
Guarded Transitions in Evolving Speci�cations

Dusko Pavlovic? and Douglas R. Smith??

Kestrel Institute, Palo Alto, California 94304 USA

Abstract. We represent state machines in the category of speci�cations,

where assignment statements correspond exactly to interpretations be-

tween theories [7, 8]. However, the guards on an assignment require a

special construction. In this paper we raise guards to the same level as

assignments by treating each as a distinct category over a shared set of

objects. A guarded assignment is represented as a pair of arrows, a guard

arrow and an assignment arrow. We give a general construction for com-

bining arrows over a factorization system, and show its specialization

to the category of speci�cations. This construction allows us to de�ne

the �ne structure of state machine morphisms with respect to guards.

Guards de�ne the 
ow of control in a computation, and how they may be

translated under re�nement is central to the formal treatment of safety,

liveness, concurrency, and determinism.

1 Introduction

In previous work [8] we introduced Evolving Speci�cations (abbreviated to es-

pecs) as a framework for specifying, composing and re�ning behavior. The point

of such a framework is, at the very least, to help us cross the path from ideas

to running code. Programming languages are designed to support us at the �nal

sections of that path. On one hand, especs are evolving speci�cations: diagrams

of specs, displaying how the conditions, satis�ed by the variables of computation,

change from state to state. On the other hand, especs are speci�cation-carrying

programs: pieces of code, given with some global requirements and invariants, as

well as annotated with some local conditions, state descriptions, satis�ed at some

states of computation and not at others. They can be construed as formalized

comments, or Floyd-Hoare annotations, but made into the �rst-class citizens of

code, i.e. available at runtime.

While such global and local speci�cations of the intent of computation are

hard to reconstruct if the design records have been lost or thrown away, they are

easy to verify if the design records are carried with the code.

? Supported from the DARPA project \Speci�cation-Carrying Software", contract

number F30602-00-C-0209, and the ONR project \Game Theoretic Framework for

Reasoning about Security", contract number N00014-01-C-0454.
?? Supported from the DARPA project \Speci�cation-Carrying Software" contract

number F30602-00-C-0209.



1.1 State machines and algebraic speci�cations

Originally, state machines were introduced and studied (by Turing, Moore, Mealy,

and many others) as abstract, mathematical models of computers. More recently,

though, software engineering tasks reached the levels where practical reasoning

in terms of state machines has become indispensable: designing reactive, hybrid,

embedded systems seems unthinkable without the various state modeling tools

and languages, like Esterel, or Statecharts. Verifying high assurance systems by

model checking is based on such state machine models. Moreover, one could

argue that the whole discipline of object oriented programming is essentially a

method for eÆcient management of state in software constructs.

However, there seems to be a conceptual gap between state machines as

theoretical versus practical devices. A notable e�ort towards bridging this gap

are Gurevich's Abstract State Machines [5]: on one hand, they are a founda-

tional paradigm of computation, explicitly compared with Turing machines; on

the other hand, they have been used to present practically useful programming

languages, capturing semantical features of C, Java, and others. However, the

absence of powerful typing and structuring (abstraction, encapsulation, compo-

sition. . . ) mechanisms makes them unsuitable for development and management

large software systems.

We wish to investigate a representation of state machines in a framework for

large-scale software speci�cation development (\from-specs-to-code"). Previous

work at Kestrel Institute has implemented the Specware/Designware framework

for the development of functional programs that is based on a category of higher-

order logical speci�cations, composition by colimit, and re�nement by diagram

morphisms [12, 11]. The current work builds on and extends this framework with

behavioral speci�cations (especs), representing state machines as diagrams of

speci�cations, and again using composition by colimit and re�nement by diagram

morphism. Related approaches to representing behavior in terms of a category

of speci�cations include [2, 6].

The goal is to build a practical software development tool, geared towards

large, complex systems, with reactive, distributed, hybrid, embedded features,

and with high assurance, performance, reliability, or security requirements, all

on a clean and simple semantical foundation.

