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OutlineOutline

• Conceptual architecture for dynamic sensor networks
• Scheduling in the ANTs challenge problem

– Challenge problem models
– An iterative repair scheduler based on conflict detection
– Schedule precompilation through regimes

• Issues
– Addressing real-time constraints
– Addressing stability

• Conclusion
– Summary and plans
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A Conceptual Architecture forA Conceptual Architecture for
Dynamic Sensor NetworksDynamic Sensor Networks
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IntroductionIntroduction

• Networks of sensors and processors
– monitoring ‘real world’

• Develop an abstract architecture
– for distributed, real-time resource allocation
– model specific components to support analysis

• Support ANTs challenge problem
– common language for participants
– standard definitions
– framework in which projects can position themselves
– not tied to challenge problem
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StatusStatus

• Initial architecture for sensor networks
• Glossary of scheduling terms
• Formal definitions of sorts and operators for scheduling
• Informal classification of scheduling algorithms
• Detailed definitions for challenge problem

• For your reading pleasure:
– an overview of the above items is contained in appendices of 

this presentation
– detailed documents are now available, and more will become 

available, on Kestrel’s web site
http://www.kestrel.edu/HTML/projects/ants
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RequirementsRequirements

• Objectives of a dynamic sensor network:
– Maintain a model of an evolving, real-world environment
– by measuring certain aspects of the environment
– and evaluating the sensor data
– to generate corrections to the model
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Requirements (cont.)Requirements (cont.)

• Requirements define overall functionality of the system
– e.g., probability of detection and false alarm
– e.g., required accuracy of tracks
– e.g., mean time between failures
– e.g., limit on power/energy of EM emissions

• Outside scope of consideration
– considerations for EW analyst/engineer
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Initial ArchitectureInitial Architecture
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Model of the EnvironmentModel of the Environment

• Defines observable properties of the environment
– sensor based
– e.g., EM signal in 1 degree cones

• Defines features of the environment that can be 
inferred from observations
– e.g., targets and their states (position, velocity)

• Associates confidence levels with features and states
– e.g., 95% confident that target lies within certain volume

• Maintains a timed history of observations and features
– e.g., target tracks

• Interpolates/extrapolates features’ states
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Mission ObjectivesMission Objectives

• Define desired properties of features and states
– e.g., confidence level must remain above some level

• Define constraints on how system operates
– e.g., rate at which power consumption is penalized
– e.g., rate at which radio communication is penalized 
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Mission PlannerMission Planner

• Translates mission objectives into mission tasks
– based on the current model of the environment

– e.g., take a reading on sensor A at angles (θ,ϕ) at time T

• In the challenge problem, mission tasks are requests 
from tracking algorithm for further sensor readings
– includes task priorities, dependencies

• Coupling of mission planner with resource manager?
– planner may use information about status of resources

RMMP
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Resource ManagerResource Manager

• Translates mission tasks into resource actions
– resources are sensors, processors, communication, etc.
– schedules the actions

• including auxiliary actions, such as communication

– transmits instructions to resources

• Example:
– sensor A is to emit a beam over some time period
– and communicate results to controller using channel 4

• Resource manager “optimizes performance”
– achieves some mission tasks as well as possible
– reduces resource consumption
– mission objectives define terms for balancing 

achievement against consumption/cost
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Resource NetworkResource Network

• The physical sensors and software interface
• Executes actions generated by resource manager
• Feeds sensor data to data processor
• Feeds status data to resource manager
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Data ProcessorData Processor

• Evaluates sensor data
– measurements are combined with the current model of 

environment

• Computes corrections to current model
– e.g., introduces new targets
– e.g., updates track of existing target

• Data fusion
– data from multiple sensors are combined to produce 

‘best estimate’ of the real world
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Scheduling in theScheduling in the
ANTs Challenge ProblemANTs Challenge Problem
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IntroductionIntroduction

• Input: measurement requests
• Output: schedule of resource actions
• Schedule the actions of the resources to:

– optimize achievement of requested measurements
– reduce usage of consumable resources (energy)
– reduce EM output

• Time scales:
– measurements – order of 1 second
– target observeability – order of 30 seconds
– target predictability – high in initial scenario

• In real life?

