + = n’,

where @ stands for the composition of the monotypes of the

relevant formal parameters and local variables (to which glo-

bal variables have been added as described in section 1.2).

3. UNIFICATION

3.1. Combining type requirements by unifying polytypes

Let Types(m) stand for the set of monotypes that fit the poly-

type r, or, more formally,

Types(r) =d,f {T / 3a: 7 = z’}.

In particular, if m is a monotype, then Types(n) = (n). On

the other hand, Types (al) stands for the set of all monotypes.

Note that in Types ((aI, al)), for example, the variable al has

the appearance of being free, but is actually bound by the 3a

in the definition. This is highly irregular, but convenient. The

general form (*) above can now be rewritten as

@ = Types(~).

As we have seen, we had to take the conjunction of all contri-

buting formulae to obtain a formula giving the grand total of

type information to be extracted from a unit. Since a conjunc-

tion

I#Jc Types(n’) & $ e Types(~”)

is equivalent to

@ E Types(r’) n Types(m”)

we may also take the intersection of sets of monotypes. The

hope is now that if that intersection is non-empty, we can find

m “unifying” m’ and n“, i.e., such that

Types(m) = Types(m’) n Types(~”).

Such a rT, if it can be found, will be denoted by n’ n T“. In

general, the form is not unique, because trivial renamings may

be applied to the type variables without change in meaning.

Such different forms will be considered equal, in the same way

that Ax: x + 1 and Ay:y + 1 are equal. To express that two

forms cannot be unified, it is convenient to introduce the

“pseudo-type” < *>, where, by convention, < * > E Types(m)

for any n. This convention will make it possible to define n

between polytypes in such a way that, without restrictions,

Types(# n n“) = Types(~’) n Types(#’).

Note that it follows that n between polytypes (if we succeed in

defining it) is commutative and associative.

An example of a monotype fitting a polytype is given by

(<TABLE, <NUNIBER>, <TEXT>>, <NUMBER>) G

Types (<TABLE, a,, az >, al).

The monotype can be obtained by “refining” the polytype, by

substituting <NUMBER> for al and <TEXT> for a2. This is

precisely the meaning of the definition of Types: for an arbi-

trary monotype $, we have @ ● Types(~) iff I#Jcan be obtained

by refining T by a suitable choice of substitutes for the type

variables in r. The substitution needed in this example will be

denoted by

[(<NuMBER>, <TEXT>) + (a, ,GJ2)].

In the general case, we find a tuple of polytypes on the left-

hand side, and a tuple (of the same length) of disrinct type

variables on the right-hand side. (It is helpful to read

“replaces” for the arrow.) Note that we do not require that

the substitutes are monotypes: we have use for more general

substitutions. The application of a substitution is simply writ-

ten by postfixing the substitution to the polytype it is applied

to. If @ stands for the above substitution (the Greek letter @

will denote substitutions), then

(<TABLE, <NUMBER>, <TEXT>>, <NUMBER>) =

(<TABLE, a,, a,>, a,)@.

Using this notation, we have

I#J● Types(v) iff 3@: @ = r~.

so

Types(r) = {, I 38: ,=n@}.

(The 7 still stands, of course, for a monotype.)

We return now to the problem of finding, for given # and
~t’, * = ~ln vr!, The requirement ~ has to satisfv can be, J

reformulated as: for every monotype 1#1,

2@: # = ~~ ifl q@~,@~/: @ c ~t~t = ~t@’.

It is here that the Unification Algorithm of ROBINSON [11

be used.

3.2. The Unification Algorithm

Although the Unification Algorithm was formulated and

can

lsed

originally in the context of automated theorem proving, it

manipulates symbolic expressions and does not depend on the

interpretation assigned to them. It is described here, using the

terminology already developed. To express what the

Unification Algorithm achieves (not how itachieves this), we

need some definitions,

A polytype rT’ is a “refinement” of a polytype T if ~‘ = n@

for some substitution El. (From the fact that the consecutive

application of ,two substitutions @ and @’ may alwaYs be
obtained by a single substitution G“, it is now immediate that

Types(~’) L Types(m).)

A substitution @U is called a “unifier” of two polytypes ~’

and n“ if n’@U = r“ @U, in which case n’ and r“ are said to

be “unifiable”, and the form obtained by applying the substi-

tution is called a “unification” of n’ and T“. It is, moreover,

called a “most general” unifier, if the unification n obtained

thus is such that each unification of n’ and T“ is a refinement

of v.

268

The Unification Algorithm describes how to determine,

given two polytypes rr’ and ~“, whether these are unifiable,

and, if so, how to construct a most general unifier. For our

purposes, the unification found is not yet exactly what we need

for n’n 7r”, but comes very close. First, however, the Algo-

rithm will be given. It follows the description of BOYER &

MOORE [2], rather than that of ROBINSON. The Algorithm

traverses the structure of the polytypes under consideration, by

recursive descent.

Unification Algorithm, applied to ~’ and T“:

Circularity Clause:

If the Algorithm calls, during its execution, for the ap-

plication of a substitution [n+ rii] for some type vari-

able ai, and n contains a, properly as a component (so

T itself is composite):

It is determined that the given polytypes are not

unifiable, and the Algorithm is complete.

● If the Algorithm is at the top level (not recursively in-

voked):

Let a be a tuple of all type variables occurring in n’

and/or v“ and let 0 be a copy of a, and put T’, n“ and

0 under consideration.

. Select an applicable clause:

. ~‘ is some type variable:

Apply the substitution [rT” + n’] to all polytypes

under consideration, replacing them by the new

forms.

● rT” is some type variable:

Apply, as above, the substitution [n’+ T“].