1.2 Evolving Speci�cations

There are four key ideas underlying our representation of state machines as

evolving speci�cations (especs). Together they reveal an intimate connection

between behavior and the category of logical speci�cations. The �rst three are

due to Gurevich [5].

1. A state is a model { A state of computation can be viewed as a snapshot of

the abstract computer performing the computation. The state has a set of

named stores with values that have certain properties.
2. A state transition is a �nite model change { A transition rewrites the stored

values in the state.



3. An abstract state is a theory { Not all properties of a state are relevant,

and it is common to group states into abstract states that are models of a

theory. The theory provides the structure (sorts, variables, operations), plus

the axioms that describe common properties (i.e. invariants). We can treat

states as static, mathematical models of a global theory thyA, and then all

transitions correspond to model morphisms. Extensions of the global theory

thyA provide local theories for more re�ned abstract states, introducing local

variables and local properties/invariants.

4. An abstract transition is an interpretation between theories { Just as we

abstractly describe a class of states/models as a theory, we abstractly de-

scribe a class of transitions as an interpretation between theories [7, 8]. To

see this, consider the correctness of an assignment statement relative to a

precondition P and a postcondition Q; i.e. a Hoare triple P fx := eg Q.
If we consider the initial and �nal states as characterized by theories thypre
and thypost with theorems P and Q respectively, then the triple is valid i�

Q[e=x] is a theorem in thy
pre

. That is, the triple is valid i� the symbol map

f x 7! eg is an interpretation from thypost to thypre. Note that interpreta-

tion goes in the opposite direction from the state transition.

The basic idea of especs is to use speci�cations (�nite presentations of a

theory) as state descriptions, and to use interpretations to represent transitions

between state descriptions.

The idea that abstract states and abstract transitions correspond to specs

and interpretations suggests that state machines are diagrams over Specop. Fur-

thermore, state machines are composed via colimits, and state machines are

re�ned via diagram morphisms [8].

1.3 Guards as Arrows

What's missing from the picture above is the treatment of guards on transi-

tions. Interpretations between theories correspond exactly to (parallel) assign-

ment statements, so something extra is needed to capture guards in this frame-

work.

Let K and L be two states and K
g`a

�� L a transition, consisting of the

guard, viz predicate g, and the update a. Intuitively, it can be understood as

the command if g then a, executed at the state K, and leading into L by a

| whenever the guard condition g is satis�ed. More precisely, it is executed in

two steps:

{ at the state K, the condition g is evaluated;

{ if it is satis�ed, the update a is performed.

Every guarded update K
g`a

�� L thus factors in the form

(g ` a) = (g ` id) � (> ` a)



where g ` id is a guard with a trivial update (with the identity id mapping all

symbols of K to themselves), whereas > ` a is the unguarded update (with the

condition > always satis�ed).

This gives rise to the following

Task: Given two classes of morphisms G and A over the same class of objects S,
construct the category SG`A , where the morphisms will be the composites g ` a
of the elements of the two classes, which will be recovered as components of a

factorization system.

The remainder of the paper introduces a general mathematical construction

for SG`A , and shows how to treat guarded transitions as a special case.

2 Construction

2.1 Simple form

Let G and A be two categories over the same class of objects S. We want to form

the category S` = SG`A with a factorization system where the G -arrows will be

the abstract epis and the A -arrows the abstract monics. This means that G and

A will appear as lluf subcategories of S`, and every S`-morphism will factorize

as a composite of an G -morphism followed by an A -morphism, orthogonal to

each other in the usual sense [3, 1].

The requirements induce the de�nition

jSG`A j = S

SG`A (K;L) =
X
X2S

G (K;X) � A (X;L)

Notation. An arrow S`, which is a triple hX; g; ai, will usually be written in

the form (g ` a). The components g 2 G and a 2 A will sometimes be called

guard and action, respectively.

