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CollaborationCollaboration

• Univ. of Washington at St. Louis have been performing experiments on 
Kestrel’s distributed constraint optimization algorithm (CFP):
– phase transitions in activation probability
– performance vs. Distributed Breakout Algorithm (Yokoo et al.)

• DBA seems to be the main contender with CFP for distributed graph coloring
• other variants of CFP are under investigation

– e.g., choosing a better value each step, not necessarily an optimal value

– so far CFP out-performs DBA in most cases
• Altarum have been looking at the stability/convergence aspects of CFP 

with respect to entropy
– instability as a result of too many choices
– Kestrel may be able to exploit such notions in techniques for adapting the 

activation probability
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Problem Description & ApproachProblem Description & Approach

• Goal: real-time resource management in large sensor networks
– support flexible, robust sensor networks containing thousands of sensors

• Distributed resource management is realized using resource-centric 
scheduling “agents”
– a resource’s agent schedules the resource’s actions over medium-term
– scheduling helps to overcome latency: predict rather than react

• Scalability is achieved by making use of only local interaction
– objective is to achieve good, local sensor coordination everywhere

• thesis is that good global behavior “emerges”

– per-resource costs are determined by the number of a resource’s neighbors
• Real-time adaptivity is achieved by continual, anytime rescheduling

– each agent continually adapts to changes in the local environment
– adaptation optimizes local, soft constraints

• less vulnerable to phase-transitions

• Robustness is achieved through pervasive, local interaction
– local failures have local consequences/repairs
– small changes to the environment are absorbed by continual rescheduling
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Success Criteria & MetricsSuccess Criteria & Metrics

• High-quality solutions: scanning must be better than greedy/random
– measure quality obtained using variety of control schedulers

• solution quality reflects success in scanning targets

• Responsiveness: solution adapts quickly to environmental change
– measure how time-averaged solution quality varies with rate of change of 

environment
• Stability: adaptation should be commensurate with size of change

– measure how size of change in solution varies with size/rate of 
environmental change

• thrashing (continual, widespread change without improvement) should be avoided

(cont.)
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Success Criteria & Metrics (cont.)Success Criteria & Metrics (cont.)

• Scalability in costs: bounded per-node costs as number of nodes grows
– measure how time-averaged per-node costs vary with network size

• computational, storage & communication costs

• Scalability in quality of solution: maintained as number of nodes grows
– measure how time-averaged solution quality varies with network size

• Robustness: costs and solution quality approximately maintained as 
small fraction of nodes fail
– measure how costs & solution quality vary with extent/rate of failure

• graceful degradation as failure rate increases moderately

• Robustness: failure should be localized
– measure size of region affected by localized failures
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New Ideas
Decentralized, localized, anytime scheduling
for resource management in large, distributed 
networks
Reflective scheduling explicitly accounts for 
time and resources appropriated by scheduler
Stochastic soft-constraint optimization
balances response time against coherence to 
ensure convergence and maintains tolerable 
computational costs under dynamic task loads
Formal modeling & synthesis techniques
produce analyzable, reusable & transferable 
components

Trade-off between adaptation rate and 
coherence in distributed resource management
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too slow - stagnation

too fast - incoherence

way too fast - thrashing

optimal balance – rapid convergence

Impact
Enables cost-effective deployment of large 
networks of simple, low-cost sensors
• Real-time responsiveness guaranteed
• Scalability to arbitrarily large networks
• Mission success rate improved
(more tasks accomplished by resources)

• Low overheads for resource management
even under dynamically varying loads

Timelinedevelop decentralized anytime scheduler

integrated demo

2001 2002

enhance constraint optimization

code synthesis

2000

simulator
integration

hardware
integration

challenge problem
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Project Status: UpdateProject Status: Update

• Improved approach to challenge problem:
– designed & implemented new metric to support track generation & update

• should avoid excessive track generation problem previously encountered

– designed & implemented new metric on scan schedules
• used by scheduling agents to coordinate sensors
• based on scan schedules of nearby nodes, local target estimates, local 

measurements and measurements from nearby nodes

– new communication strategy: stochastic squirts
• short messages at essentially random times
• local locks to prevent transmitter-scanner interference