. (neither r’, nor rT”, is a type variable, so) n‘ is of

the form <atom’, r{, m> and n“ is of the form

<atom”, m~’, 7r~ >:

. If atom’ # atom”:

It is determined that the given polytypes are not

unifiable, and the Algorithm is complete.

. Otherwise (m and n are now known to be equal,

since there is only one formation rule for a given

atom):

● Put all forms m{, T; and n(’, m; under

consideration.

● Fori = 1,2,..., n:

Apply the Unification Algorithm (recursively)

to the forms (possibly modified by previous

substitutions) T; and n,~’,

● The (possibly modified) forms T(, ~~ and

~;’. . . >~n“ may now be regarded as no longer

under consideration.

. If the Algorithm is (back) at the top level:

The given polytypes have been determined to be

unifiable and the substitution [0 ~ a] is a most general

unifier.

The Unification Algorithm will now be shown in action on

a simple example. For legibility, <COMPOUNDn, ~,, ~n > is

abbreviated to (ml, n.) and <TABLE, r,, Tj > to r, :n2. The

problem is to unify T’ = (al, CXz:aj) and n“ = (a~:az, a)).

The a from the description is (a,, a2, aj), and 0 is set to a.

Since r’ and r“ are composite and agree in form, the

Unification Algorithm is applied recursively to the pairs of

corresponding components. First, a{ and aj :a2 have to be

unified. This requires the application of the substitution

[a3:fx2+ a,]. This gives rr’ = (a,:a,, a,:a,), 7“ =

(aj :a,, a, :a,) and 0 = (a~ :al, al, aj). Next, the second com-

ponents of # and T“ have to be unified. These have been

modified by the substitution, and are now aj: as and ai: a~.

Again, the forms to be unified are composite. Unification of

aj and aq may be achieved by either of the substitutions

[a, - a,] and [a, ~ a,]. We select, arbitrarily, the first one,

and. obtain T’ = (a~:a~, aq:aj), n“ = (a~:aj, a~:a~) and 0 =

(a~ :a~, a,, IXJ). The next forms to be unified are now, after this

substitution, aj and a~, which results in a dummy substitution.

Climbing back from the recursion, we find no more tasks to be

performed, so we have found a most general unifier for r’ and

T“, viz.

[(a3:a3, (Y3,a3) + (GJ,,(r,,a,)].

BOYER & MOORE [2] do not give a correctness proof, but a

few informal remarks may make the correctness obvious.

First, we remark that if the Algorithm determities unifiability,

then rr’ and T“ are indeed unifiable; in fact, the substitutions

performed have changed rT’ and n“ into identical forms. For

this is obviously true if one of the two was originally a type

variable, and from there on it follows by induction on the

structure of the polytypes. The Algorithm may perform sub-

stitutions on components that had already been unified, but

since these were already identical then, they will remain identi-

cal. Also, at any time during the execution of the Algorithm,

the substitution [O e an represents the sequence of elementary

substitutions hitherto performed, so it must, at the end, be a

unifier. But is it a most general unifier? To see that it is, it

must be realised that if we wish to achieve unification, the ele-

mentary substitutions are obligatory, and could not have been

chosen more general. It follows again by induction that the

final unifier is most general. This shows already that if the

Algorithm fails to produce a unifier, unification is impossible,

To make this implicit argument explicit, we consider the two

conditions under which non-unifiability is determined. If an

atom clash occurs, unification is obviously locally impossible,

and therefore globally, since the substitutions already per-

formed were forced and quite general, and preserved

unifiability if it existed. Regarding the Circularity Clause,

each substitution @ = [n+ a,] prescribed is needed to unify T

and a;. But if T contains a, as a component, then we would

have rT@ # ai @ = r, so unification is impossible. Finally, we

can see that the Algorithm terminates, by considering the

number of different type variables occurring in 0. On-each

substitution, this number is decreased by one (due to the Cir-

cularity Clause). Since it cannot decrease below O, the Algo-

rithm will, after some time, no longer call for substitutions to

be performed. The forms under consideration will then

remain fixed, and completing their traversal is further clearly a

finite process.

3.3. Using the Unification Algorithm to unify polytypes

The Unification Algorithm can be used to determine r’ n r“

for two arbitrary given polytypes ~’ and r“. The Algorithm

will not immediately do, because type variables occurring in

both of the forms to be unified are simultaneously subjec~ to

the substitutions performed. This means in particular—using

as example the partial type requirements for the PRODUCE

command treated earlier — that it unifies

(< NUMBER>, a[, a2) and (a,, a,, <NUMBER>)

to

(<NUMBER>, <NuMLrER>, <NuMBER>),

instead of to

(< NuMBER>, cI,, <Nuk4BER>),

Further unification with (al, <TABLE, a2, aj >, a2) is patently

269

impossible. If n’ and ~“ have no type variables in common,

then, as we shall see, the unification produced (if any) is

!’/ n 7r”. This is helpful, since the variables in a polytype are

(implicitly) bound and have no inherent meaning. Without

change of meaning to Types (n”), we may take any type vari-

able occurring in ~“ and replace it systematically by a new

variable not occurring in n’. In this way, the sets of variables

in r’ and m“ can be made disjoint.
So assume that T’ and T“ have no common variables.