Conversely, given an arrow f 2 S`, we'll denote by f
� a representative of the

G -component, and by �f a representative of the A -component. In summary,

f = (g ` a) means that

f� = g and
�f = a

Towards the de�nition of the composition

� : S`(A;B)� S`(B;C) �! S`(A;C)

note that its naturality with respect to the pre composition in G and the post-

composition in A means that it extends the composition in these two categories,

i.e.

g0 � (g ` a) = (g0 � g) ` a

(g ` a) � a0 = g ` (a � a0)



For the moment, these equations can be viewed as notational conventions. Later,

when the composition is de�ned, they will be derivable as properties. Similarly,

the left-hand side of

g0 � f � a0 = (g0 � f�) ` (�f � a0) (1)

is just a convenient abbreviation of the right-hand side.

The composition can now be de�ned in the form

(g1 ` a1) � (g2 ` a2) = g1 � (a1 a g2) � a2

which is the abbreviated form of

(g1 ` a1) � (g2 ` a2) = g1 � (a1 a g2)
� ` �(a1 a g2) � a2 (2)

�(a1ag2)

���
��

��
��

��
��

��
��

�

a1ag2 ��

(a1ag2)
�

������������������

a1

��
��

��
��

���
��

��
�� a2

��
��

��
��

���
��

��
��

A

g1�������

����������

B

g2�������

����������

C

where the middle component comes from the family of the of switching functors

aAB :
P

Z2S
A (A;Z) � G (Z;B) �! S`(A;B)

natural for the pre-composition with the A -morphisms to A and for the post-

composition with the G -morphisms out of B. Moreover, the switching is required

to satisfy the following equations (simpli�ed by (1))

a a id = id ` a

id a g = g ` id

a0 a g0 � (a00 a g00)� = (a0 a g0)� � (�(a0 a g0) a (a00 a g00)�)
�(a0 a g0) � a00 a g00 = (�(a0 a g0) a (a00 a g00)�) � �(a00 a g00)



�(�(a0ag0)a (a00ag00)�)

���
��

��
��

��
��

��
��

�

�(a0ag0)a (a00ag00)� ��

(�(a0ag0)a (a00ag00)�)
�

������������������

�(a0ag0)

��
��

��
��

���
��

��
��

�(a00ag00)

��
��

��
��

���
��

��
��

A

(a0ag0)��������

����������

a
0

���
��

��
��

��
��

��
��

� B

(a00ag00)��������

����������

a
00

���
��

��
��

��
��

��
��

� C

g
0

������������������

g
00

������������������

The �rst two of these equations ensure that (id ` id) play the role of the

identities in S`. The last two allow us to prove that the composition is associa-

tive.1

((g1 ` a1) � (g2 ` a2)) � (g3 ` a3)
(2)
=
�
g1 � (a1 a g2)

� ` �(a1 a g2) � a2

�
� (g3 ` a3)

(2)
=

�
g1 � (a1 a g2)

� � (�(a1 a g2) � a2 a g3)
�

` � (�(a1 a g2) � a2 a g3) � a3)

=

�
g1 � (a1 a g2)

� � (�(a1 a g2) a (a2 a g3)
�)
�

` � (�(a1 a g2) a (a2 a g3)
�) � (a2 a g3)

� � a3)

=

�
g1 � (a1 a g2 � (a2 a g3)

�)
�

` � (a1 a g2 � (a2 a g3)
�) � (a2 a g3)

� � a3)

= (g1 ` a1) �
�
g2 � (a2 a g3)

� ` �(a2 a g3) � a3

�
= (g1 ` a1) � ((g2 ` a2) � (g3 ` a3))

Proposition 1. Given the categories G and A over the object class S, the ca-

tegory S` is universal for

{ categories K, given with

{ a factorization2 (E ;M ), and

{ the functors

G : G ! E ,! K and

A : A ! M ,! K

1 The abbreviated form of (2) does not seem particularly useful here.
2 For simplicity, we are taking an inessentially weaker notion of factorization than e.g.

