
1

ee--MergeMerge--ANTANT

Stephen Fitzpatrick
Cordell Green

Lambert Meertens

ANTs PI Meeting, Seattle, WA
9-11 May 2000

Kestrel Institute, Palo Alto, California
http://www.kestrel.edu/HTML/projects/ants

2

OutlineOutline

• Conceptual architecture for dynamic sensor networks
• Scheduling in the ANTs challenge problem

– Challenge problem models
– An iterative repair scheduler based on conflict detection
– Schedule precompilation through regimes

• Issues
– Addressing real-time constraints
– Addressing stability

• Conclusion
– Summary and plans

2

A Conceptual Architecture forA Conceptual Architecture for
Dynamic Sensor NetworksDynamic Sensor Networks

4

IntroductionIntroduction

• Networks of sensors and processors
– monitoring ‘real world’

• Develop an abstract architecture
– for distributed, real-time resource allocation
– model specific components to support analysis

• Support ANTs challenge problem
– common language for participants
– standard definitions
– framework in which projects can position themselves
– not tied to challenge problem

3

5

StatusStatus

• Initial architecture for sensor networks
• Glossary of scheduling terms
• Formal definitions of sorts and operators for scheduling
• Informal classification of scheduling algorithms
• Detailed definitions for challenge problem

• For your reading pleasure:
– an overview of the above items is contained in appendices of

this presentation
– detailed documents are now available, and more will become

available, on Kestrel’s web site
http://www.kestrel.edu/HTML/projects/ants

6

RequirementsRequirements

• Objectives of a dynamic sensor network:
– Maintain a model of an evolving, real-world environment
– by measuring certain aspects of the environment
– and evaluating the sensor data
– to generate corrections to the model

4

7

Requirements (cont.)Requirements (cont.)

• Requirements define overall functionality of the system
– e.g., probability of detection and false alarm
– e.g., required accuracy of tracks
– e.g., mean time between failures
– e.g., limit on power/energy of EM emissions

• Outside scope of consideration
– considerations for EW analyst/engineer

8

Initial ArchitectureInitial Architecture

Mission
Planner

Model of
Environment

Mission
Objectives

mission
tasks

Resource
Manager

resource
actions

Resource
Network

sensor
output

Data
Processor

model
corrections

Real
World

environment
data

environment
data

resource
status

resource
status

System Requirements

5

9

Model of the EnvironmentModel of the Environment

• Defines observable properties of the environment
– sensor based
– e.g., EM signal in 1 degree cones

• Defines features of the environment that can be
inferred from observations
– e.g., targets and their states (position, velocity)

• Associates confidence levels with features and states
– e.g., 95% confident that target lies within certain volume

• Maintains a timed history of observations and features
– e.g., target tracks

• Interpolates/extrapolates features’ states

10

Mission ObjectivesMission Objectives

• Define desired properties of features and states
– e.g., confidence level must remain above some level

• Define constraints on how system operates
– e.g., rate at which power consumption is penalized
– e.g., rate at which radio communication is penalized

6

11

Mission PlannerMission Planner

• Translates mission objectives into mission tasks
– based on the current model of the environment

– e.g., take a reading on sensor A at angles (θ,ϕ) at time T

• In the challenge problem, mission tasks are requests
from tracking algorithm for further sensor readings
– includes task priorities, dependencies

• Coupling of mission planner with resource manager?
– planner may use information about status of resources

RMMP

12

Resource ManagerResource Manager

• Translates mission tasks into resource actions
– resources are sensors, processors, communication, etc.
– schedules the actions

• including auxiliary actions, such as communication

– transmits instructions to resources

• Example:
– sensor A is to emit a beam over some time period
– and communicate results to controller using channel 4

• Resource manager “optimizes performance”
– achieves some mission tasks as well as possible
– reduces resource consumption
– mission objectives define terms for balancing

achievement against consumption/cost

7

13

Resource NetworkResource Network

• The physical sensors and software interface
• Executes actions generated by resource manager
• Feeds sensor data to data processor
• Feeds status data to resource manager