First, we wish to establish that the condition, for some mono-

type $,

3@’,@”: + = =’Q’ = ~I,~tI

is then equivalent to

a~’”: ,$ = ~!@!Pf = ~Jr@J,,

In one direction this is trivial: a unification of n’ and T“ is

also a common refinement of these two. For the other direc-

tion, we have to show that a common refinement @ of ~’ and

T” is also a unification. If we restrict @‘ to substitute only for

variables occurring in n‘ — which has clearly no effect on the

outcome of ~’t3’-, and do similarly for 8“, then 8’ and ~“

substitute for disjoint sets of variables, and @‘ does not substi-

tute for variables in n“, nor 0“ for variables in r’. The sub-

stitution ~’” consisting of the simultaneous application of El’

and @“ is then such that T’@”t = ~’~’ (= ~) and ~lf@If/ =

/’8” (= +). So we have obtained @ as unification of r’ and

n“. (Note that 8’”, @f’@” and @“tS)’ may all three be

different, since the variables occurring on the right-hand side

of, e.g., @‘, may still occur on the left-hand side of 8 “.)

Using this equivalence, the condition r = ~’ n m“ for ~’

and T“ with disjoint variables reduces to: a monotype @ is a

refinement of m iff it is a unification of n’ and fin. That the

most general unification satisfies this condition, follows
immediately from the definition.

We know now that the unification produced by the
Unification Algorithm, applied to # and T“ with disjoint vari-
ables, If one isJound, must be rr’ n T“. But will one be found?

If they have a common refinement, it is, by the above

equivalence, also a unification. We have already seen that the

Unification Algorithm will determine then that r’ and w“ are

unifiable. The answer is of course “No” if T‘ and n“ have no

common refinement. But, with the introduction of <*>, we

can consider this a common pseudo-refinement, and we can

modify the Unification Algorithm accordingly. This requires

three modifications: If one of the two forms to be unified is

c*>, the other is superseded by <*>, as well as its
occurrences in the forms under consideration. (No error

should be reported then: it has already been reported when the

first occurrence of <*> originated.) If an atom clash is

found, the clashing forms are both likewise replaced by <*>.

If a circularity is detected in a substitution [~ ~ al], T is

replaced by <*>, and instead the substitution U<*> a a,] is

performed.

So, in summary, in order to determine n’ n m“, we have to

do the following. First eliminate any common variables from
n‘ and n” by replacing these by fresh variables. Apply next

the Unification Algorithm to r’ and ~”, as modified to cater

for <*>. The unification produced is v’ n v“.

The reader may, perhaps, wonder if a substantially simpler

method than the Unification Algorithm would not do, as we

happen to know-indeed, take some effort to ensure— that the

polytypes to be unified share no variables. This is not the

case. To determine, e.g., (a,, al) n ((w a2), (a*, a3)), the

Unification Algorithm goes through intermediate stages in

which the forms to be unified do have common variables, and

this is essential to its functioning, and for the purpose to

which we have put it. In fact, it is easy to see that a simpler

algorithm for determining ~‘ n rr” can be transformed without

effort into a (simpler) unification algorithm.

4. COMPUTING THE TYPE REQUIREMENTS

4.1. Computing local type requirements

An assumption underlying efficient polymorphic type checking

is that the programming language is such that for all

predefine constructions and operations, the local type require-

ments can be expressed as a polytype. B has been constructed

in such a way that this is the case, although it is necessary to

twist its type system somewhat to make it fit; see section 6. If

a language has not been designed with an eye to the require-

ments of type polymorphism, it is likely to contain construc-

tions that make polymorphic type checking intractable—if

decidable at all— and thereby impractical. An example

from an existing programming language: in the ALGOL 68

expression (s*t) +“a”, the type requirement on s and t

cannot be brought into the desired format if * and + are

predefine operators from the standard-prelude, for either the

type of s is some ‘PREFSETY 1 (row of) character’ and that of

t is some ‘PREFsETY2 integral’, or vice versa.

The transformation described in section 1.2 for function

definitions into command definitions can also be used to cater

for the predefine functions in B. For example, the command

WRITE aA* (b+c)

writes the (b+c) -fold repetition of the text a to the screen.

It can be transformed into

ADD b AND c GIVING tmpl

REPEAT a TIMES tmpl GIVING tmp2

WRITE tmp2.

By this transformation, tmpl and tmp2 have become local

variables. The external type requirements for the pseudo-

commands ADD and REPEAT are known from the language

definition. Computing local type requirements as describedin

section 2.2 would give long tuples, as a position would have to

be assigned for each temporary introduced by the transforma-

tion. But as we know that these have only a purely local

significance, we can locally combine the type requirements of

the commands resulting from the transformation (three in the

above example) and next take out the positions corresponding

to temporaries (similar to the way in which external type

requirements are obtained from internal ones).

In a block-structured language—which B is not—blocks

can rehandled in the same way.

4.2. Computing thetype requirements fora single unit

Using the machinery developed, the polymorphic type check-

ing, applied to a single unit, proceeds as follows.

270

. Collect from all constructions in the unit the local type

requirements on the type $ of the formal parameters and

variables occurring in the unit.

. Express each of these as a polytype r, (signifying the

requirement+ e Types).

e Compute the internal type requirement m = f),~,.

. Obtain the external type requirement from T by “pro-

jecting” r on the formal parameters, i.e., by removing

from (the tuple that is) n the components corresponding

to local variables.

To apply this to a unit U, we need to know, beforehand,

the type requirements for all units invoked in U. This is a

problem, especially if one or more of the units are recursive.

Apparently, it is necessary to compute the type requirements

for a set of units simultaneously.

4.3. Computing thetype reqrrirements foraset of units

Reintroduce the notion of units being’’up for investigation”.

The following algorithmic description is then almost an algo-

rithm for computing, by successive approximations, the type

requirements for a set of units. Almost, for the process is not

guaranteed to terminate.