– details later
• New dynamics experiments on abstract constraint problem (graph 

coloring)
– investigated effect of phase transitions on anytime solution quality
– investigated effect of asynchronous execution/communication latency
– investigated effect of network interconnection density
– details later
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New MeasurementNew Measurement--Target Association MethodTarget Association Method

• Need to associate measurements with targets (known or new)
– based on a measurement-target “distance” metric

• Improved metric
– project target’s position to time at which measurement was taken
– measurement-target distance is the shortest distance between amplitude 

contour and projected position
• amplitude contour = {(R, φ): amp(R, φ) = measurement’s amplitude} 

– for efficiency, approximate the contour with a circle
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11New Target Detection Method usingNew Target Detection Method using
Contour ClusteringContour Clustering

• Identify cliques of (approximately) simultaneous, unassociated 
measurements that have (approximately) intersecting contours

• For each clique of size > 2, generate a new potential target
– position initialized using grid-search technique of BAE tracker
– velocity initialized to zero
– target becomes “real” if and when it is subsequently updated with new 

measurements

possiblepossible
newnew
targettarget
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Results of New Association MethodResults of New Association Method

• High-quality tracking achieved with Radsim and old noise model

BAE: 1.6 SC: 0.4 BAE: 3.0 SC: 1.3
rms error/ft
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Context for New Metric on Scan SchedulesContext for New Metric on Scan Schedules

• Main idea:
– determine where & when the sensors should scan based on measurements 

& target projections
– given scan schedules, determine how well the sensors collaborate in 

scanning each point in (x, y, t)
– optimize trade-off between:

i) average quality of scanning, weighted by where targets are expected to be
ii) operational costs and penalties for constraint violations

• Abstract approach: optimize expected values over evolution of multiple-
target probability distribution
– probability distribution may reflect uncertainty arising from noisy 

measurements
– or it may reflect targets that are only quasi-predictable (e.g., that may turn)
– computationally expensive

• lots of multi-dimensional integrals
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New, Cheaper ApproximationNew, Cheaper Approximation

• Compute a “target density field” F(x, y, t) that represents the expected 
number of targets at each position-time coordinate

• Compute a “scanning field” S(x, y, t) that represents the collaborative 
quality of scanning that results from individual sensor’s schedules

• Compute overall quality of schedules as the “inner product” (F.S)
• Operational costs and constraint penalties are straightforward
• Optimize schedules w.r.t. wq.quality – (wc.cost + wp.penalties) 
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Computing the Target Field: TrackerComputing the Target Field: Tracker

• given a target i at position (x0, y0)
with velocity (u0, v0)
at time t0,

• project its position to time t0+∆t as
(x0+u0.∆t, y0+v0.∆t)

• program’s trackers do not yet publish confidence 
intervals: use a nominal width w
Fi(x, y, t0+∆t) = e-d/w

where d = |(x, y) – (x0+u0.∆t, y0+v0.∆t)|

• Each target is linearly projected based on current estimates of its 
position & velocity

• In simplest case, the total field F is computed as the point-wise addition 
of Fi over targets i

• Can allow for multi-target interference:
F(x, y, t) = maxi 2Fi(x, y, t) – ΣiFi(x, y, t)



16Computing the Target Field:Computing the Target Field:
Raw MeasurementsRaw Measurements

• given a single measurement m at time t0:
– M(m, x, y) = α(m.amplitude)

if m is non-noise and (x,y) is in m.sector,
where α is some monotonic function

– M(m, x, y) = -α0

if m is noise and if (x, y) is in m.sector,
where α0 is a (positive) constant

• measurement information devalues when 
projected

– M(m, x, y, t0+∆t) = e-|∆t|/βM(m, x, y),
where β is a constant

• A single non-noise measurement tells us with high probability that there 
is a target within the scanned sector
– so increase the target field in the area corresponding to sector

• A single noise measurement tells us the opposite
– so decrease the target field in the area corresponding to sector

• Measurements represent cruder and less predictive, but more reliable 
information (en masse)
– it is hard to project raw measurements over time 
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Scanning FieldScanning Field

• Scan schedules determine how well each point in space-time is scanned
– compute combined scan quality at each point, resulting from individual 

scanning “fields”
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Computing the Scanning Field: Single SensorComputing the Scanning Field: Single Sensor