14

Data ProcessorData Processor

• Evaluates sensor data
– measurements are combined with the current model of

environment

• Computes corrections to current model
– e.g., introduces new targets
– e.g., updates track of existing target

• Data fusion
– data from multiple sensors are combined to produce

‘best estimate’ of the real world

8

Scheduling in theScheduling in the
ANTs Challenge ProblemANTs Challenge Problem

16

IntroductionIntroduction

• Input: measurement requests
• Output: schedule of resource actions
• Schedule the actions of the resources to:

– optimize achievement of requested measurements
– reduce usage of consumable resources (energy)
– reduce EM output

• Time scales:
– measurements – order of 1 second
– target observeability – order of 30 seconds
– target predictability – high in initial scenario

• In real life?

– communication?

9

17

StatusStatus

• Have developed formal models for challenge problem
– for tasks, resources, reservations, schedules,

constraints, metrics

• Have investigated the behavior of a preliminary
rescheduling algorithm

• Have investigated precompilation of schedules
– for rapid, real-time response

18

Challenge Problem Tasks and ResourcesChallenge Problem Tasks and Resources

• Tracking measurement request
– node, beam, time, duration, mode, priority

• Background measurement request
– node, beam, time, duration, mode, priority

• Resources per node
– 3 beams, 1 sampler, 1 transmitter, 1 receiver, 1 power

supply

• Global resources
– 8 shared communication channels

• Observation: measurement requests uniquely
determine radar beam
– Should there be flexibility to switch request to different

node?

10

19

Resources: Beams and SamplersResources: Beams and Samplers

• Three beams per node
– Each beam independently controlled
– 1 second warm-up time
– major power drain

• Single sampler per node
– samples 1 beam at a time

sampler
beam 1

beam 2

beam 3
sampler

sampler

time

one
node

20

Resources: Beam and Sampler ConstraintsResources: Beam and Sampler Constraints

• Beam and sampler reservations are exclusive

op precedes?: Reservation, Reservation → Boolean
def precedes?(p,q) = completion-time(p) < start-time(q)
op disjoint?: Reservation, Reservation → Boolean
def disjoint?(p,q) = precedes?(p,q) ∨ precedes?(q,p)

exclusive-beam-reservations: Hard-Constraint
= consecutive(beam-resources, disjoint?)

exclusive-sampler-reservations: Hard-Constraint
= consecutive(sampler-resources, disjoint?)

• Sufficient beam warm-up time
def sufficient-beam-warm-up?(s: schedule) =
∀ (b∈ beam-resources(s), p∈ reservations(s,b))
¬ ∃ (m∈ sampler-resources(s), q∈ reservations(s,m))

b=beam(task(q)) ∧ overlap?(p,q) ∧
start-time(q)<start-time(p)+warm-up(b)

beam-warm-up: Hard-Constraint = global(sufficient-beam-warm-up?)

11

21

Resources: CommunicationResources: Communication

• Communication channels
– exclusive reservations
– finite latency and bandwidth

• Communication task defines
– channel, sender, receiver, message

• Constraint: sufficient communication time reserved

for channel c: processing-time(c,communication-task(c,s,r,m))
= latency(c,s,r) + data-size(m)/bandwidth(c,s,r)

op sufficient-processing-time?: Reservation -> Boolean
def sufficient-processing-time?(r)

= duration(r) > processing-time(resource, task(r))

sufficient-communication-times: Hard-Constraint
= pointwise(channel-resources, sufficient-processing-time?)

