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Abstract

Aspect-Oriented Programming (AOP) offers new insights and tools for the modular de-
velopment of systems with cross-cutting features. Current tool support for AOP is provided
mainly in the form of code-level constructs. This paper presents a way to express cross-
cutting features as logical invariants and then to generate the kind of code that is usually
produced from manually written aspects. In order to state invariants that express cross-
cutting features, we often need to reify certain extra-computational values such as history
or the runtime call stack. The invariant approach is illustrated by a variety of examples.

1 Introduction

Aspect-Oriented Programming (AOP) contributes to the broad goal of modular programming,
with a particular focus on cross-cutting concerns [1, 2]. A concern is cross-cutting if its mani-
festation cuts across the dominant hierarchical structure of a program. A simple example is an
error logging policy – the requirement to log all errors in a system in a standard format. Error
logging necessitates the addition of code that is distributed throughout the system code, even
though the concept is easy to state in itself. Cross-cutting concerns explain a significant fraction
of the code volume and interdependencies of a system. The interdependencies complicate the
understanding, development, and evolution of the system.

In this paper we focus on aspects as expressed in AspectJ [3] and recent extensions of it. AspectJ
aspects can be thought of as providing a kind of “whenever” construct: whenever an event of type
e occurs during execution, perform action a. For example, whenever an exception is thrown,
perform a logging action. The runtime events are called join points and descriptions of join
points are called pointcuts. One can think of pointcuts as defining a type whose elements are
joinpoints. The method-like actions to apply at joinpoints are called advice and the process
of inserting advice at code locations that satisfy a pointcut is called weaving. An aspect is a
modular treatment of a crosscutting concern that is composed of pointcuts, advice, and other
Java code. See [4] for an introduction and many practical examples.

Our goal is to explore how aspects can be specified more abstractly than in current languages.
We focus primarily on AspectJ, the most widely used implementation of AOP, for which there
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is flurry of activity to extend its expressiveness and range of applicability. This paper explores
the proposition that aspects can be specified as invariants, and that weaving is invariant main-
tenance.

AspectJ has attracted a a wide user community partly because it is well integrated with Java:
aspects are written in a class-like syntax and have a semantics that closely adheres to Java
semantics. Yet despite its attractiveness to programmers, some issues arise due to the operational
nature of aspects:

1. Intent – What is the intent of an aspect? The program-like nature of an aspect often
obscures it’s intention. It would be desirable to have a more semantic characterization of
aspects, at least as an alternate description. That is, what is the specification for which
the aspect is an implementation?

2. Pointcut Completeness – Does a pointcut exactly characterize the intended runtime events?
AspectJ pointcuts often depend on uniform conformance to syntactic/naming conventions,
rather than more semantic considerations, so it may sometimes be difficult to catch all
relevant joinpoints in the pointcut. For security aspects in particular, it is important not
to overlook a potential joinpoint.

3. Advice Correctness – Does an aspect’s advice correctly realize its intent?

In this paper we present a generative approach to AspectJ that addresses these issues. The key
idea is that an invariant captures the intent of an aspect. Aspect weaving is then the process of
maintaining the invariant by generating and inserting code fragments at appropriate locations
in the base code. In this approach, a pointcut specification is derived from the invariant and it
characterizes the set of code points that might disrupt the invariant. For each such disruption
point in the code, a specification for maintenance code is derived from the invariant. Code that
is generated from the maintenance specification corresponds to statically woven advice, and
could be expressed either directly in AspectJ, or by direct generation and insertion of code into
the system. By expressing an aspect as an invariant we more clearly separate its intent from its
implementation/realization.

In addition to addressing the three issues listed above, the invariant maintenance approach also
provides novel insights and approaches to the problems of (1) context-specialization of advice,
(2) aspect interference, and (3) evolution in response to base code changes.

The generative techniques in this paper derive from transformational work on incremental com-
putation, in particular Bob Paige’s pioneering work on Finite Differencing [5]. Finite Differenc-
ing is intended to optimize programs by replacing expensive expressions in loops by new data
structures and incremental computation. It achieves this by maintaining invariants of the form
c = f(x) where c is a fresh variable, x is a vector of program variables, and f(x) is an expensive
expression (usually in a loop). Code to maintain the invariant is automatically generated and
inserted at points where the dependent variables change.

After introducing some notation, we work through a variety of examples. We conclude by
revisiting the issues listed above and examining how the invariant approach provides answers
and fresh insight to them.
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2 Preliminaries

For purposes of this paper, a behavior of a program can be represented graphically as alternating
states and actions

state0
act0 // state1

act1 // state2
act2 // state3 · · ·

or more formally as a sequence of triples of the form 〈statei, acti, statei+1〉, where states are
a mapping from variables to values, and actions are state-changing operations (i.e. program
statements). The details of representing an action are not important here, although some form of
concrete or abstract syntax suffices. The representation is a system-, language- and application-
specific decision. The operators nil, written [], and append(S, a), written S :: a for sequence S
and element a, construct sequences, including behaviors. The selectors on behaviors are

preState(〈state0, act, state1〉) = state0

action(〈state0, act, state1〉) = act
postState(〈state0, act, state1〉) = state1

If x is a state variable and s a state, then s.x denotes the value of x in s. Further, in the context
of the action triple 〈state0, act, state1〉, x will refer to the value of x in the preState, state0.x,
and x′ refers to the value in the postState, state1.x.