[3], omitting the requirement that both families contain all isomorphisms. Respecting

this requirement would amount to an additional step of saturating the families.



that coincide on the objects, and for all composable actions a and guards g

holds

{ satisfy

A(a) �G(g) = G(a a g)� �A �(a a g)

Proof. The category S` satis�es the above conditions. Indeed, the classes of

arrows

E = fg ` id j g 2 G g

M = fid ` a j a 2 A g

form a factorization. This means that every S`-arrow decomposes

(g ` a) = (g ` id) � (id ` a)

The two families are orthogonal because every commutative square

A1

g1`a1 ��

g`id

��

B1

id`a

��
A2

eg`ea

���
�

�
�

�
�

�
�

g2`a2

�� B2

can be �lled with a unique diagonal, making both triangles commute. Indeed,

the commutativity of the square means that

g1 = g � g2 and

a1 � a = a2

so that we can simply take

eg = g2 andea = a1

The switch functors are

(a a g) = (g ` a)

so that the required condition holds

A(a) �G(g) = (id ` a) � (g ` id)

= (g ` a)

= (a a g)

= G (a a g)� � A � (a a g)



The universality of S` now boils down to the fact that the functors G : G !
E ,! K and A : A ! M ,! K extend to a unique functor H : S` �! K,
preserving the factorizations. The object part of this functor is already com-

pletely determined by the object parts of G and A, which coincide. Since the

factorization is required to be preserved, the arrow part will be

H(g ` a) = G(g) �A(a)

The functoriality follows from the assumptions:

H(g1 ` a1) �H(g2 ` a2) = G(g1) � A(a1) �G(g2) �A(a2)

= G(g1) �G(a1 a g2)
� � A �(a1 a g2) �A(a2)

= G (g1 � (a1 a g2)
�) �A � ((a1 a g2) � a2)

= H ((g1 ` a1) � (g2 ` a2))

2.2 Examples

Decompositions. Trivially, the construction can be applied to A = G = C, for
any category C. The switch functors can also be trivial, and map hZ; f; gi 2P

X2C
A (K;X) � G (X;L) to the same triple hZ; f; gi but this time as element

of
P

X2C
G (K;X) � A (X;L).

The morphisms (f ` g) : K �! L in resulting category C` are simply the

composable pairs of morphisms, leading from K to L in C.

Adjoining a monoid of guards. Let h�;
;>i be a monoid, C an arbitrary cate-

gory, and let

C � �


�! C

be a monoid action, also denoted 
, by abuse of notation. For every g 2 � there

is thus a functor (�)
 g : C �! C, satisfying

A
> = A

(A
 g1)
 g2 = A
 (g1 
 g2)

We want to adjoin the elements of � to C as abstract epis, while keeping the
original C-arrows as the abstract monics. So take A = C, and de�ne the hom-sets

of G by

G (K;L) = fg 2 � j K 
 g = Lg

The composition is clearly induced from � : if K
 g1 = L and L
 g2 =M , then

K 
 (g1 
 g2) =M makes g1 
 g2 into an arrow from K to M .

The C` construction now becomes

C`(K;L) =
X
g2�

C(K 
 g; L)



The switch functors are

(a a g) = (g ` a
 g)

K 
 g

a
g

���
���

����
�

K

g

�����������

a

		�
��

��
��

��
L
 g

L

g



����������

so that the composition is

(g1 ` a1) � (g2 ` a2) = g1 
 g2 ` (a1 
 g2) � a2

Objects as guards. An interesting special case of the above arises when C is a

strict monoidal category3. Its object class jCj is then a monoid, which comes

with the action

C � jCj


�! C

The category C` is formed as above, with the objects of C as the guards.
If C is the categoryN of von Neumann natural numbers, i.e. n = f0; 1; 2; : : : ; n�

1g with all functions as morphisms. This is, of course, equivalent to the cate-

gory of �nite sets, but the monoidal structures induced by the products, or the

coproducts, can be made strict, using the arithmetic operations. The �niteness

does not matter either, so the category O of all ordinals would do just as well,

but looks bigger.