– communication?
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StatusStatus

• Have developed formal models for challenge problem
– for tasks, resources, reservations, schedules, 

constraints, metrics

• Have investigated the behavior of a preliminary 
rescheduling algorithm

• Have investigated precompilation of schedules
– for rapid, real-time response
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Challenge Problem Tasks and ResourcesChallenge Problem Tasks and Resources

• Tracking measurement request
– node, beam, time, duration, mode, priority

• Background measurement request
– node, beam, time, duration, mode, priority

• Resources per node
– 3 beams, 1 sampler, 1 transmitter, 1 receiver, 1 power 

supply

• Global resources
– 8 shared communication channels

• Observation: measurement requests uniquely 
determine radar beam
– Should there be flexibility to switch request to different 

node?
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Resources: Beams and SamplersResources: Beams and Samplers

• Three beams per node
– Each beam independently controlled
– 1 second warm-up time
– major power drain

• Single sampler per node
– samples 1 beam at a time

sampler
beam 1

beam 2

beam 3
sampler

sampler

time

one
node
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Resources: Beam and Sampler ConstraintsResources: Beam and Sampler Constraints

• Beam and sampler reservations are exclusive

op precedes?: Reservation, Reservation → Boolean
def precedes?(p,q) = completion-time(p) < start-time(q)
op disjoint?: Reservation, Reservation → Boolean
def disjoint?(p,q) = precedes?(p,q) ∨ precedes?(q,p)

exclusive-beam-reservations: Hard-Constraint
= consecutive(beam-resources, disjoint?)

exclusive-sampler-reservations: Hard-Constraint
= consecutive(sampler-resources, disjoint?)

• Sufficient beam warm-up time
def sufficient-beam-warm-up?(s: schedule) =
∀ (b∈ beam-resources(s), p∈ reservations(s,b))
¬ ∃ (m∈ sampler-resources(s), q∈ reservations(s,m))

b=beam(task(q)) ∧ overlap?(p,q) ∧
start-time(q)<start-time(p)+warm-up(b)

beam-warm-up: Hard-Constraint = global(sufficient-beam-warm-up?)
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Resources: CommunicationResources: Communication

• Communication channels
– exclusive reservations
– finite latency and bandwidth

• Communication task defines
– channel, sender, receiver, message

• Constraint: sufficient communication time reserved

for channel c: processing-time(c,communication-task(c,s,r,m))
= latency(c,s,r) + data-size(m)/bandwidth(c,s,r)

op sufficient-processing-time?: Reservation -> Boolean
def sufficient-processing-time?(r)

= duration(r) > processing-time(resource, task(r))

sufficient-communication-times: Hard-Constraint
= pointwise(channel-resources, sufficient-processing-time?)

22An Experiment withAn Experiment with
An Iterative Repair SchedulerAn Iterative Repair Scheduler

• Investigate scheduler to get a feel for domain
– some missing information – educated guesses

• Simplifications:
– ignore communication (not a bottleneck?)
– ignore power (no impact on feasibility)

• Two types of task (distinct):
– tracking measurement
– background measurement
– node, beam, start time, duration, priority

Simulated
Mission
Planner

Scheduler
Measurement

Requests
Sensor
Network

Sensor

Instructions
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Experiment: Scheduling ObjectivesExperiment: Scheduling Objectives

• Assumed constraints
– radar nodes can perform only one task at a time
– durations are hard constraints
– start times are soft constraints

• but the order of task execution is determined by the 
requested start times

• Objective: minimize weighted mean lateness

∑rw(r).[start-time(r) − due-date(r)]2

∑rw(r)√ r∈ reservations
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Experiment: The AlgorithmExperiment: The Algorithm

• Iterative repair
– locate hard constraint violation

• caused by overlapping reservations on single node

– linearize the reservations
– translate the reservations’ start times to minimize 

objective function
• i.e., produce lowest total deviation from due dates

– repeat

• Run-time negligible



13

25

Experiment: Parameters and ResultsExperiment: Parameters and Results

• Parameters
– Tracking measurements

• duration: 2.0 seconds
• every 2.5 seconds (approx.)

– Background measurements
• duration: 0.5 seconds
• frequency varied to set load

∑k durationk . frequencyk

load =
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Experiment: Redefined LatenessExperiment: Redefined Lateness

• New assumption: periodic measurements
– regularity of measurements important
– redefine lateness

– latenessr = ∆completion-timer – ∆due-dater

• Need domain knowledge to select appropriate metric

∆due-dater

∆completion-timer
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Schedule PrecompilationSchedule Precompilation

• Objective: fast schedule look-up
– in scenarios having demanding response times
– identify scheduling regime
– look up appropriate scheduling strategy

• Scheduling strategy is determined by transition graph

Core
Process

State

Requests

Actions
in events

(requests or
clock ticks)

out events
(actions)

state state state
transition graph
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Precompilation ProcessPrecompilation Process