Two higher-order operators will be useful:

image: Written f ? S, computes the image of f over a sequence S:

f ? nil = nil
f ? (S :: a) = (f ? S) :: f(a)

filter: Written p . S, computes the subsequence of S comprised of elements that satisfy p:

p . nil = nil
p . (S :: a) = if p(a) then (p . S) :: a else p . S

We specify actions in a pre- and post-condition style. For example, the specification

assume: x ≥ 0
achieve: x′ ∗ x′ = x ∧ x′ ≥ 0

is satisfied by the action x :=
√

x.

This paper presents its results in a generic imperative language framework, even though most
AOP approaches target object-oriented languages and even though some of the details of static
analysis and code generation are necessarily language-specific. The specifications that we work
with are sufficiently abstract that we believe it will not be difficult to generate code in most
current programming and modeling languages.
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3 An Example

A simple example serves to introduce the technique: maintaining an error log for a system.
More precisely, whenever an exception handler is invoked, we require that an entry be made in
an error log.

The overall approach is to specify an invariant that gives a declarative semantical definition
of our requirement, and then to generate aspectual code from it. First, what does the error
log mean as a data structure? Informally, the idea is that at any point in time t, the error
log records a list of all exceptions that have been raised by the program up to time t. In or-
der to formalize this we need some way to discuss the history of the program at any point in time.

Maintaining a history variable

The execution history of the program can be reified into the state by means of a virtual variable
(also called a shadow or ghost variable). That is, imagine that with each action taken by the
program there is a concurrent action to update a variable called hist that records the history up
until the current state.

s0
act0

hist := hist::〈s0,act0,s1〉
// s1

act1

hist := hist::〈s1,act1,s2〉
// s2

act2

hist := hist::〈s2,act2,s3〉
// s3 · · ·

Obviously this would be an expensive variable, but it is only needed for specification purposes,
and usually only a residue of it will appear in the executable code.

Invariant

Given the history variable, action?hist represents the sequence of actions so far in the execution
history. To express the invariant, we need a test for whether an action represents an error; i.e.
whether it represents the invocation of an exception handler. Let error?(act) be true when act
is an exception, so error? . action ? hist is the sequence of error actions so far in the execution
history.

We can now represent the semantics of the error log:

Invariant: errlog = error? . action ? hist

i.e. in any state, the value of the variable errlog is the sequence of error actions that have
occurred previously. The idea is that the programmer asserts this formula as a requirement on
the code. It is a cross-cutting requirement since exceptions can be raised anywhere in the code,
regardless of its structure.

Establishing the Invariant

In order to correctly realize the invariant in the target code, we proceed by induction. The
first step is to generate code to establish the invariant initially, by satisfying the following
specification:
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assume: hist = []
achieve: errlog = error? . action ? hist

The postcondition can be simplified as follows:

errlog = error? . action ? hist

≡ {using the definition of hist}

errlog = error? . action ? []

≡ {simplifying }

errlog = []

which is satisfied by the initialization code

errlog := [].

More generally, when the invariant contains reified variables, the following scheme specifies code
for establishing the invariant I(x):

assume : hist = []
∧ . . . initial values of other reified variables . . .
∧ . . . base code preconditions . . .

achieve : I(x)

In Section 4.3, we give an example that does not mention reified variables. It uses a slightly
different scheme for specifying the establishment of the invariant.

Specifying Disruptive Code and Deriving the Pointcut

To proceed with the inductive argument, we must maintain the invariant for all actions of the
target code. Since most actions of the target code have no effect on the invariant, it is useful
to focus on those actions that might disrupt the invariant. We will then generate code for
maintaining the invariant in parallel with the disruptive action.

The set of all code points that might disrupt the invariant corresponds to the AspectJ concept
of code points that satisfy a pointcut. The maintenance code that we generate for each such
disruptive code point corresponds to a point-specific instance of the advice of an aspect.

An exact characterization of the disruption points is given by

I(x) 6= I(x′) (1)

That is, any action that satisfies (1) as a postcondition is a disruption point. More generally,
any action that satisfies a necessary condition on (1) is a potential disruption point.

In our example, we set up the following inference task:
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assume: errlog = error? . action ? hist
∧ hist′ = hist :: 〈 , act, 〉
∧ errlog′ = errlog

simplify: (errlog = error? . action ? hist) 6= (errlog′ = error? . action ? hist′)

In words, we assume that the invariant holds before an arbitrary action act, and that the hist
variable is updated in parallel with act. Moreover, we add in a frame axiom that asserts that
act does not change errlog since it is a fresh variable introduced by the invariant.

We calculate a pointcut specification as follows:

(errlog = error? . action ? hist) 6= (errlog′ = error? . action ? hist′)

≡ { using the frame axiom and simplifying}

error? . action ? hist 6= error? . action ? hist′

≡ { using the definition of hist’}

error? . action ? hist 6= error? . action ? (hist :: 〈 , act, 〉)

≡ { distributing action? over :: }

error? . action ? hist 6= error? . ((action ? hist) :: act)

≡ { distributing error? . over :: }

error? . action ? hist 6= (if ¬error?(act)
then error? . action ? hist
else (error? . action ? hist) :: act

≡ { distributing the conditional outward }

if ¬error?(act)
then error? . action ? hist 6= error? . action ? hist
else error? . action ? hist 6= (error? . action ? hist) :: act

≡ { simplifying }

if ¬error?(act)
then false
else true

≡ { simplifying }

error?(act).

A static analyzer would scan the code (i.e. the abstract syntax representation of the code)
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looking for all actions that satisfy this derived pointcut.