“Almost Algorithm” (Al):

● Put all units Up for investigation, and set, initially, for
. . .

each umt U, Its internal type requwement to (al, . ,an),

creating a type variable for each formal parameter and lo-

cal variable occurring in U. (This polytype imposes no

undue requirement, since Types(a,,cxn) contains all

monotypes that are tuples of the right length.)

. While there is some unit Uup for investigation:

● Compute (a new approximation of) its type require-

ment, using the current (most recently computed)

external type requirements for units invoked in U.

● U is no longer up for investigation.

● If the newly computed external type requirement of

U differs from the type requirement it supersedes (not

counting trivial changes by the renaming of variables),

put all units that invoke U up for investigation.

If none of the units considered is recursive, this process will

terminate. This can be seen by induction on n, the number of

units. If n > 0, there must be some unit at the bottom of the

calling hierarchy. Sooner or later it will be investigated, for it

is up for investigation, and we know by the inductive

hypothesis that the process terminates when confined to the

other n — 1 units. Once that unit has been investigated, it can

not reappear for investigation, as it contains no invocations of

other units. The process then stays confined to the other n – 1

units and terminates. This termination argument suggests that

it is possible to (mis)use the freedom in choosing the next unit

to be investigated in such a way that the number of turns can

be ~p to 2“ – 1, It would be sensible to perform first a “topo-

logical sort” on the units, so that definitive type requirements

are computed in one sweep over the units. In the general case,

with recursion, this is impossible. A simple improvement is

never to re-investigate a unit U while there are still other units

up for investigation that were already so at the last invdga-

tion of U, and have not been investigated since.

Much work may be duplicated if a unit is re-investigated.

This issue would be easier to treat after having laid the

groundwork for incremental checking, but in view of the

development ahead we need an amendment to AA now. Since

the internal type requirement of a unit is computed as w =

(1, r,, and a change in a contributing rk to n~ results from a

refinement to ~k — so m~ = Tk n n~ —, the new internal type

requirement r’ resulting from that change equals

(f), T,) n fij = ~ n m;. The amendment is now that recompu-

tations in re-investigations in AA indeed take this form: the

internal type requirement of a unit U is updated by unifying it

with the refined local type requirements stemming from

invoked units that caused U to be up for investigation.

This amendment — apart from the tremendous improve-

ment in efficiency— makes it possible to keep track of the type

variables occurring in the process, and this gives a hold for

tackling recursion, which is allowed and may thwart the termi-

nation of the process.

A simple example of a B unit fo~ which the process, as

described by ,4,4, does not terminate, M given by

HOW’TO R X:

PUT X IN y, y

R y.

Let us go through some steps. Let ~ and q correspond to x

and y, respectively. Initially, the internal type requirement,

with 1#1= (g, q), is (a, , a2), which, projected on ~, gives al for

the external type requirement of the R command. The local

type requirement derived from the PUT command, is

((al, al), al), and that of the invocation of R is (a,, a,). Com-

bining these gives the new internal type requirement

((al, a,), al). The external type requirement becomes now

(al, al). This is different from the previous requirement, so

another computation step is taken. Because of the amend-

ment, only the local type requirement for R has to be con-

sidered, It is now (a,, (aj, al)). Combining this with the previ-

ous internal type requirement, followed by projection, gives

the new external requirement ((a,, al), (al, al)). The next turn

will give us (((a,, al), (algal)), ((al, a,), (a,, al))), and so on, in

ever increasing complexity. The process tries, as it were, to

compute a solution of an equation T = (n, ~), but as this solu-

tion cannot be expressed by a finite polytype, it can do no

better than come up with more and more refined approxima-

tions.

The first thing to do now, is to show that if there is a solu-

tion, the process will find it. This can be proved completely

formally, but hopefully a sketch of the crucial idea will suffice.

Since the process never draws a conclusion that it is not forced

to, the approximation of the type requirements is at all stages

such that it can still be refined to the solution, if any. This

puts an upper bound on the complexity of the computed
. .

aPPrommatlons: if ~ can be refined to #, the length of the
expression r is at most that of n’. (This is easily proved by

induction on the structure of polytypes.) However, each time

the process finds a different (approximation of the) type

requirement for a unit, the new type requirement is a proper

refinement of the old one, and so is longer. So, if the process

does not terminate, it will after some time reach an approxi-

mation that is too complex to be refinable to the solution,

which is absurd if a solut~on exists.

Next, we turn to the question of whether the absence of a

solution really means that there is something wrong with the

units (not with the process). For maybe the expressive weak-

ness of polytypes is to blame: maybe there are sets of mono-

types, one for each unit, such that a (symbolic) computation,

started on any unit with any monotype chosen from its set as

the type of its actual parameters, invokes other umits, again

only with actual parameters whose monotypes belong to their

sets. These sets would then form a solution, but maybe there
are no polytypes expressing these sets. However, the above

argument using the complexity of approximations still goes

271

through if we concentrate on one unit whose type requirement

grows unfoundedly— and if the total grows beyond all limits,

there must be at least one unit for which this is the case— and

then for “solution” above, read: some monotype acceptable as

actual-parameters type for that unit.

The type violatioh in the above unit R is not very different

from that in

HOW’TO S X:

PUT X IN X, X.

In this case, the error will be found by the Circularity Clause

of the Unification Algorithm. In the case of R, it “slips

through, because the problem lies in the future use, and type

requirements are not propagated forwards, but only backwards

(i.e., from invocation to invoker). It would be caught if,

before applying the Unification Algorithm to determine

Tr’ n ??”, the variables in both polytypes did not have to be

made disjoint.

But note that the following is entirely acceptable (as far as

polymorphic type checking is concerned):

HOW’TO T X:

PUT X, X IN y

T y.