22An Experiment withAn Experiment with
An Iterative Repair SchedulerAn Iterative Repair Scheduler

• Investigate scheduler to get a feel for domain
– some missing information – educated guesses

• Simplifications:
– ignore communication (not a bottleneck?)
– ignore power (no impact on feasibility)

• Two types of task (distinct):
– tracking measurement
– background measurement
– node, beam, start time, duration, priority

Simulated
Mission
Planner

Scheduler
Measurement

Requests
Sensor
Network

Sensor

Instructions

12

23

Experiment: Scheduling ObjectivesExperiment: Scheduling Objectives

• Assumed constraints
– radar nodes can perform only one task at a time
– durations are hard constraints
– start times are soft constraints

• but the order of task execution is determined by the
requested start times

• Objective: minimize weighted mean lateness

∑rw(r).[start-time(r) − due-date(r)]2

∑rw(r)√ r∈ reservations

24

Experiment: The AlgorithmExperiment: The Algorithm

• Iterative repair
– locate hard constraint violation

• caused by overlapping reservations on single node

– linearize the reservations
– translate the reservations’ start times to minimize

objective function
• i.e., produce lowest total deviation from due dates

– repeat

• Run-time negligible

13

25

Experiment: Parameters and ResultsExperiment: Parameters and Results

• Parameters
– Tracking measurements

• duration: 2.0 seconds
• every 2.5 seconds (approx.)

– Background measurements
• duration: 0.5 seconds
• frequency varied to set load

∑k durationk . frequencyk

load =

26

Experiment: Redefined LatenessExperiment: Redefined Lateness

• New assumption: periodic measurements
– regularity of measurements important
– redefine lateness

– latenessr = ∆completion-timer – ∆due-dater

• Need domain knowledge to select appropriate metric

∆due-dater

∆completion-timer

14

27

Schedule PrecompilationSchedule Precompilation

• Objective: fast schedule look-up
– in scenarios having demanding response times
– identify scheduling regime
– look up appropriate scheduling strategy

• Scheduling strategy is determined by transition graph

Core
Process

State

Requests

Actions
in events

(requests or
clock ticks)

out events
(actions)

state state state
transition graph

28

Precompilation ProcessPrecompilation Process

• Table of optimal strategies precompiled off-line
– definition of optimality includes anticipated distribution of

future events

• Assume a finite state space
– can be obtained by discretization

• Theoretically it is possible to enumerate all and select
best

• Practically: useful spaces very large
– Use branch & bound or constraint propagation

techniques to reduce size?
– Precompile solutions for coarse space

• Refine at run-time with rapid fast improvement method

15

IssuesIssues

30

Addressing Real Time ConstraintsAddressing Real Time Constraints

• Two approaches proposed
– two tier scheduling
– precompilation

• Two tier scheduling
– First tier uses an anytime scheduler to schedule sensor

actions
• sequence of schedules computed over time
• each schedule better than preceding schedules

– Second tier allocates time to first tier scheduler
• needs to stop first tier scheduler when schedule execution

must begin

16

31

Available Scheduling TimeAvailable Scheduling Time

• Scheduling deadline
– a schedule’s start time is the

earliest of its reservations’
start times

• Deadline is dynamic
– as anytime scheduling

proceeds, the start time may
shift

• Exploit time before deadline
– monitor current time against

schedule start time
– begin execution when the

two times converge

time
schedule start timecurrent time

scheduling period

time
new schedule start timecurrent time

scheduling period

time
schedule start timecurrent time

begin execution

32

Schedule Time versus Execution TimeSchedule Time versus Execution Time

• Quality of schedule should improve as first tier
scheduler runs
– allocate as much time as possible to scheduling
– postpone the start time

• But, in a dynamic environment, a schedule should
leave room for change
– execute tasks as early as possible

• Define tradeoff between schedule improvement and
robustness
– Can measurement process be viewed as anytime?
– If so, can we use existing techniques/tools to compose

anytime processes?