• Table of optimal strategies precompiled off-line
– definition of optimality includes anticipated distribution of 

future events

• Assume a finite state space
– can be obtained by discretization

• Theoretically it is possible to enumerate all and select 
best

• Practically: useful spaces very large
– Use branch & bound or constraint propagation 

techniques to reduce size?
– Precompile solutions for coarse space

• Refine at run-time with rapid fast improvement method
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IssuesIssues
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Addressing Real Time ConstraintsAddressing Real Time Constraints

• Two approaches proposed
– two tier scheduling
– precompilation

• Two tier scheduling
– First tier uses an anytime scheduler to schedule sensor 

actions
• sequence of schedules computed over time
• each schedule better than preceding schedules

– Second tier allocates time to first tier scheduler
• needs to stop first tier scheduler when schedule execution 

must begin
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Available Scheduling TimeAvailable Scheduling Time

• Scheduling deadline
– a schedule’s start time is the 

earliest of its reservations’ 
start times 

• Deadline is dynamic
– as anytime scheduling 

proceeds, the start time may 
shift

• Exploit time before deadline
– monitor current time against 

schedule start time
– begin execution when the 

two times converge

time
schedule start timecurrent time

scheduling period

time
new schedule start timecurrent time

scheduling period

time
schedule start timecurrent time

begin execution
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Schedule Time versus Execution TimeSchedule Time versus Execution Time

• Quality of schedule should improve as first tier 
scheduler runs
– allocate as much time as possible to scheduling
– postpone the start time

• But, in a dynamic environment, a schedule should 
leave room for change
– execute tasks as early as possible

• Define tradeoff between schedule improvement and 
robustness
– Can measurement process be viewed as anytime?
– If so, can we use existing techniques/tools to compose 

anytime processes?
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RealReal--time Response Using Precompilationtime Response Using Precompilation

• In a scenario where precompilation is feasible
– response time is very fast – no real-time problems

• In a scenario that is too complex for precompilation
– derive a crude discretization for which precompilation is 

feasible
– use look-up to obtain an initial, crude schedule
– complete crude schedule using constraint propagation
– refine completed schedule using local search
– objective is to ensure that crude schedule places search 

in a good neighborhood so that it rapidly converges to an 
optimum
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AddressingAddressing StabilityStability

• Continuity-guided rescheduling
– can adapt local and global scheduling algorithms to 

rescheduling
– local search

• use old schedule as starting point for repair

– global search
• can incorporate an explicit cost of change into quality 

metrics
• can influence search guidance metrics so that the 

decisions that lead to the old schedule are given extra 
weight when constructing new schedule
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Addressing Stability: Schedule SpacesAddressing Stability: Schedule Spaces

• Schedule spaces
– some global search algorithms can produce spaces of 

feasible schedules
– allows continuous change under small perturbations in 

input/environment

• Sub-optimality/schedule slack
– optimal schedules tend to be fragile
– Deliberately aim for sub-optimal resource usage to 

ensure some slack in schedule?
– Can we make this notion precise?
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AddressingAddressing Stability: Explicit CostsStability: Explicit Costs

• Explicit costs in large, distributed systems
– all resource actions, including those undertaken for 

scheduling, are explicitly costed
– costs should act as dampening factor in distributed 

systems

• Convergence
– anytime schedulers

• time bounded (ensures limited fruitless activity)
• monotonically improving schedule
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ConclusionConclusion
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Summary and PlansSummary and Plans

Summary
• Have made a start on abstract architecture for 

distributed resource allocation
• Have made a start on modeling the challenge problem

– have identified some topics for discussion

Plans
• Model further aspects of distributed resource allocation
• Synthesize schedulers for the challenge problem

– investigating appropriateness of anytime algorithms

• Demonstration of scalability
– measure schedule quality as number of tasks and 

resources increases
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AppendixAppendix
Sorts and Operators for SchedulingSorts and Operators for Scheduling
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Overview of Schedule Sorts and OperatorsOverview of Schedule Sorts and Operators

• Tasks: requests for when, where and what
• Resources: constraints on activities

– task processing times, set up times

• Reservations: task, resource and time period
– typical constraints: task & resource compatibility, release 

dates observed, non-overlapping

• Schedule: set of reservations
– typical metrics: makespan, total weighted tardiness

• Constraints: hard, soft & precedence
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Tasks and ResourcesTasks and Resources

• Sort Task
– ops: type, release-date, due-date, weight

• Sort Resource
– ops: type, compatible-task?, processing-time, setup-time
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Reservations and SchedulesReservations and Schedules

• Sort Reservation
– ops task, resource, start-time, completion-time, duration, 

precedes?, overlap?, lateness
– release-date-observed?, compatible-resource-and-task?, 

sufficient-setup-time?