More generally, the task to infer a pointcut specification is given by an instance of the following
scheme:

assume: I(x)
∧ hist′ = hist :: 〈 , act, 〉
∧ ... updates of other reified variables ...
∧ ... relevant frame conditions ...

simplify: I(x) 6= I(x′)

The simplified result will typically contain a mixture of terms, some of which can be evaluated
statically (i.e. on the abstract syntax of the source code) and some of which must be evaluated
dynamically (i.e. on the runtime data). Since we only need a necessary condition on (1), we
can weaken the derived pointcut specification by discarding those subformulas that can only
be evaluated dynamically. This weakening process means that the pointcut specification may
allow false positives, but, as will be seen in later examples, the generated maintenance code
incorporates the relevant semantics of the discarded dynamic tests.

Specification and Derivation of Maintenance Code

To complete the induction, we must find each potentially disruptive action (using the derived
pointcut specification) and then generate maintenance code to reestablish the invariant in par-
allel with it. Suppose that act is an action such that error?(act). In order to preserve the
invariant, we need to perform a maintenance action that satisfies

assume: errlog = error? . action ? hist
∧ error?(act)
∧ hist′ = hist :: 〈 , act, 〉

achieve: errlog′ = error? . action ? hist′

The postcondition can be simplified as follows:

errlog′ = error? . action ? hist′

≡ { using the definition of hist}

errlog′ = error? . action ? (hist :: 〈 , act, 〉)

≡ { distributing action? over :: }

errlog′ = error? . ((action ? hist) :: act)

≡ { distributing error? . over ::, using assumption that error?(act) }

errlog′ = (error? . action ? hist) :: act
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≡ { using the precondition/invariant inductively }

errlog′ = errlog :: act

which is satisfied by the simple update

errlog := errlog :: act.

This maintenance action is to be performed in parallel with act.

More generally, suppose that static analysis has identified an action act as potentially disruptive
of invariant I(x). If act satisfies the specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code maint can be specified as

assume : P (x) ∧ I(x)
∧ hist′ = hist :: 〈s0, act, s1〉
∧ ...updates to other reified vars...

achieve : Q(x, x′) ∧ I(x′)

In this schematic specification we compose the aspect with the base code by means of a con-
junction. Note that this specification preserves the effect of act while additionally reestablishing
the invariant I. If it is inconsistent to achieve both, then the specification is unrealizable.

The generated code for maint may take the form of a parallel composition

act||update

of the actions act and update, or it may take a sequential form. Besides conceptual clarity, an
advantage to treating the maintenance action as parallel to the disruptive action is that the
invariant is always observed to hold in all states. Most work on programming with invariants
(e.g. [7, 8]), as well as AspectJ, sequentializes the maintenance action. If the maintenance
action is sequentialized, say for purposes of optimization, the generator needs to take care that
no external process that depends on the invariant could observe the state between the two
actions and notice that the invariant is (temporarily) violated. One technique for assuring that
no observation of the intermittent violation can be made is to lock the relevant variables while
the maintenance is being performed.
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4 More Examples

4.1 Procedure Calls and Dynamic Context

This exercise treats procedure calls and the reification of dynamic procedure call context.

Problem: Maintain a global that flags when a Sort procedure is executing.

Reification: This problem requires that we reify and maintain the call stack, analogously to the
way that history is maintained in hist. To reify the call stack, it is necessary to elaborate

the model of behavior presented in Section 2. A call to procedure P , s0
x:=P (x) // s1 ,

can be elaborated to a sub-behavior

s0
eval args // s00

enter P

parms:=argvals
// s01

execute P // s02
exit P

x:=result
// s1

With this elaboration, it is straightforward to maintain a call stack variable cs with oper-
ators InitStack, Push, and Pop:

s0
eval args// s00

enter P

cs:=Push(cs,〈P,argvals〉)
// s01

execute P // s02
exit P

cs:=Pop(cs)
// s1

Procedural languages abstract away these details so a static analyzer must take this finer-
grain model into account when appropriate.

Domain Theory: The boolean variable sorting? is to be true exactly when a call to Sort is
on the call stack cs. In the invariant, we use a predicate pcall?(act, f) that is true exactly
when action act is a procedure call to f .

Invariant: sorting? = ∃(call)(call ∈ cs ∧ pcall?(call, Sort))

Incrementally maintaining a boolean value is difficult, and a standard technique is to trans-
form a quantified expression into an equivalent set-theoretic form that is easier to maintain
[5]:

sorting? = size({call | call ∈ cs ∧ pcall?(call, Sort)}) > 0

and introduce a second invariant:

sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

By maintaining sortcnt, we can replace sorting? by sortcnt > 0 everywhere it occurs.

Establishing the invariant: Code to establish the sortcnt invariant is specified as
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assume: hist = [] ∧ cs = initStack()
achieve: sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

The postcondition can be simplified as follows:

sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

≡ {using the assumption about cs}

sortcnt = size({call | call ∈ initStack() ∧ pcall?(call, Sort)})

≡ {simplifying }

sortcnt = 0

which is satisfied by the initialization code

sortcnt := 0.