With the cartesian products as the monoidal structure, i.e. 
 = � and > = 1,

a guarded morphism (g ` a) : k �! ` is a function a : k � g �! `. The

numbers g; k; ` can be thought of as arities; besides the inputs of arity k, the

function a thus also requires the inputs from the guard g. Its composite with

(h ` b) : ` �! m just accumulates the arguments x : g and y : h

(g ` a) � (h ` b)(u; x; y) = a(b(u; x); y)

If the monoidal structure is the coproducts, i.e. 
 = + and > = 0, then

(g ` a) : k �! ` is a pair of functions [a0; a1] : k + g �! `. The composite with

(h ` b) : ` �! m, i.e. [b0; b1] : `+ h �! m is the triple

(g ` a) � (h ` b) = [a0 � b0; a1 � b0; b1]

On the other hand, if we use the monoid hN ;+; 0i, a guarded morphism

(g ` a) : k �! ` will be a function a : k �! `+ g, which besides the outputs of

arity ` may yield some outputs of arity g.

3 In fact, premonoidal [9] is enough.



2.3 Full construction

Some natural examples require a more general construction. For instance, start-

ing from a category S with a factorization system (E ;M ) and taking G = E and

A = M , one would expect to get S ' S`. However, one gets a category where

the morphisms are the chosen factorizations, which is essentially larger than the

original one (it may not be locally small).

Moreover, looking back at the motivating example S = Spec, one might like

to develop the guard category using the speci�cation morphisms, rather than

interpretations as the class of updates. This suggests the task of generating from

S, A and G a category where the elements of a chosen class of morphisms D

will boil down to isomorphisms. In the case when S is Spec, the class D are the

de�nitional extension.

So suppose now that we are given a class S and three categories over it, A ,

D and G , such that D is a subcategory of both A and G . So we have the faithful

functors D ,! A and D ,! G , both bijective on objects.

For every pair of objects K;L 2 S there is a diagram

D � D
op �! Set

hX;Y i 7�! G (K;X) � A (Y; L)

The coend
R
X2D

G (K;X)�A (X;L) of this diagram [10, IX.6] identi�es elements

of G (K;X) � A (X;L) and G (K;Y )� A (Y; L) along the spans

G (K;X) � A (Y; L)

��															

��
















G (K;X) � A (X;L) G (K;Y )� A (Y; L)

induced by postcomposing with d 2 D (X;Y ) in G and by precomposing in A .

The category S` = S
G
D

`A

is now de�ned

jS`j = S

S`(K;L) =

Z
X2D

G (K;X) � A (X;L)

If the D -arrows support the right calculus of fractions in G and the left calculus

of fractions in A , the coends can be simpli�ed by the usual equivalence relations

[4, 1]. In any case, the composition follows from the universal property of the

coends, and this general construction yields the following universal property of

S`.

Proposition 2. Given the categories

D � �

���
��

��
��� �



��
��

��
�

G A



over the same object class S, the category S` is universal for

{ categories K, given with

{ a factorization (E ;M ), and

{ the functors

G : G ! E ,! K and

A : A ! M ,! K

D : D ! I ,! K

where I is groupoid of isomorphisms of K. These three functors coincide on

the objects, and for all composable actions a and guards g holds

{ satisfy

A(a) �G(g) = G(a a g)� �A �(a a g)

Examples

Spans. If C is a category with pullbacks, we can take G = Cop, A = C and D = I

the groupoid of all isomorphisms in C. An abstract epi from K to L is now an

ordinary C-map from L to K. The switch functors can now be de�ned using

pullbacks:

�(aag)

���
��

��
��

�
(aag)�

��













K

a
���

��
��

��
L

g


��

��
��

�

Z

The above construction yields the category of matrices in C, in contrast with

the bicategory of spans, obtained by the earlier simple construction. E.g., for

C = Set, the morphisms of this category are ordinal matrices, with the matrix

multiplication as the composition.

Opspans. Dually, when C is a category with pushouts, we can take G = C and

A = Cop, and get a \stricti�ed" version of the bicategory of opspans as C`. In
contrast with the span composition, which boils down to the matrix composition,

the opspan composition corresponds to the equivalence relation unions.