• Sort Schedule
– ops: reservations, consecutive?, makespan, maximum-

tardiness, total-weighted-tardiness, complete?
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ConstraintsConstraints

• Three classes of constraints:
– hard, soft & precedence constraints

• Sort Hard-Constraint
– a hard constraint cannot be violated
– in general, a hard constraint is an arbitrary boolean 

function on schedules
• e.g., all-tasks-scheduled?

– common classes of hard constraints:
• pointwise: lifts a single-reservation constraint

– e.g., release-date-observed?, compatible-resource-
and-task?

• consecutive: lifts a constraint on neighboring reservations
– e.g., sufficient-setup-time?
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Soft ConstraintsSoft Constraints

• Sort Soft-Constraint
– a soft constraint can be violated, but violation incurs a 

penalty
– in general, a soft-constraint can be an arbitrary function 

on schedules
– common classes of soft constraints:

• pointwise: lifts single-reservation test and penalty functions
– e.g., due-dates-observed? & lateness

• consecutive: lifts constraint and penalty functions on 
neighboring reservations

– e.g., zero-wait? & idle-time
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Precedence ConstraintsPrecedence Constraints

• Sort Precedence-Constraint
– a precedence constraint is a strict partial order on tasks:

• anti-reflexive
• anti-symmetric
• transitive

– for tasks p,q
• if (p,q) is in the precedence constraint
• p must be completed before q begins
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FeasibilityFeasibility

• Given:
– R, a set of resources
– T, a set of tasks
– H, a set of hard constraints
– P, a set of precedence constraints

• A schedule is feasible if and only if it observes all 
constraints in H and P

op find-feasible-schedule:
set(Resource), set(Task), set(Hard-Constraint), set(Soft-

Constraint)  
→ Schedule

axiom feasible
∀ (R,T,H,P) ∀ (h∈ H) observes?(h,find-feasible-schedule(R,T,H,P))

∧ ∀ (p∈ P) observes?(p,find-feasible-schedule(R,T,H,P))
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OptimalityOptimality

• Given also
– S, a set of soft constraints
– Q, a metric on schedules

• A schedule is optimal if and only if it minimizes the 
(weighted) sum of Q and penalties arising from S

op find-optimal-schedule:
set(Resource), set(Task), set(Hard-Constraint),
set(Precedence-Constraint), set(Soft-Constraint), Quality-Metric

→ Schedule

Axiom optimality
∀ (R,T,H,P,S,Q) ∀ (s’:schedule) feasible?(s’,R,T,H,P)
⇒ total-penalty(s’,R,T,P,H,S,Q)

≥ total-penalty(find-optimal-schedule(R,T,H,P,S,Q),R,T,S,Q)

AppendixAppendix
Data Fusion ClassificationsData Fusion Classifications

Reference
Sensor and Data Fusion Concepts and Applications,
Lawrence A. Klein, SPIE Press Vol. TT35,
ISBN 0-8194-3231-8
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Data Fusion LevelsData Fusion Levels
As Defined by Office of Naval TechnologyAs Defined by Office of Naval Technology

• Level 0: source preprocessing
– e.g., compression, normalization of sensor data

• Level 1: object refinement
– target track estimation and target discrimination

• Level 2: situation assessment
– relationships between targets
– identification of activities

• Level 3: threat assessment
– capability and intent estimation
– offensive and defensive analysis

• Level 4: fusion process refinement
– feedback to sensors and processing

• Challenge problem: levels 0, 1 & 4?
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Processes in Track EstimationProcesses in Track Estimation

• Alignment
– placing sensor data into a common coordinate system

• Association
– computing a metric to determine how well measurements 

and tracks match

• Correlation
– using association metrics to determine if measurements 

and tracks correspond to a common object

• Estimation
– updating target states using the results of correlation

• Cueing
– feedback to sensor control and processing

• Challenge problem: who is responsible for what?
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Data Fusion ArchitecturesData Fusion Architectures

• Sensor-level fusion
– each sensor processes data locally and sends results to 

a central fusion unit
– distributes computational load
– tailors processing to each sensor
– tightly coupled data processing and sensor control

• Central-level fusion
– each sensor feeds minimally processed data to a central 

fusion unit
– more accurate results

• Hybrid fusion
– each sensor performs some processing of its data, but 

also feeds minimally processed data to central unit

• Challenge problem: hybrid fusion?
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Data Fusion ModesData Fusion Modes