17

33

RealReal--time Response Using Precompilationtime Response Using Precompilation

• In a scenario where precompilation is feasible
– response time is very fast – no real-time problems

• In a scenario that is too complex for precompilation
– derive a crude discretization for which precompilation is

feasible
– use look-up to obtain an initial, crude schedule
– complete crude schedule using constraint propagation
– refine completed schedule using local search
– objective is to ensure that crude schedule places search

in a good neighborhood so that it rapidly converges to an
optimum

34

AddressingAddressing StabilityStability

• Continuity-guided rescheduling
– can adapt local and global scheduling algorithms to

rescheduling
– local search

• use old schedule as starting point for repair

– global search
• can incorporate an explicit cost of change into quality

metrics
• can influence search guidance metrics so that the

decisions that lead to the old schedule are given extra
weight when constructing new schedule

18

35

Addressing Stability: Schedule SpacesAddressing Stability: Schedule Spaces

• Schedule spaces
– some global search algorithms can produce spaces of

feasible schedules
– allows continuous change under small perturbations in

input/environment

• Sub-optimality/schedule slack
– optimal schedules tend to be fragile
– Deliberately aim for sub-optimal resource usage to

ensure some slack in schedule?
– Can we make this notion precise?

36

AddressingAddressing Stability: Explicit CostsStability: Explicit Costs

• Explicit costs in large, distributed systems
– all resource actions, including those undertaken for

scheduling, are explicitly costed
– costs should act as dampening factor in distributed

systems

• Convergence
– anytime schedulers

• time bounded (ensures limited fruitless activity)
• monotonically improving schedule

19

ConclusionConclusion

38

Summary and PlansSummary and Plans

Summary
• Have made a start on abstract architecture for

distributed resource allocation
• Have made a start on modeling the challenge problem

– have identified some topics for discussion

Plans
• Model further aspects of distributed resource allocation
• Synthesize schedulers for the challenge problem

– investigating appropriateness of anytime algorithms

• Demonstration of scalability
– measure schedule quality as number of tasks and

resources increases

20

AppendixAppendix
Sorts and Operators for SchedulingSorts and Operators for Scheduling

40

Overview of Schedule Sorts and OperatorsOverview of Schedule Sorts and Operators

• Tasks: requests for when, where and what
• Resources: constraints on activities

– task processing times, set up times

• Reservations: task, resource and time period
– typical constraints: task & resource compatibility, release

dates observed, non-overlapping

• Schedule: set of reservations
– typical metrics: makespan, total weighted tardiness

• Constraints: hard, soft & precedence

21

41

Tasks and ResourcesTasks and Resources

• Sort Task
– ops: type, release-date, due-date, weight

• Sort Resource
– ops: type, compatible-task?, processing-time, setup-time

42

Reservations and SchedulesReservations and Schedules

• Sort Reservation
– ops task, resource, start-time, completion-time, duration,

precedes?, overlap?, lateness
– release-date-observed?, compatible-resource-and-task?,

sufficient-setup-time?

• Sort Schedule
– ops: reservations, consecutive?, makespan, maximum-

tardiness, total-weighted-tardiness, complete?

22

43

ConstraintsConstraints

• Three classes of constraints:
– hard, soft & precedence constraints

• Sort Hard-Constraint
– a hard constraint cannot be violated
– in general, a hard constraint is an arbitrary boolean

function on schedules
• e.g., all-tasks-scheduled?

– common classes of hard constraints:
• pointwise: lifts a single-reservation constraint

– e.g., release-date-observed?, compatible-resource-
and-task?

• consecutive: lifts a constraint on neighboring reservations
– e.g., sufficient-setup-time?

44

Soft ConstraintsSoft Constraints

• Sort Soft-Constraint
– a soft constraint can be violated, but violation incurs a

penalty
– in general, a soft-constraint can be an arbitrary function

on schedules
– common classes of soft constraints:

• pointwise: lifts single-reservation test and penalty functions
– e.g., due-dates-observed? & lateness

• consecutive: lifts constraint and penalty functions on
neighboring reservations

– e.g., zero-wait? & idle-time

23

45

Precedence ConstraintsPrecedence Constraints

• Sort Precedence-Constraint
– a precedence constraint is a strict partial order on tasks:

• anti-reflexive
• anti-symmetric
• transitive

– for tasks p,q
• if (p,q) is in the precedence constraint
• p must be completed before q begins

46

FeasibilityFeasibility

• Given:
– R, a set of resources
– T, a set of tasks
– H, a set of hard constraints
– P, a set of precedence constraints

• A schedule is feasible if and only if it observes all
constraints in H and P

op find-feasible-schedule:
set(Resource), set(Task), set(Hard-Constraint), set(Soft-

Constraint)
→ Schedule

axiom feasible
∀ (R,T,H,P) ∀ (h∈ H) observes?(h,find-feasible-schedule(R,T,H,P))

∧ ∀ (p∈ P) observes?(p,find-feasible-schedule(R,T,H,P))

24

47

OptimalityOptimality

• Given also
– S, a set of soft constraints
– Q, a metric on schedules

• A schedule is optimal if and only if it minimizes the
(weighted) sum of Q and penalties arising from S

op find-optimal-schedule:
set(Resource), set(Task), set(Hard-Constraint),
set(Precedence-Constraint), set(Soft-Constraint), Quality-Metric

→ Schedule

Axiom optimality
∀ (R,T,H,P,S,Q) ∀ (s’:schedule) feasible?(s’,R,T,H,P)
⇒ total-penalty(s’,R,T,P,H,S,Q)

≥ total-penalty(find-optimal-schedule(R,T,H,P,S,Q),R,T,S,Q)

AppendixAppendix
Data Fusion ClassificationsData Fusion Classifications

Reference
Sensor and Data Fusion Concepts and Applications,
Lawrence A. Klein, SPIE Press Vol. TT35,
ISBN 0-8194-3231-8

25

49
Data Fusion LevelsData Fusion Levels
As Defined by Office of Naval TechnologyAs Defined by Office of Naval Technology

• Level 0: source preprocessing
– e.g., compression, normalization of sensor data

• Level 1: object refinement
– target track estimation and target discrimination

• Level 2: situation assessment
– relationships between targets
– identification of activities

• Level 3: threat assessment
– capability and intent estimation
– offensive and defensive analysis

• Level 4: fusion process refinement
– feedback to sensors and processing

• Challenge problem: levels 0, 1 & 4?

50

Processes in Track EstimationProcesses in Track Estimation

• Alignment
– placing sensor data into a common coordinate system

• Association
– computing a metric to determine how well measurements

and tracks match

• Correlation
– using association metrics to determine if measurements

and tracks correspond to a common object

• Estimation
– updating target states using the results of correlation

• Cueing
– feedback to sensor control and processing

• Challenge problem: who is responsible for what?

26

51

Data Fusion ArchitecturesData Fusion Architectures

• Sensor-level fusion
– each sensor processes data locally and sends results to

a central fusion unit
– distributes computational load
– tailors processing to each sensor
– tightly coupled data processing and sensor control

• Central-level fusion
– each sensor feeds minimally processed data to a central

fusion unit
– more accurate results

• Hybrid fusion
– each sensor performs some processing of its data, but

also feeds minimally processed data to central unit

• Challenge problem: hybrid fusion?

52

Data Fusion ModesData Fusion Modes

• Pixel-level fusion
– data from multiple sensors are fused at the pixel level
– used in central-level fusion

• Feature-level fusion
– each sensor’s data is processed to produce features

which are then combined
– used in sensor-level or central-level fusion

• Decision-level fusion
– each sensor’s data is processed to produce target tracks

and classification data
– the tracks and classification data are fused
– used in sensor-level fusion

• Challenge problem: feature and decision level?