• For a single scan, the time-agnostic signal strength is
– amp(R,φ) = K.exp(-Aφ2)/Rγ,

where R is the distance from the sensor,
f is the angle from the sensor’s mid-beam,
and K, A, γ are parameters of the sensor

• Take the quality to be some monotonic function of signal strength
– e.g., quality(R,φ) = log(amp(R,φ))/log(max_amp)

• Quality decays over time
– quality(R,φ,t0+∆t) = quality(R,φ).max(0, 1-|∆t|/T)

where t0 is the time the scan is scheduled to take place and T is some 
reasonable time period (e.g., 2 seconds)

• For any given time t, compute combined quality of a given sensor’s 
scans by adding the qualities associated with individual scans
– totalQualityn(R,φ,t) = Σj qualitynj(R,φ,t) for sensor node n

time
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Scanning Field: Multiple SensorsScanning Field: Multiple Sensors

• Compute the overall quality of scanning at some point (x,y,t)
by combining the individual quality metrics for each sensor
– if there are two or three sensors with high quality, award a high score
– if there are more sensors with high quality, award only slightly higher score

• 10 sensors scanning a single target is only slightly better than 3 sensors
–and costs a lot more

• sensor energy can, perhaps, be better expended on other targets

time

individual
measurements

time

combined
strength
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Overall MetricOverall Metric

• Overall scanning quality is the average over x,y,t of the point wise 
product of the target and scanning fields

• Overall operational costs is the average over t of the number of active 
sensors

• Overall constraint violation penalties easily computed

• Combined metric: wq.quality – (wc.cost + wp.penalties)  

random schedules optimized schedules



21Distributed Scan Schedule Optimization:Distributed Scan Schedule Optimization:
Implementation for May Demonstration Implementation for May Demonstration 

• Each sensor periodically broadcasts its measurements and schedule
• Each sensor uses its neighbors’ and its own measurements to compute 

local target trajectories
• Each sensor computes a local version of the global metric:

– it computes fields over the region it can scan
– it computes target density & scanning fields using the targets and 

measurements it knows about
• Each sensor optimizes its own schedule

– with respect to the last schedules it has received from its neighbors
– details on next slide

• Each sensor computes a locally-optimal schedule
– initial experiments indicate that global quality is also good
– though maybe not truly optimal
– extensive experiments planned – details later



22
How Each Sensor Optimizes Its Scan ScheduleHow Each Sensor Optimizes Its Scan Schedule

• Each node randomly initializes its scan schedule
• After initialization, each node periodically tries to improve its schedule 

using hill-climbing
– a scan schedule is represented as a finite map from time slot to sector
– in a single schedule, all scans have the same mode

• amplitude-only or amplitude-and-frequency

– a schedule may be transformed in a single hill-climbing step by changing the 
sector scanned in one time slot

02120
transformed 
schedule’s 

sectors

02100
original

schedule’s 
sectors

8.06.04.02.00.0scan begin 
time/seconds
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Simulator Results with New Noise ModelSimulator Results with New Noise Model

• Inner path is tracked well by itself
– low error: self-evident, but don’t have the 

numbers yet
– long tracks: 2 tracks are shown, having 80 

track points & 184 track points
– frequent updates: about every 2 seconds, on 

average
• Outer path is less well tracked, even by itself

– higher error
– shorter tracks: 15 tracks shown, total of 180 

track points
– updates less frequent: about every 4 seconds
– periods when target is lost

• For both paths together, error in tracking 
outer path throws off tracking of inner path

• No attempt to reduce energy usage



Abstract DynamicsAbstract Dynamics



25Simplified Test bed for Dynamics:Simplified Test bed for Dynamics:
Synchronous, Distributed Graph ColoringSynchronous, Distributed Graph Coloring

• Abstract constraint problem: distributed, approximate graph coloring
– objective is to minimize color conflicts

• i.e., edges connecting nodes of the same color

– degree of conflict is the fraction of edges that are conflicts
• low is good

• Each node repeatedly executes the following computations 
synchronously:
– the node activates if both of the following hold:

• it currently has at least one color conflict with a neighbor
• a randomly generated number is below some constant activation probability α