Factorization systems Given a category C with a factorization system (E ;M ),

we can now recover C = C` by taking D to be the isomorphism groupoid I of

C. This gives an equivalence of the 2-category of factorization systems, with the

2-category of the triples hE ;M ; Ii.



3 Adjoining guards to Spec

The general construction can now be specialized to obtain a suitable category

of guarded transitions in state machines. We start from the class S = jSpecj,
and want to build the category of guarded transitions from the categories A of

unguarded transitions, and G of guards. The unguarded transitions will be the

interpretations backwards, i.e.

A = Spec
op

But what to take as the guards? Probably the simplest idea is to take all inter-

pretations:

G = Spec

With the switch functors induced by the pushouts, the resulting category

of guarded interpretations is just the category of opspans in Spec. A guarded

transition K
g`f

�� L is thus just an opspan K
g
�! M

f
 � L in Spec. The

guard M is a separate spec, given with the interpretations g and f of K and L

respectively, and possibly including some private variables, sorts and operations,

equally invisible to K and to L.

As semantics of transitions, the opspans have the obvious shortcoming that

they are completely symmetric: given an K
g
�!M

f
 � L, we have no way to tell

whether it is a transition fromK to L, or from L toK, since the guardM is sym-

metrically related, and can be equally unrelated to both. The opspan semantics

is thus not full: not all opspans can be reasonably interpreted as transitions.

Intuitively, one might want to think of the guarded transition K
�`f

�� L as

the command if � then f , executed at the state K, and leading into L by f |

whenever the guard condition � is satis�ed. The above symmetry is broken by

the assumption that the guard � is evaluated at state K, and not L, or some

third state. This is why, in general, such a transition is irreversible: once the state

K is overwritten, it cannot in general be recovered, nor can � be re-evaluated.

Following this intuition, that the guard � is evaluated at K, we restrict the

opspan semantics by the requirement that � is expressible in the language LK
of K:

G (K;M) = f� 2 LK j K ^ � =Mg

where K^� denotes the spec that extends K with the axiom �. Indeed, it seems

reasonable to require that all variables of � must be known and determined at

the state K, where this condition is evaluated, causing the transition to �re, or

not.

The switching functors are given by

f a � = f(� ) ` f



L

��

f

��������������������

H

��

L ^ �

f���������������

H ^ f(� )

so that arrow composition is given by the rule

K
�`f

�� L L
�`g

�� M

K
�^f(� )`f �g

�� M

or diagrammatically

K

��

L

��

f

������������������� M
g

���������������

K ^ �

��

L ^ �

f����������������

K ^ � ^ f(� )

In summary, the category Spec` of speci�cations and guarded transitions will

have speci�cations as its objects, while the hom-sets will be

Spec`(K;L) = f(� ` f) j� 2 LK and f 2 Spec(L;K ^ �)g

In general, for a �xed spec A, we shall de�ne A=Spec` to be the category

with the specs inheriting A (viz the extensions A
k
�! K) as objects4, arrows

� ` f have the form

A

k

����
��

��
��

�
`

		�
��

��
��

��

K
i �� K ^ � L

f��

4 The state descriptions of a machine are not unrelated specs, but they share/inherit

the common global spec, capturing whatever may be known about the global invari-

ants and the intent of the program. The abstract states K and L thus come with

the interpretations k : A �! K and ` : A �! L of the globally visible signature and

the invariants speci�ed in A. The universe from which the states are drawn is thus

the category A=Spec, of all specs inheriting A, rather than just Spec. While Spec

is �bered over Lang by the functor mapping each spec K to its language LK , the

category A=Spec is �bered over LALang, mapping each interpretation A �! K to

the underlying language translation.



and the hom-sets will be

A=Spec`(k; `) = f(� ` f) j� 2 LK and f 2 Spec(L;K ^ �) and k � i = ` � fg

for A = A=Spec and G (k; `) = f� 2 LK j K ^ � = Lg.