The process will terminate here (with success) after the first

turn. This is a difference between the polymorphic type check-

ing presented here, and the theory given by MILNER [10].

There, the actual parameters in a recursive invocation are

required to have the same polymorphic type as the formal

parameters, and a proper refinement is not acceptable. A

similar restriction for B, although probably acceptable from a

pragmatic point of view, is not simple to phrase without going

deeper into the mysteries of type polymorphism than is accept-

able for the user community for which B is intended. Also, it

would not make the type checking method described here

much simpler: some parts would become much more compli-

cated, possibly more so than the other parts are simplified.

4.4. Detecting non-termination

If we now had some general method for determining non-

termination, we could turn AA into an algorithm, for if it is

found not to terminate, an error may be reported, and the pro-

cess halted. Such a method exists, and will now be presented.

Consider the type requirements after each unit has been

investigated at least once. Call the type variables occurring in

these requirements “ancestor variables”. Each type variable

occurring in the process thereafter is either one of the ancestor

variables, or is obtained by “refreshing” an already existing

type variable in order to make the Unification Algorithm com-

pute some # n n“ in the recomputations. Thus, each type

variable occurring in the process may be thought of as being a

“variant” of one of the ancestor variables. It is possible to

keep track of the ancestorship of these variants by initially

tagging each ancestor variable with a unique tag, and subse-

quently keeping the ancestor tag when refreshing a variable.
Since there is a one-to-one correspondence between ancestor

variables and tags, the distinction between these two is

dropped. and we will simply speak about “ancestors”.

Also, each refinement during the process consists of a sub-

stitution in one or more polytypes “under consideration” in

the Unification Algorithm. In each such substitution step, at

least one of these polytypes has resulted from a (possibly

empty) succession of refinements, applied originally to some

ancestor, and then to variables contained in the result. These

polytypes are said to be “descendants” of the original ances-

tors from which they resulted. (It is easily seen that different

instances of a given ancestor have identical descendants at

each ;tage between recomputations. Although no essential use

is made here of that fact, it allows us to speak about “the”

descendant of an ancestor. In a practical implementation, this

fact is of course exploited, using the ideas of BOYER &

MOORE [2].)

Let us apply this to the example of the unit R in the previ-

ous section. After the first investigation, the internal type

requirement of R is ((a,, a,), a,). So there is one ancestor, a,,

and by tagging it with a prime, we obtain ((a{. a{), a [). The

external type requirement for R commands, obtained by pro-

jection on the & coordinate, gives (a{, a{). If we now continue

the execution of AA, we only have to consider the invocation

of R. The local type requirement for the invoked R becomes

(a,, (c& aj)). Here, aj is a variant of the original a(.

Unification now causes the substitution ~(a~, aj) + a{] to be

applied to the polytype a{, which is the ancestor a{, and so is a

descendant of it. So we can see that we are applying a substi-

tution that introduces a variant of a{ within a refinement of a[.

This means that the final solution n to which a{ would be

refined, if such a solution exists, has to satisfy some equation

of the form ~ = <... , ~@, ...> G’. It is clear that this equation

has no solution in finite polytypes.

This observation can be turned into a criterion for deciding

that AA is going into an infinite loop. Let C V (“contains vari-

ant of”) be a set of pairs of ancestors, interpreted in the usual

way as a binary relation. C V may be visualized as the set of

edges of a directed graph whose nodes are the ancestors.

Instead of (a, a’) G CV, we write a -+Cv a’. Initially, CV is

empty. If a substitution [n+ al] is applied to a descendant of

an ancestor a, then for all ancestors a’ of variants properly

contained in m, we add a +Cv a‘ to CV. We can formulate

now a second circularity clause:

If, at some time, a +=. u’ is added, but this addition

causes a +Jv a to hold, where +Jv stands for the transi-

tive closure of +Cv:

It is determined that AA will not terminate, a type vio-

lation is signalled, and the execution of AA is halted.

Regarding the correctness of this criterion, two things must

be shown. The first is that indeed, if a cycle is found in CV,

there is a loop in AA. Let rT+ # hold iff n can be expressed

in the form <..., #@, ...> @’. Clearly, + is transitive.

Assume termination of AA, and let ~ and # be the eventual

solutions for ancestors a and a’, respectively. If a +Cv a‘, then

r + T’. This carries over to +~v. If a cycle is found in CV,

this means that the existence of a solution implies the

existence of a polytype n such that n + T. As above in the

examination of R, this is impossible for a finite polytype.

Next, if no cycle is found, we want to show ~he “termination

of AA. Since the number of pairs of ancestors is finite, CV

must converge to a limit in the process within a finite number

of steps. The absence of cycles means that the ancestors may

be topologically sorted, where a +Cv a’ implies that a comes

before a’ in the sorting order. Take the first ancestor u, in
that order. Since, for no a, a +C,, a,, either no substitution is

ever applied to a,, or it is refined to a monotype. So after a

finite number of steps it has converged to its final limit. For

the next ancestor a2, no refinement can result in a descendant

containing variants with other ancestors than al. for if a is the

ancestor of a variant in a descendant of a2, we have a +Jv a,,

meaning that a comes before a2. Once al has reached its limit,

again either no further substitution takes place in the descen-
dant corresponding to a,, or the variants of u, are replaced by

272

that limit. So this descendant also converges in a finite

number of steps. In general, once the descendants for a, to

ai_, have reached their limits, that for a, will also reach a

limit. If all descendants have reached their limits, ,4,4 ter-

minates.