– if it activates, the node chooses a color that minimizes its conflicts
• based on what it currently believes are its neighbors’ colors
• there may be several optimal colors – one is chosen at random

– if the node changes color, it transmits its new color to its neighbors
• there is always a communication latency of exactly 1
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New Result: Effect of Phase TransitionsNew Result: Effect of Phase Transitions

• Experiments on coloring partial Latin squares (Gomes et al.)
– a Latin square of order k is a k x k grid of nodes
– each node is to be assigned an integer in the range 1 to k so that each integer 

occurs exactly once in each row and in each column
• A partial Latin square is a Latin square with some nodes’ values erased

– the problem is to complete the square by assigning values to the unassigned 
nodes

• Problem difficulty exhibits a phase transition in the fraction of holes
– number of ways of completing the partial square increases as the number of 

holes increases
– sudden change observed in the number of completions at critical fraction of 

holes
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Reduced Severity of Phase TransitionReduced Severity of Phase Transition

• Effects of phase transitions are less pronounced on short-term 
reductions in degree of conflict
– more pronounced on long-term convergence values

• Alternative statement: severity of the effect of a phase transition 
increases with the required quality of solution

• NB these are relative effects
– in absolute terms, phase transitions 

change the quality only slightly
– may be more significant for other 

types of constraint
• Effect also dissipates in under-

constrained problems
• Effect is secondary in over-

constrained problems

order 20
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New Result: Strict Synchrony is Not RequiredNew Result: Strict Synchrony is Not Required

• Periodic but asynchronous coloring
– simplifies implementation on distributed hardware

• Asynchronous execution is OK provided that the activation probability α
is low with respect to communication latency L
– “collision probability” along an edge = 1-(1-α)L < threshold

• Academic interest: extremely high communication latencies cause a 
“resonance” effect
– each color is adopted in turn by almost every node simultaneously



29New Result: Possible Phase TransitionNew Result: Possible Phase Transition
w.r.t. Interconnection Densityw.r.t. Interconnection Density

• For high-density graphs, the degree of conflict increases with the 
density for a while

• For very-high-density graphs, all conflicts are rapidly eliminated
– presumably due to large number of backbone variables that implicitly guide 

the search
• even a distributed search

• Practical consequences: CFP algorithm may actually be effective for 
dense graphs
– was originally designed for sparse graphs

Random 20-colorable graphs
size ~ 2000 nodes
d is the mean degree



WrapWrap--UpUp
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Project PlansProject Plans

• Design & implement dynamics experiments on modified challenge 
problem
– bypass the tracker(s) to directly assess resource manager
– feed ground truth target positions to resource manager

• with controllable noise added to simulate tracker uncertainty

– resource manager produces scan schedules suited to the (noisy) target 
estimates

– scanning quality is measured w.r.t. precise ground truth
– quality achieved by Kestrel’s scheduler can be compared with that achieved 

by centralized/greedy/local schedulers
• see metrics on slides 4 & 5

– particular emphasis on scalability: does local coordination lead to good 
global results

• Improve challenge problem performance
– in preparation for final demo
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Project Schedule & Milestones

2000 2001 2002 2003

Project Schedule & Milestones

enhance constraint 
optimization

develop decentralized
anytime scheduler code synthesis

final demo
& dynamics experiments

simulator
integration

hardware
integration
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Technology Transition/TransferTechnology Transition/Transfer

• Academia:
– distributed constraint optimization growing as a field of study
– Kestrel (and others) emphasizing pragmatic & real-time aspects

• trying to counter usual tendency to focus on perfect solutions

– presentations in relevant workshops:
• Sixth Biennial World Conference on Integrated Design & Process Technology
• Distributed Constraint Reasoning workshop (part of AAMAS 2002)
• Probabilistic Search Techniques workshop (part of AAAI 2002)
• Constraint Programming 2002 (submission)
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Program IssuesProgram Issues

• Large-scale experiments
– thousands of sensors, dozens of targets
– enough data to draw valid conclusions of scientific interest

• CP architecture currently requires each sensor to be represented as a 
unique JVM/process
– even in the simulator
– would require enormous computational power to perform large-scale 

experiments
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