Remark. Note that the construction of Spec` is just a �bered form of adjoining

objects as guards: for each language � the semilattice hjSpec� j;^;>i of all
theories over � is adjoined to the �ber Spec

�
as the monoid of guards.

The construction A=Spec` is, on the other hand, a �bered form of the slightly

more general construction. The category A=Spec is �bered over the category

LA=Lang of languages interpreting LA. But this time, each �ber (A=Spec)� over

� : LA �! � is assigned not its own monoid of objects, but again just the

semilattice of theories over �.

4 Concluding Remarks

One remarkable fact arising from the above presentation is that an elementary

question arising from a basic computational model | the question of guards in

evolving speci�cations | already leads to an apparently novel categorical con-

struction, which may be of independant mathematical interest. The general con-

struction, outlined in Section 2.3, corresponds to a double calculus of fractions,

combining left and right fractions in a common framework, with new universal

properties. The details and the instances of this new construction, which appears

to lead to some interesting groups and algebras, remain to be investigated in a

separate paper.

On the espec side, from which it originates, the construction now guides

the development of a suitable category for guarded actions, allowing us to treat

guarded transition systems (especs) as diagrams over Specop. In accord with the

ideas and structures presented in [8], we can then compose especs using colimits,

and we can re�ne systems of especs using diagram morphisms, providing a solid

mathematical background for interleaving and combining the bottom-up and the

top-down software development in a uni�ed framework.

The conditions under which guards are mapped under re�nement directly

a�ect key behavioral properties such as nondeterminism, safety, and liveness.

These will be explored in a subsequent paper. Other future directions for this

work include adding timing constraints and exploring resource-bounded compu-

tation, and modeling hybrid embedded systems with especs.

References

1. Borceux, F. Handbook of Categorical Algebra 1: Basic Category Theory, vol. 50

of Encyclopedia of Mathematics and Its Applications. Cambridge University Press,

Cambridge, 1994.

2. Errington, L. Notes on diagrams and state. Tech. rep., Kestrel Institute, 2000.



3. Freyd, P., and Kelly, G. M. Categories of continuous functors I. Journal of

Pure and Applied Algebra 2, 3 (1972), 169{191.

4. Gabriel, P., and Zisman, M. Calculus of Fractions and Homotopy Theory, vol. 36

of Ergebnisse der Mathematik und ihrer Grenzgebiete. New Series. Springer-Verlag,

New York, 1967.

5. Gurevich, Y. Evolving algebra 1993: Lipari guide. In Speci�cation and Validation

Methods, E. Boerger, Ed. Oxford University Press, 1995, pp. 9{36.

6. J.L.Fiadeiro, and T.Maibaum. Interconnecting formalisms: supporting modu-

larity, reuse and incrementality. In Proc. 3rd Symposium on the Foundations of

Software Engineering (1995), G. Kaiser, Ed., ACM Press, pp. 72{80.

7. Kutter, P. W. State transitions modeled as re�nements. Tech. Rep. KES.U.94.6,

Kestrel Institute, July 1994.

8. Pavlovic, D., and Smith, D. R. Composition and re�nement of behavioral spec-

i�cations. In Proceedings of Automated Software Engineering Conference (2001),

IEEE Computer Society Press, pp. 157{165.

9. Power, J., and Robinson, E. Premonoidal categories and notions of computa-

tion. Mathematical Structures in Computer Science 7, 5 (1997), 453{468.

10. Saunders Mac L. Categories for the Working Mathematician, vol. 5 of Graduate

Texts in Mathematics. Springer-Verlag, Berlin, 1971.

11. Smith, D. R. Mechanizing the development of software. In Calculational System

Design, Proceedings of the NATO Advanced Study Institute, M. Broy and R. Stein-

brueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251{292.

12. Srinivas, Y. V., and J�ullig, R. Specware: Formal support for composing soft-

ware. In Proceedings of the Conference on Mathematics of Program Construction,

B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399{422.