This termination argument establishes also an upper bound

on the number of “sweeps” over all units before a loop is

detected (if AA has not already terminated). For it is easily

seen that, if the external type requirements change, each sweep

adds an element to C V. (And if they do not change, AA has

terminated.) If the number of elements is equal to that of the

ancestors, a cycle must be present in CT’. The number of

ancestors is at most the total n of the lengths of the polytype

tuples expressing the type requirements for the units. This

uPPer bound could be used to detect looping of AA. However,
it is very crude: n may be large; although examples may be

constructed in which this upper bound is reached, these are

contrived. The detection of cycles in CV, e.g., by a depth-first

search, is much faster, since cycles resulting from accidental

errors typically involve only a few (one or two) ancestors.

5. INCREMENTAL TYPE CHECKING

5.1. Decorating a balanced tree

To report type violations as soon as possible— when they arise

during an edit session— the type requirements have to be kept

up to date when modifications are made to a unit. The com-

putations as described until now will not do: the time needed,

although not prohibitive if a unit is checked as a whole, is too

large for an acceptable response time in an editor. So we

want to find an organization for the type-checking algorithm

that permits the reuse of most of the previously computed

information if a small modification is made to a unit. The

idea will first be described under the assumption that there is

no recursion present. The treatment of recursion will then be

resolved as a by-product of the treatment of inter-unit type

inconsistencies.

Recall from section 4.2 that the internal type requirement

for each unit may be computed as ~ = f), T,, where the T, are

the local type requirements derived from the constructions

contained in the unit. Now the collection of all these local

requirements may be organized in the form of a balanced tree.

Any of a number of data structures— 2-3-trees, AVL-trees, B-

trees (KNUTH [7])— will do. The only requirement is that the

data structure allows fast algorithms for insertion and deletion.

“Fast” means here: time O(log N), where N is the number of

items (local requirements) in the collection. The items in the

collection may be thought of as labeling the leaf nodes of the

tree. (There is such a tree for each unit, so that we have a

forest of trees.) Let PD (“properly decorated’) stand for the

assertion: each non-leaf node is labeled with n, rr,, where the

Ti, this time, are the items labeling its (immediately descen-

dant) son nodes. Because of the associativity and commuta-

tivity of the operation n, PD implies that each node is labeled

with the requirement combining all local requirements con-

tained in the sub-tree descending from that node. In particu-

lar, the root of the tree is labeled with T, the grand total of all

the local requirements.

What we have to do now is to take care that PD is at some

time properly established, and is further maintained (kept

invariant) through all modifications of the tree. Establishing

PD is easy: at some time we have started with a collection of

one item, so that PD was met without specific effort. Each

local modification can be described as the deletion of the old

item, followed by the insertion of the new one, The O(log N)

algorithms for insertion and deletion in a balanced tree affect

no more than O (log N) nodes. To maintain PD, it is sufficient

that the type requirement labels are recomputed for the

affected nodes onfy. An immediate further improvement is

obtained by observing that the affected nodes typically form a

path from the root to the leaf where insertion/deletion takes

place. The necessary recomputations may be performed in the

order: lowest nodes first, root last. If the modification is

locally a refinement of the type requirement —which is so in

the important case of an addition to the unit—, it is so

throughout the path to the root, so that it is sufficient to unify

each label with that of its (just refined) son node. If, at some

time, the new label happens to be identical to the old one, the

recomputations of labels above may be skipped. Also, the

recomputations of a change consisting of a deletion and an

insertion may be merged in a natural way. This does not

change the worst-case complexity, but greatly reduces the

average complexity in practice: in many cases, a modification

to a unit will not change its overall type requirement, and the

effects of the modification to the local requirements, if any,

tend to peter out fast.

In a language such as B, a unit already has a tree structure,

viz. that implied by the syntax. It is possible to keep this

structure’ if we are willing to give up full balancing of the tree.

The balancing would remain for representing collections of

nodes that are brothers in the syntax ‘tree. This is acceptable,

since the height of a syntax tree tends to be low in B; lower, in

fact, than O(log N), because of the presence of “refinements”.

The advantage is that the average complexity is in practice

reduced much more if — as is a good idea anyway—

descendants in the label of a node stemming from the

unification of a descendant in a son node with ~ completely

free polytype a, are represented in the implementation by a

pointer to the son descendant (or by a copy of the pointer

representing the son descendant). With some additional effort

it is then possible to organize the update process so that

changes to the types of B variables that are onfy used locally

do not propagate physically to the root —although they do

logically through the pointers.

If a type inconsistency is found— a new occurrence of <*>

is generated —, it is possible to follow a path from the node

where the clash is detected to a leaf node such that that leaf

node by itself already clashes with the leaf node just modified.

This is helpful in reporting an understandable error message.

(This possibility depends on a property that we have not

proved, viz., that if n, m, contains <*>, then there exists a

pair of contributors rT, and n~ such that rT, n rk already con-

tains <*>.)

In the process of making modifications to a unit, intermedi-

ate inconsistent states may be needed to reach a final con-

sistent state. It is undesirable if these are signalled as errone-

ous. A reasonable approach is to signal inconsistencies (while

a unit is still in the process of being edited) only if the part of

the unit from its beginning up to the modification is incon-

sistent. If the modifications are then applied in the textual

order and the overall result is consistent, no error will be

reported at all. With the balanced-tree representation, this can

still be done in time O (log N).

5.2. [nter-unit inconsistencies

The most useful strategy for reporting inconsistencies between

different units is not obvious. Potential newly arising inter-

unit inconsistencies are of two kinds: the actual parameters of

some invocation of the unit being edited no longer fit its

modified external type requirement, or the unit contains itself

273

an invocation with ill-fitting parameters. In either case, a sub-

sequent modification of the other unit may restore consistency.