Disruptive Actions: The following task to infer a pointcut specification assumes a frame
axiom that characterizes the effect of an arbitrary base code action on the call stack
variable – it either effects a push, a pop, or has no effect.

assume: sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})
∧ hist′ = hist :: 〈 , act, 〉
∧ (cs′ = push(cs, 〈P, argvals〉)

∨ (cs′ = pop(cs) ∧ top(cs) = 〈P, argvals〉)
∨ cs′ = cs)

∧ sortcnt′ = sortcnt
simplify: (sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)}))

6= (sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)}))

We calculate

(sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)}))
6= (sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)}))

≡ {using the frame axiom for sortcnt and simplifying}

size({call | call ∈ cs ∧ pcall?(call, Sort)}) 6= size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

Using the disjunctive frame axiom on the call stack variable, we can proceed by cases:

≡ { Case 1: assume cs′ = push(cs, 〈P, argvals〉) }

size({call | call ∈ cs ∧ pcall?(call, Sort)})
6= size({call | call ∈ push(cs, 〈P, argvals〉) ∧ pcall?(call, Sort)})
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≡ { eliding the left-hand side and distributing call stack membership over push }

... 6= size({call | (call ∈ cs ∨ call = 〈P, argvals〉) ∧ pcall?(call, Sort)})

≡ { distributing }

... 6= size({call | call ∈ cs ∧ pcall?(call, Sort)})
+ size({call | call = 〈P, argvals〉 ∧ pcall?(call, Sort)})

≡ { simplifying }

... 6= size({call | call ∈ cs ∧ pcall?(call, Sort)})
+ if pcall?(〈P, argvals〉, Sort) then 1 else 0

≡ { distributing the conditional outwards }

if pcall?(〈P, argvals〉, Sort) then true else false

≡ { simplifying }

pcall?(〈P, argvals〉, Sort).

The derived pointcut specification in this case is

cs′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉, Sort).

Continuing with the case analysis, we calculate

≡ { Case 2: assume (cs′ = pop(cs) ∧ top(cs) = 〈P, argvals〉)
which implies (cs = push(cs′, 〈P, argvals〉) }

size({call | call ∈ push(cs′, 〈P, argvals〉) ∧ pcall?(call, Sort)})
6= size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

≡ { using similar reasoning to previous case}

pcall?(〈P, argvals〉, Sort).

The derived semantic pointcut in this case is

cs′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉, Sort).

And the final step in the case analysis is

≡ { Case 3: assume cs′ = cs }

size({call | call ∈ cs ∧ pcall?(call, Sort)})
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6= size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

≡ { using the assumption, and simplifying}

false.

Combining the case assumptions with their derived pointcut specifications, we obtain

cs′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉, Sort)
∨

cs′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉, Sort)
∨

cs′ = cs ∧ false.

or simply

cs′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉, Sort)
∨

cs′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉, Sort).

which specifies entrances and exits of calls to Sort respectively.

Specification and derivation of maintenance code: The pointcut specification gives rise
to two cases: Push and Pop operations. For a push operation of the form

cs := Push(cs, 〈Sort, 〉)

the maintenance specification is

assume: sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})
achieve: cs′ = push(cs, 〈Sort, argvals〉)

∧ sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

which an easy calculation shows to be satisfied by the concurrent assignment

cs := Push(cs, 〈Sort, argvals〉) || sortcnt := sortcnt + 1

on entrance to procedure Sort.

For a pop operation of the form cs := Pop(cs) where top(cs) = 〈Sort, 〉, the maintenance
specification is

assume: cs 6= initStack()
∧ top(cs) = 〈Sort, 〉
∧ sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

achieve: cs′ = Pop(cs)
∧ sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

which is satisfied by the concurrent assignment

cs := Pop(cs) || sortcnt := sortcnt− 1

The concurrent formulation of the maintenance code can be implemented by sequentializing
the sortcnt updates into the body of the procedure, just after entry and just before return.
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4.2 Counting Swaps in a Sort Routine

This problem builds on the previous problem and illustrates the execution of advice within
dynamic contexts, a key feature of AspectJ.

Problem: Count the number of calls to a swap procedure that are invoked during the execution
of a sort procedure Sort.

Domain Theory: As in the previous problem, let cs be the reified call stack, with operators
InitStack, Push, and Pop.

Invariant: The invariant uses a sequence comprehension notation, so that swpcnt is the length
of a sequence of actions satisfying various properties. Also, recall that the notation s0.cs
refers to the value of variable cs in state s0.

swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ ∃(pc)(pc ∈ st0.cs ∧ pcall?(pc, Sort))])

or, more simply, using the invariant from the previous example

swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0 ])

Establishing the invariant: Code to establish the sortcnt invariant is specified as

assume: hist = [] ∧ cs = initStack()
achieve: swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0 ]).

The postcondition can be simplified as follows:

swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ . . .])

≡ { using the assumption about hist }

swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ [] ∧ . . .])

≡ { simplifying }

swpcnt = 0

which is satisfied by the initialization code

swpcnt := 0.

Disruptive Actions: The inference task to infer a pointcut is specified as follows
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assume: swpcnt = length([ act | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0])

∧ hist′ = hist :: 〈s0, act, s1〉
∧ swpcnt′ = swpcnt

simplify: (swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

6= (swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist′ ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

We calculate a pointcut specification as follows:

(swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

6= (swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist′ ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

≡ { using the frame axiom, and simplifying }

length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
6= length([ act0 | 〈st0, act0, st1〉 ∈ hist′ ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { eliding the left hand side and using the assumption about hist’ }

. . . 6= length([ act0 | 〈st0, act0, st1〉 ∈ hist :: 〈s0, act, s1〉 ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0])

≡ { distributing }

. . . 6= length([ act0 | (〈st0, act0, st1〉 ∈ hist ∨ 〈st0, act0, st1〉 = 〈s0, act, s1〉)
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { distributing the disjunction outwards }

. . . 6= length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0])

+ length([ act0 | 〈st0, act0, st1〉 = 〈s0, act, s1〉
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { distributing the equality in the second addend }

. . . 6= length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
+ length([ act | pcall?(act, swap) ∧ s0.sortcnt > 0])

≡ { simplifying }

. . . 6= length([ act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
+ if pcall?(act, swap) ∧ s0.sortcnt > 0 then 1 else 0
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≡ { distributing the conditional outwards and simplifying }

if pcall?(act, swap) ∧ s0.sortcnt > 0 then true else false

≡ { simplifying }

pcall?(act, swap) ∧ s0.sortcnt > 0.