• Pixel-level fusion
– data from multiple sensors are fused at the pixel level
– used in central-level fusion

• Feature-level fusion
– each sensor’s data is processed to produce features 

which are then combined
– used in sensor-level or central-level fusion

• Decision-level fusion
– each sensor’s data is processed to produce target tracks 

and classification data
– the tracks and classification data are fused
– used in sensor-level fusion

• Challenge problem: feature and decision level?
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AppendixAppendix
Scheduling AlgorithmsScheduling Algorithms
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Classification of Scheduling AlgorithmsClassification of Scheduling Algorithms

• Heuristic algorithms
– typically based on immediate priority rule (dispatch)
– quickly compute reasonably good schedules

• Local search algorithms
– iterative improvement of a complete schedule
– may get trapped in a local optimum

• methods exist to attempt to reach global optimum

• Global search algorithms
– construct globally optimal schedules
– large search spaces (lots of backtracking)

• methods exist to trade quality for speed

• Anytime algorithms
– schedule always available
– schedule improves as algorithm runs
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Local Search VariantsLocal Search Variants

• Simulated annealing algorithms
– occasionally chose to temporarily degrade schedule in 

hope of escaping local optima
– frequency of degrading reduces with time

• Tabu search algorithms
– maintain a list of recent schedule transformations
– a transformation is forbidden if its reverse is on the list
– when a transformation is made, its reverse is placed on 

the list and the oldest entry is removed
– attempts to avoid cycles

• Genetic algorithms
– maintain a population of schedules
– delete poor schedules from population
– produce new schedules by cross-breeding and mutation
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Global SearchGlobal Search

• Operate on spaces of schedules
– spaces iteratively refined by making choices
– e.g., assigning a particular task to a particular resource
– backtracking is typically used

• because a choice may ultimately prevent the construction 
of a feasible, complete schedule

– relaxation may be used instead of backtracking
• when all remaining choices result in infeasible schedules
• relax some of the constraints on the remaining tasks
• penalty may be incurred for relaxation

• Typically produce optimal schedules
– may sacrifice optimality for speed (e.g., relaxation)
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Global Search VariantsGlobal Search Variants

• Pruning
– use weakened constraints to quickly detect choices that 

will produce no feasible, complete schedule

• Branch & bound
– use lower bound computations on schedule quality
– quickly determine if a choice cannot produce an optimal 

schedule

• Priority search
– at each iteration, rank choices according to some 

heuristic
– investigate only the most promising choices
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Anytime AlgorithmsAnytime Algorithms

• Interruptible
– can be stopped at any time and will return a schedule

• Monotonic improvement
– the longer the algorithm is allowed to run, the better the 

schedule

• Performance profiles
– statistical characterization of quality of schedule against 

run time
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Performance ProfilesPerformance Profiles

• Expected quality specified as a performance profile
– maps time onto a probability distribution of quality
– may also depend on characteristics of input data

time
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20%
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probability distribution of quality at time t0

probability quality

performance profile
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Potential Anytime SchedulersPotential Anytime Schedulers

• Local search algorithms are commonly converted into 
anytime algorithms
– extract single search step from local search
– use as core for anytime algorithm

• Potentially, global search algorithms may be used
– in anytime domain, every schedule can be assigned a 

quality
– in backtracking, even a partial schedule that cannot be 

extended into a complete schedule has a value
• it is a feasible schedule for those tasks that have been 

scheduled

• Retain best schedule found as search tree is explored
– regardless of (eventual) completeness



31

61

Branch & Bound Anytime SchedulerBranch & Bound Anytime Scheduler

• Branch & bound with tolerance
– parameter can be adjusted to set tolerance for sub-

optimality (e.g., within 10% of optimal)
• ignores branches whose lower bound is not sufficiently 

better than the current best solution

– lower tolerance gives better result but (typically) 
increases the size of the space searched

• Begin with tolerance high
– seed algorithm with scheduler produced heuristically

• Reduce tolerance on successive iterations
– use schedule computed as seed for next iteration

• Can iterations be performed sufficiently quickly?
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PriorityPriority Search Anytime Search Anytime SchedulerScheduler**

• Priority search algorithm:
– construct a search tree
– for each node, rank all branches (without searching)
– search only W most promising branches

• W is the search width

– does not guarantee optimality

• A low width reduces search time
• A high width is likely to find better result
• Begin with a narrow search width

– e.g., W=1

• Widen search on successive iterations
– retain best schedule found

*Priority search is commonly known as beam search. I have renamed it
to avoid potential confusion with “beam” in the sense of a radar beam.