There are several reasons for not signaling inconsistencies

of the first kind immediately when they arise. The first is that

the inconsistency is visible only in another unit. Giving a

helpful error message is then hard. A second reason falls out-

side the scope of this paper and is specific to B. It is con-

nected to the “static content check” of B, which requires that

all variables be initialized before use. Here the same two

kinds of errors may arise, but it makes little sense to check the

first kind with an incomplete unit, so error messages have to

be postponed. It would be confusing to the user if the error-

reporting strategies were different for these two static checks.

Finally, postponing the detection of inconsistencies of the first

kind makes it possible to address recursion in a natural way.

The desired postponement can be achieved as follows. At

the onset of editing a unit U, the nodes corresponding to invo-

cations of U are (virtually) deleted from all trees. This may

also be interpreted as resetting the external type requirement

of U to the most general one possible. This cannot cause

inconsistencies, of course. It can cause the external type

requirements of invoking units to change, which necessitates

further recomputations, and so on. Although this may take

some time, this is acceptable at the start and end of an edit

session. When the editing of U is finished, the invocations of

U are re-inserted at the positions where they were deleted, and

another round of recomputation takes place. Inconsistencies

then found are reported.

This solves all problems with recursion, since the tem-

porary deletion of U invocation nodes effectively cuts off’ all

recursion in which U is involved. Note, even, that the virtual

deletions have no effect observable by the user, unless the unit

where they are applied and U are mutually (possibly

‘ indirectly) recursive. Thus it would seem possible to skip

recomputing type requirements for the other units invoking U

at the start of the edit session and to recompute onfy at the

end. This is not the case, however, because the modifications

to U may introduce recursion where it did not exist before.

5.3. Variant strategies

Other strategies can be formulated that are more or less satis-

factory, depending on how much effort may be spent on the

computations.

An interesting variant is to maintain for the units, in paral-

lel with the type requirements as discussed, “weak” type

requirements obtained by disregarding invocations of user-

defined units. During the modification of a unit, only the

weak requirements are kept up to date. At the end of the edit

session. the strong requirements are computed. The advan-

tages are that no special effort is needed at the onset of edit-

ing, that the final recomputation may be skipped if the inter-

nal weak type requirement of the unit just edited has not

changed, and that, failing that, the recomputation rounds on

all units are not needed if its recomputed (strong) external

type requirement remains the same. A disadvantage is that
less type violations are detected on the spot.

Another variant is to maintain, in parallel, type require-

ments under the assumption that no essential use is made of

polymorphism. This means that no variants are made of

ancestors in computing local type requirements. These

requirements are then, of course, too stringent. A type viola-

tion in the normal requirements is reflected in a type violation

in the overstringent requirements (but not the other way

around). The advantage is that they can be computed without

iteration, and that, in practice. the overstringent requirements

will often be met. The recomputation rounds for the normal

requirements can be postponed until a type violation is found

in the overstringent requirements.

5.4. Complexity

A theoretical discussion of the complexity of the algorithm is

only possible if the implementation of the Unification Algo-

rithm is taken into account, which will not be done here.

Also, the worst-case complexity is not very interesting: it is

possible to construct units in which a small modification

entails a major upheaval of the type requirements, but this

does not correspond to normal programming practice. A prac-

tical indication of the complexity is the number of ancestor

variables occurring in the decorated tree corresponding to a

unit. If that number is A and the size of the unit is N, the

time required for a modification will be approximately propor-

tional to A log N if the change propagates to the root. The

values of A were determined for a collection of over one

thousand units, collected from user programs, and the least-

squares fit for formulae of the form cNJ’ (log N)q was com-

puted. This gave p = 0.0032 and q = 1.63. (This suggests

p = O, but this is theoretically implausible. On a priori

grounds, one would expect, rather, c N / log N as estimator for

A, but this gave a definitely worse fit.)

6. FITTING B TO POLYMORPHISM

6.1. Genericity of texts, lists and tables

Although B was designed to allow polymorphic type checking,

its type system does not fit the theory as smoothly as suggested

until now for the sake of simplicity. The major complication

stems from the fact that some functions in B can be used

generically on texts, lists and tables, and that the notation { }

may be used both for an empty list and for an empty table.

In order to fit these types to the structure as required in

section 2.1, and allow the necessary latitude to accommodate

the additional genericity in terms of type polymorphism, we

have to model these in a more complicated way. Instead of

<TEXT>, <LIST, al > and <TABLE, al, a2 >, we can use,

respectively, “

<TLT, <TX>> <TX~, <NIL>, <TEXT>>,

<TLT, <LT>, <LIST>, <NIL>, CY,> and

<TLT, <LTS, <TABLE>, al, al>.

This achieves the desired effect. (“TLT” stands, of course, for

“text, list or table”, “TX” for “text” and “LT” for “list or

table”.)

A — theoretically equivalent — alternative is to leave the

types of B as given in section 2.1, but to add two half-baked

types

<TLT, a, > and

<LT, al>,

and to add rules for computing n if such types are involved,

hke <TABLE, ml, Z2 > n <TLT, T3 > = <TABLE, ml, T2 n T3 >,

and <TEXT> n <TLT, T1 B = <TEXT> n T, (but <TEXT> n

<LT, T,> = <*>).

6.2. Circularity of <TEXT>

B has one circular type, viz. that of texts. Selection on a text

does give a character, but the type of that value is the same as

that of other texts. This means that the two circularity clauses

have to be amended, to check first if the circularity detected

fits the circular pattern of the type <TEXT> c

274

<TLT, <TEXTZ ~. A simple way to do this is, on a substitu-

tion [n+ a,] that would cause a circularity error, to unify n

and <TEXT> instead, and next apply [<TEXT> -+ aj]. Care

has to be taken to issue an appropriate error message if a type

incompatibility occurs in the unification, since this means in

reality that the circularity was unlawful.