The derived pointcut specification is

pcall?(act, swap) ∧ sortcnt > 0.

Note that the second conjunct is not statically determinable in general, so we weaken
the pointcut to pcall?(act, swap) (recall that we only need a necessary condition on the
disruption of the invariant). When we derive the maintenance code below, the extra
condition sortcnt > 0 will show up as a runtime test.

Specification and derivation of maintenance code: Any call to swap is a potentially dis-
ruptive action. The following specification jointly achieves the effect of act and maintains
the invariant:

assume: precondition(act)
∧ swpcnt = length([ act0 | 〈st0, act0, st1〉 ∈ hist

∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
∧ hist′ = hist :: 〈s0, act, s1〉
∧ pcall?(act, swap)

achieve: postcondition(act)
∧ swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist′

∧ pcall?(act0, swap) ∧ s0.sortcnt > 0])

The second conjunct of the postcondition can be simplified as follows:

swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist′

∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { using the assumption about hist’ }

swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist :: 〈s0, act, s1〉
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { distributing ∈ over :: }

swpcnt′ = length([ act0 | (〈st0, act0, st1〉 ∈ hist ∨ 〈st0, act0, st1〉 = 〈s0, act, s1〉)
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { driving ∨ outward through ∧, sequence-former, and length }

swpcnt′ = length([ act0 | 〈st0, act0, st1〉 ∈ hist
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∧ pcall?(act0, swap) ∧ ts0.sortcnt > 0 ])
+ length([ act0 | 〈st0, act0, st1〉 = 〈s0, act, s1〉

∧ pcall?(act0, swap) ∧ st0.sortcnt > 0 ])

≡ { using assumption about swpcnt, distribute equality in sequence-former }

swpcnt′ = swpcnt + length([ act | pcall?(act, swap) ∧ s0.sortcnt > 0 ])

≡ { using assumption about act, and simplifying}

swpcnt′ = swpcnt + length([ act | s0.sortcnt > 0 ])

≡ { using independence of act from the sequence-former predicate }

swpcnt′ = swpcnt + (if s0.sortcnt > 0 then length([ act | true])
else length([ act | false])

≡ { simplifying }

swpcnt′ = swpcnt + (if st0.sortcnt > 0 then 1 else 0)
≡ { pulling the conditional outward and simplifying }

if st0.sortcnt > 0 then swpcnt′ = swpcnt + 1 else swpcnt′ = swpcnt.

Consequently, the maintenance specification is satisfied by the parallel statement

act || if sortcnt > 0 then swpcnt := swpcnt + 1.

Note that a residue of the invariant appears in the maintenance code. The test sortcnt > 0
could not be decided statically, so it falls through as a runtime test.

4.3 Maintaining the Length of a List

This example does not require the reification of an extra-computational entity. It is presented as
an example of our technique that cannot currently be treated in AspectJ because it is handled
at the assignment level, rather than at the method-call level.

Problem: Maintain the length of a list `.

Domain Theory: The list data type includes constructors (nil, append, concat), selectors
(first, rest), deleteElt, as well as a length function and other operators.

Invariant: llength = length(`)
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Disruptive Actions: The derivation of the pointcut specification results in ` 6= `′; i.e. any
action that changes ` may disrupt the invariant. Static analysis looks for any action that
changes `, such as assignments to `.

Establishing the invariant: The invariants that were treated in previous examples all refered
to reified variables, and consequently, the code to establish them belonged to the outer-
most program initialization phase. This example refers only to program variables (` in
particular), so its initialization code belongs to the scope of those variables. For this ex-
ample, with one dependent variable, it is easy for static analysis to locate its initialization
action, say linit. Then the code to establishment of the invariant initially is specified as

assume: true
achieve: llength = length(`) ∧ linit

That is, we wish to establish the invariant concurrently with the initialization of its depen-
dent variable. To be concrete, if the static analyzer finds the initialization code ` := nil
then the appropriate instance of the above scheme results in the concurrent code

` := nil || llength := 0

which establishes the invariant.

Specification and Derivation of Maintenance Code: For each potentially disruptive ac-
tion act, we generate a specification for an action that jointly achieves the effect of act and
maintains the invariant. For example, suppose that the pointcut specification matches an
assignment

` := ` :: elt

an action act that appends an element onto ` results in the maintenance specification

assume: llength = length(`)
achieve: `′ = ` :: elt ∧ llength′ = length(`′)

from which one can easily calculate the satisfying concurrent assignment

` := ` :: elt || llength := llength + 1

For other actions that change `, we create the corresponding maintenance code specifi-
cations, and then generate code. Note that each change to ` can result in code that is
completely different from other maintenance actions for `.