27

AppendixAppendix
Scheduling AlgorithmsScheduling Algorithms

54

Classification of Scheduling AlgorithmsClassification of Scheduling Algorithms

• Heuristic algorithms
– typically based on immediate priority rule (dispatch)
– quickly compute reasonably good schedules

• Local search algorithms
– iterative improvement of a complete schedule
– may get trapped in a local optimum

• methods exist to attempt to reach global optimum

• Global search algorithms
– construct globally optimal schedules
– large search spaces (lots of backtracking)

• methods exist to trade quality for speed

• Anytime algorithms
– schedule always available
– schedule improves as algorithm runs

28

55

Local Search VariantsLocal Search Variants

• Simulated annealing algorithms
– occasionally chose to temporarily degrade schedule in

hope of escaping local optima
– frequency of degrading reduces with time

• Tabu search algorithms
– maintain a list of recent schedule transformations
– a transformation is forbidden if its reverse is on the list
– when a transformation is made, its reverse is placed on

the list and the oldest entry is removed
– attempts to avoid cycles

• Genetic algorithms
– maintain a population of schedules
– delete poor schedules from population
– produce new schedules by cross-breeding and mutation

56

Global SearchGlobal Search

• Operate on spaces of schedules
– spaces iteratively refined by making choices
– e.g., assigning a particular task to a particular resource
– backtracking is typically used

• because a choice may ultimately prevent the construction
of a feasible, complete schedule

– relaxation may be used instead of backtracking
• when all remaining choices result in infeasible schedules
• relax some of the constraints on the remaining tasks
• penalty may be incurred for relaxation

• Typically produce optimal schedules
– may sacrifice optimality for speed (e.g., relaxation)

29

57

Global Search VariantsGlobal Search Variants

• Pruning
– use weakened constraints to quickly detect choices that

will produce no feasible, complete schedule

• Branch & bound
– use lower bound computations on schedule quality
– quickly determine if a choice cannot produce an optimal

schedule

• Priority search
– at each iteration, rank choices according to some

heuristic
– investigate only the most promising choices

58

Anytime AlgorithmsAnytime Algorithms

• Interruptible
– can be stopped at any time and will return a schedule

• Monotonic improvement
– the longer the algorithm is allowed to run, the better the

schedule

• Performance profiles
– statistical characterization of quality of schedule against

run time

30

59

Performance ProfilesPerformance Profiles

• Expected quality specified as a performance profile
– maps time onto a probability distribution of quality
– may also depend on characteristics of input data

time

qu
al

ity

expected quality

t0

15%

20%

30%

20%

15%

mean (expected value)

mean - 1

mean - 2

mean + 2

mean + 1

probability distribution of quality at time t0

probability quality

performance profile

60

Potential Anytime SchedulersPotential Anytime Schedulers

• Local search algorithms are commonly converted into
anytime algorithms
– extract single search step from local search
– use as core for anytime algorithm

• Potentially, global search algorithms may be used
– in anytime domain, every schedule can be assigned a

quality
– in backtracking, even a partial schedule that cannot be

extended into a complete schedule has a value
• it is a feasible schedule for those tasks that have been

scheduled

• Retain best schedule found as search tree is explored
– regardless of (eventual) completeness

31

61

Branch & Bound Anytime SchedulerBranch & Bound Anytime Scheduler

• Branch & bound with tolerance
– parameter can be adjusted to set tolerance for sub-

optimality (e.g., within 10% of optimal)
• ignores branches whose lower bound is not sufficiently

better than the current best solution

– lower tolerance gives better result but (typically)
increases the size of the space searched

• Begin with tolerance high
– seed algorithm with scheduler produced heuristically

• Reduce tolerance on successive iterations
– use schedule computed as seed for next iteration

• Can iterations be performed sufficiently quickly?

62

PriorityPriority Search Anytime Search Anytime SchedulerScheduler**

• Priority search algorithm:
– construct a search tree
– for each node, rank all branches (without searching)
– search only W most promising branches

• W is the search width

– does not guarantee optimality

• A low width reduces search time
• A high width is likely to find better result
• Begin with a narrow search width

– e.g., W=1

• Widen search on successive iterations
– retain best schedule found

*Priority search is commonly known as beam search. I have renamed it
to avoid potential confusion with “beam” in the sense of a radar beam.