7. CONCLUSION

7.1. Relation to other work

The work reported here differs from other work on inferring

types, in that an organization is described that allows the

incremental computation of type requirements.

Also, no other authors allow recursion to be combined with

true type polymorphism. Although this is not of practical

importance as far as the usability of B is concerned — only

with great effort is it possible to define useful units using this

possibility —it helps to keep the abstract semantics of the type

requirements simple. These can be formulated as: arbitrarily

deep “macro expansion” does not exhibit (monotypical) type

violations. This is also the meaning of the notion of “formal

correctness with respect to parameter transmission” used by

LANGMAACK [8]. In this sense, the method presented is com-

plete, meaning that a formally correct set of units passes the

type checks. The notion of “completeness” used by

MILNER [10] and DAMAS & MILNER [3] is weaker: it is defined

with respect to the existence of a “well-typing” or “principal

type-scheme”. It is easy to give examples that carmot be well-

typed in the sense of MILNER, but that are formally correct in

the sense of LANGMAACK.

Note, however, that our stronger completeness is possible

only by virtue of “weaknesses” of B: no infinite types and no

procedures as parameters. This explains why the argument of

LANGMAACK exhibiting the undecidability of formal correct-

ness if parameter specifications are not complete does not

aPPIY tO B. (The undecidability result of GEHANI [51 does not
refer to type inference at all. Moreover, it uses a weaker

requirement than formal correctness. If formal correctness

were required, a similar method for detecting non-termination

as described in section 4.4 could be used to obtain a decision

procedure.)

The work of SUZUKI [12] is an extension of the methods of

MILNER [10] for type inference in Smalltalk. Next to some

innovations that are not needed for B, in particular for treat-

ing union types, and the treatment of recursion, a difference is

that the inferred types are not used for strong type checking,

since Smalltalk is not strongly typed. In the system proposed

for Smalltalk by BORNING & INGALLS [1], parameters are

specified, which makes the problem to be solved incomparable

to that addressed by the present work. The same is true for

the type checking method of DEMERS & DONAHUE [4] for

Russell. Moreover, their notion of type consistency differs

from the one used here: the requirements are propagated for-

wards, rather than backwards.

7.2. Further research

The system given here is complete, and this was possible

because of the simplicity of B. That this simplicity plays a

role follows from the undecidability result of LANGMAACK [8].

It would be of interest for the design of future languages using

type polymorphism, to have a clearer delineation, of the condi-

tions under which completeness can still be obtained. For

example, the question is open whether arbitrary recursive types

can be allowed if procedure parameters are still excluded (or

the other way around).

Another interesting issue is to see if, and how, user-defined

data types can be combined with type polymorphism, retaining

both static type checking and freedom from the duties of

declaration and specification.

Acknowledgements

I am grateful to Leo Geurts, Dick Grune, Jan Heering, Paul

Kfint and Timo Krijnen for their unabating willingness to

listen to my rambling, ranting and raving during the various

stages of this research, and especially for their insistence that

there had to be a simpler way of detecting recursive circulari-

ties than that devised until then; and to Steven Pemberton for

his close reading of an ea~lier version.

REFERENCES

[1] BORNING, A. H. & D. H. H. INGALLS, A type declaration

and inference system for Smalltalk, Conf. Record 9th

ACM Symp. Principles of Programming Languages,

133-141, 1982.

[2] BOYER, R. S. & J. S MOORE, The sharing of structure in

theorem proving programs, Machine Intelligence 7,

101-116, (B. Metzer & D. Michie, eds.), Edinburgh

University Press, 1972.

[3] DAMAS, L. & R. MILNER, Principal type-schemes for

functional programs, Conf. Record 9th ACM Symp,

Principles of Programming Languages, 207-212,

1982.

[4] DEMERS, A. J. & J. E. DONAHUE, Data types, parameters

and type checking, Conf. Record 7th ACM Symp.

Principles of Programming Languages, 12-23, ACM,

1980.

[5] GEHANI, N., Generic procedures: an implementation and

an undecidability result, Comp. Languages 5 (1980)

155-161.

[6] GEURTS, L. J. M. & L. G. L. T. MEERTENS, Designing a

beginners’ programming language, New Directions in

Programming Languages 1975, 1-18, (S. A. Schuman,

cd.). IRIA. Rocquencourt, 1976,

[7] KNUTH, D. E., The Art of Computer Programming, Vol.

3, Sorting and Searching, Addison-Wesley, 1973.

[8] LANGMAACK, H., On correct procedure parameter

transmission in higher programming languages, Acts

Informatica 2 (1973) 110-142.

[9] MEERTENS, L. G. L. T., Draft Proposal for the B Program-

ming Language — Semi-Formal Definition, Mathe-

matical Centre, Amsterdam, 1981.

[10] MILNER, R., A theory of type polymorphism in program-

ming, J. Computer and System Sciences 17 (1978)

348-375.

[11] ROBINSON, J. A., A machine-oriented logic based on the

resolution principle, J. ACM 12 (1965) 23-41.

[12] SUZUKI, N., Inferring types in Smalltalk, Conf. Record

8th ACM Symp. Principles of Programming

Languages, 187-199, 1981.

[13] TENENBAUM, A. M., Type determination for very high-

level languages, Comp. Sci. Rep. NSO-3, Courant

Institute of Mathematical Sciences, NYU, New

York, 1974.

6,, ”