4.4 Model-View Consistency Maintenance

The classic model-view problem is to maintain consistency between a data model and various
graphical views when the program and/or user can change any of them. That is, whenever the
program changes the data model, the graphical views should be updated to maintain consistency,
and conversely, if the user changes one graphical view interactively, then the data model and
the other views must be updated to reflect the change.
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Note that this example has no newly introduced variables as in previous examples. The nature
of the problem is to enforce a new constraint on existing variables.

Problem: Maintain consistency between a data model md : Model and a graphical view
vw : V iew. Generalizing the example to multiple models with multiple views is discussed
at the end of this section.

Domain Theory: Assume that the data content of md : Model is given by an attribute
mV alue : Model → V alue for some type V alue, and, similarly, the data content of a
view is given by vV alue : V iew → V alue for V iew. Although equality is used between
these values to express consistency, in practical situations, a more complex predicate is
needed.

Invariant: vw.vV alue = md.mV alue

Disruptive Actions: We assume that the only changes that can be made to a model are via
a call to its update method; similarly for views. Formally, the third assumption below is a
frame axiom asserting that a system action either (i) leaves a model unchanged, or (ii) is a
call to the model update method. The fourth assumption states the analogous constraint
on views.

The task to infer a pointcut is specified as follows

assume: s0.vw.vV alue = s0.md.mV alue
∧ hist′ = hist :: 〈s0, act, s1〉
∧ (s0.md = s1.md ∨ pcall?(act, md.update))
∧ (s0.vw = s1.vw ∨ pcall?(act, vw.update))

simplify: (s0.vw.vV alue = s0.md.mV alue) 6= (s1.vw.vV alue = s1.md.mV alue)

We calculate a pointcut specification as follows:

(s0.vw.vV alue = s0.md.mV alue) 6= (s1.vw.vV alue = s1.md.mV alue)

≡ { using the assumption that the LHS holds and simplifying}

s1.vw.vV alue 6= s1.md.mV alue.

Using the disjunctive frame axiom on models, we can proceed by cases:

≡ { Case 1: assume s0.md = s1.md }

s1.vw.vV alue 6= s0.md.mV alue

≡ { using the assumption that the invariant holds }
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s1.vw.vV alue 6= s0.vw.mV alue.

Now, using the disjunctive frame axioms on views, we proceed by cases:

≡ { Case 1.1: assume s0.vw = s1.vw }

false.

≡ { Case 1.2: assume pcall?(act, vw.update) }

s1.vw.vV alue 6= s0.vw.mV alue.

Finally, popping up a level and proceeding with the case analysis:

≡ { Case 2: assume pcall?(act, md.update) }

s1.vw.vV alue 6= s1.md.mV alue.

Combining the case assumptions with their derived pointcut specifications, we obtain

s1.vw.vV alue 6= s1.md.mV alue ∧ pcall?(act, md.update)
∨

s1.vw.vV alue 6= s0.vw.mV alue ∧ pcall?(act, vw.update)

which specifies calls to update either the model or the view.

Specification and derivation of maintenance code: If action act has the form
md.update(newval), then we generate following the maintenance specification

assume: s0.vw.vV alue = s0.md.mV alue
achieve: s1.vw.vV alue = s1.md.mV alue

∧ s1.md.mV alue = newval

which is satisfied by the concurrent command

md.update(newval) || vw.update(newval)

The same code is derived when action act has the form vw.update(newval).

In general, one would like to maintain consistency between a dynamic collection of data models
and their corresponding views. To specify this would require quantifying over all currently
allocated models and views, which in turn requires reifying the heap. It also requires taking into
account the methods for creating, destroying, and associating models and views.
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5 Remarks

This work may develop in a number of directions, some of which are discussed below.

• Implementation – We anticipate implementing the techniques of this paper in our be-
havioral extension [9] of the Specware system [10]. The inference tasks in the examples
are comparable in difficulty to those that were performed routinely and automatically in
KIDS [11]. However, automated deduction requires the presence of an adequate inference-
oriented theory of the language, data types, and application domain. As can be seen from
the examples, most of the theorems needed are in the form of distributivity laws.

In general, the problem of synthesizing code from pre/post-conditions is not decidable.
However, two factors help to achieve tractability. First, note that the synthesis problem
here is highly structured and incremental in nature. The goal is to reestablish an invariant
that has just been perturbed by a given action. Second, synthesis can be made tractable by
suitable restrictions on the language/logic employed. For example, in Paige’s RAPT sys-
tem [5], invariants and disruptive actions were restricted to finite-set-theoretic operations
from the SETL language, and the corresponding maintenance code could be generated by
table lookup.

• Granularity of Maintenance Code – It may be convenient to treat a code block or a proce-
dure/method as a single action for purposes of invariant maintenance. The main issue is
that no (external) process that depends on the invariant could observe a state in which the
invariant is violated. This notion suggests that static analysis could be used to check both
(i) potential disruption points of the invariant, and (ii) the largest enclosing scope of de-
pendent variables that is unobservable externally. An advantage of using a larger grain for
maintenance is the performance advantage of bundling many changes at once, rather than
eagerly updating at every dependent-variable-change. This is particularly advantageous
when the update is relatively expensive.

• Constraint Maintenance: Maximization versus Invariance – Sometimes a cross-cutting
feature may not have the form of an invariant for practical reasons. Consider, for example,
the quality of service offered by a wireless communications substrate. Ideally, full capacity
service is provided invariantly. However, physical devices are inherently more or less
unreliable. There are at least two characterizations of constraint maintenance that make
sense in this situation:

1. Maximize the uptime of the service – That is, maximize the amount of time that
a prescribed level of service is provided. Design-time maintenance might involve
composing a fault-adaptive scheme to improve uptime.

2. Maximize the provided bandwidth– That is, continually make adjustments that pro-
vide maximal bandwidth given the circumstances.

• Enforcing Behavioral Policies – This paper focuses on cross-cutting concerns that can be
specified as invariants. Behavioral invariants can be equivalently expressed as single-node
automata with an axiom at the node. It is natural to consider cross-cutting concerns that
are specified by more complex automata and their corresponding temporal logic formulas.
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As mentioned earlier, some security policies disallow certain behavior patterns, as opposed
to individual run-time events (see for example [12]). It is natural to consider generalizing
the techniques of this paper to classes of policy automata. In recent work we developed a
behavioral notion of pointcut, using automata to specify behavioral context for the appli-
cation of advice [13]. Independently, several other research groups have been developing
similar concepts [14, 15, 16, 17].

• Maintaining Interacting Constraints – Many application areas, including active databases
with consistency constraints and combinatorial optimization problems with constraint
propagation, have the characteristic that a single change (x := e) can stimulate exten-
sive iteration until quiescence (a fixpoint) is reached. In terms of this paper, several
invariants may have overlapping dependent variables and consequently their maintenance
can interfere with each other’s truth. That is, a change to maintain one constraint may
cause the violation of another.

A sufficient condition that maintaining such a set of constraints leads to a fixpoint
may be found in [18]. Constraints over a finite semilattice that are definite (a generalized
Horn-clause form x w A(x) where x is a variable over the semilattice and A is monotone)
can be solved in linear time. Using essentially the same theory, in [6, 19] we describe the
process of automatically generating a customized constraint solver for definite constraints.
The resulting solving process is an iterative refinement of variable values in the semilattice.

This context leads to a generalization of the formalism of this paper when (1) changes
to certain variables can be treated as decreasing in a semilattice, and (2) constraints are
definite. Then, a disruptive action (x := e) has postcondition (x′ w e) rather than the
stronger (x′ = e), and all constraint maintenance is downward in the semilattice, until a
fixpoint is reached.

In a similar spirit, JMangler [20] implements a capability to iterate class transformations
at class load-time when they have mutual dependencies. Under conditions on the trans-
formations that satisfy the conditions above, the iteration converges to a fixpoint and the
result guarantees that all transformations are fully applied.

• Comparison with AspectJ – We conjecture that many aspects in AspectJ can be expressed
as invariants, and that their effect can be achieved by means of the general process of
this paper. However, the use of the around advice in AspectJ allows the replacement of
a method call by arbitrary code, changing its semantics (for example, consider the aspect
that replaces every call to method m by advice that throws an exception). Our approach
is restricted to maintenance that refines existing actions, so it is not complete with respect
to AspectJ. On the other hand several of the examples in this paper cannot be carried out
in AspectJ, so the two are expressively incomparable.

In the long run, it may be that only semantics-preserving aspects will be embraced in
practice. If aspects are allowed to modify the behavior of code, then locality of program
semantics is destroyed. This undercuts the potential for improved understandability of
code due to the increased modularity that is the hallmark of aspects.
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6 Recapitulation and Comparison with Related Work

We now summarize how the invariant maintenance approach treats the issues raised in the
Introduction.

1. What is the intention of an aspect? – The intention of an aspect is expressed by an
invariant property of state. The invariant can be thought of as a formal specification of
an aspect.

2. Is the pointcut complete? – Does a pointcut express exactly the set of the intended runtime
events? The invariant maintenance approach characterizes the joinpoints semantically, as
those actions that could possibly disrupt the invariant. It thus does not require adherence
to naming conventions. The pointcut is derived as a necessary condition on the violation of
the invariant by a system action. Static analysis is then guaranteed to identify a superset
of code locations that, at runtime, give rise to a violation of the invariant.

The derived pointcut is a specification of an AspectJ-style pointcut. To show the im-
plementation relation between them, one would need to link the method calls and other
joinpoints of the AspectJ pointcut to their semantic description (via pre/post-conditions)
to show that they satisfy the derived pointcut specification.

3. Is the advice correct? – Does an aspect correctly implement its intention? For each po-
tentially disruptive action, our approach generates an action-specific specification, which,
if realized by synthesis, maintains the invariant while still accomplishing the action. The
overall argument that the invariant is enforced in the target system is essentially by in-
duction. We establish the invariant initially, and then use static analysis to ensure that
the invariant is maintained inductively. The invariant maintenance approach achieves cor-
rectness by construction. Other approaches to correctness of aspects and to woven code
include verification through model checking [21], and runtime checking of contracts [22].

The invariant maintenance approach also provides novel contributions to the following issues.

1. Context-Specialized Advice – The advice of an AspectJ aspect may need to embody many
case distinctions that cater for the various contexts that arise at the joinpoints, giving rise
to inefficiency and complexity. It would be desirable if the aspect weaver could tailor the
advice body to the specific context in which it will execute.

In AspectJ, and most extensions of it, the advice body is a code template that is instanti-
ated with expressions from the context of a pointcut, and is parametric on runtime values.
One can increase the range of context and parametricity, but the advice is still a code
template. There have been a variety of extensions to AspectJ that aim to increase the
range of context that can be captured at joinpoints. For example, LogicAJ [23] and Sally
[24] use logical metavariables to supplement the pattern constructs of AspectJ. Both also
allow patterns in pointcut and advice definitions where AspectJ only allows constants (e.g.
metavariables that match types). This mechanism supports the binding of more pieces of
context (e.g. types) than AspectJ allows and thus advice bodies can be more context-
sensitive. The use of metavariables also adds consistency constraints in the matching
process.
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The invariant maintenance approach is fully context-sensitive in the sense that mainte-
nance code/advice is unique to each code location satisfying the pointcut specification.
It can be completely different in different contexts, not just different instances of a fixed
template. The list example in Section 4.4 illustrates this. To obtain the same effect in
AspectJ or LogicAJ would require either (1) a single disjunction pointcut together with
a big context switch in the advice, or (2) multiple aspects, one for each context together
with the appropriate advice template for that context. The invariant approach neatly
specifies what to do in an unbounded number of contexts. Of course it only specifies what
to do in each context – the prescription of what to do must be achieved by synthesis. The
difference is generation of arbitrary code per disruptive action versus multiple instances of
a single advice template.

The use of reification is a potentially unbounded technique for bringing context into play.
In this paper we have mentioned reification of history, the call stack, and the heap. There
are many other possibilities. For example, reifying instruction timing information would
allow one to maintain real-time properties of the base code.

2. Aspect Interference – Aspects may interfere with one another – since the order in which
they are applied makes a semantic difference, the burden is on the AspectJ programmer
to order them and resolve interferences. Interference is a fundamental problem of aspect
composition.

The invariant maintenance approach brings two extra degrees of freedom in treating inter-
ference relative to programmatic aspects: semantic abstraction and inherent concurrency.
Since the maintenance specification is expressed in terms of pre/post-conditions and the
invariants to be maintained, the synthesizer has maximal freedom to design a mutually
satisfactory behavior. The resulting generated code does not need to be the same as the
default implementation of the aspects individually. Also, the maintenance code and the
system code are conceptually concurrent. To render them into conventional programming
languages, it is necessary to sequentialize them, which introduces the possibility for in-
terference. Thus the interference detection/resolution tools that have been explored for
dependency analysis and instruction ordering are needed.

On the other hand, in some situations the system code and the aspects simply conflict. In
the invariant maintenance approach this is signaled by the inability to synthesize mainte-
nance code at a pointcut location. Depending on the techniques used, a failed synthesis
process may be able to return a counterexample that can be used by the developers to
pinpoint the semantic discrepancy between their invariants and the system code.

Several projects have developed analysis tools for detecting aspect interference and infer-
ring safe orderings; e.g. LogicAJ [23]. Reflex [25] provides programmatic mechanisms for
detecting potential interference and prescribing how they should compose.

3. Evolution – Evolution of the base program may require extending the AspectJ pointcut
and advice description to reference any new class members (which requires an understand-
ing of the modified set of runtime events being targeted, and what code to execute in each
specific context of occurrence). In our approach, if the invariant remains unchanged, then
the derived pointcut specification doesn’t change. Consequently, if the base code changes,
then the static analyzer can simply run the pointcut specification over the new base code.
Ideally, this can be done incrementally if the structure of the changes have been recorded.
In other words, an invariant will tend to be more stable under base code changes than an
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aspect that implements it.

The generative techniques in this paper derive from transformational work on incremental com-
putation, especially Paige’s Finite Differencing transformation [5, 7]. Finite Differencing, as
implemented in the RAPTS system, automatically maintains invariants of the form c = f(x)
where c is a fresh variable, x is a vector of program variables, and f is a composite of set-
theoretic programming language operations. Maintenance code is generated by table lookup. In
the KIDS system [11], we extended Finite Differencing by (1) allowing the maintenance of both
language- and user-defined terms, and (2) using automatic simplifiers to calculate maintenance
code at design-time. The functional language setting in KIDS naturally reveals the concurrency
of disruptive code and maintenance updates.

As in Finite Differencing, other approaches to programming with invariants (e.g. [8]) work exclu-
sively with program variables. This paper introduces the notion of reifying extra-computational
information, enabling the expression of system-level cross-cutting features as invariants.

A common use for AspectJ is to enforce preconditions, postconditions, and invariants (e.g. [4]).
The intention is to insert code that dynamically checks those conditions and flags violations. In
contrast, this paper focuses on adding code to enforce invariants when they would otherwise be
violated. The resulting code is guaranteed to satisfy the invariant even though the base code
may not.

7 Concluding Remarks

Aspect-Oriented Software Development aims to support a more modular approach to program-
ming, with a special focus on cross-cutting concerns. This paper explores techniques for speci-
fying cross-cutting concerns as invariants, and generating the code necessary to maintain them.
The reification of extra-computational entities helps in expressing many cross-cutting concerns.

Our invariants provide an abstract yet precise, semantic characterization of cross-cutting con-
cerns. The abstraction should aid in clarifying the intention of a concern and promote stability
under evolution. The precise semantics means that the generation of maintenance code can be
performed mechanically, with assurance that the result meets intentions.

The generally accepted semantics of AspectJ is based on call-stack reification [26], suggesting
that AspectJ cross-cutting concerns can be characterized as actions to take about method calls
in a specified dynamic context. Our approach lifts to a more general perspective: what kinds
of cross-cutting concerns can be addressed when arbitrary extra-computational information is
reified.

This work advocates a design process that focuses on generating a normal-case base program
from high-level models or specifications, followed by the generation and insertion of extensions to
implement various cross-cutting concerns. Code structure simplifies to a clean natural decompo-
sition of the basic business logic together with system-level invariants that specify cross-cutting
concerns. The improved modularity should help to lower the cost of development and evolution
and provide increased assurance.
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