
Establishing Secure Interactions Across Distributed
Applications in Satellite Clusters

Subhav Pradhan, William Emfinger, Abhishek Dubey, William R. Otte, Alessandro Coglio†

Daniel Balasubramanian, Aniruddha Gokhale and Gabor Karsai∗

∗ISIS/EECS, Vanderbilt University †Kestrel Institute,
Nashville, TN 37235, USA Palo Alto, CA 94304, USA

{pradhasm,emfinger,dabhishe,wotte, daniel,gokhale,gabor}@isis.vanderbilt.edu coglio@kestrel.edu

Abstract—Recent developments in small satellites have led
to an increasing interest in building satellite clusters as open
systems that provide a “cluster-as-a-service” in space. Since
applications with different security classification levels must
be supported in these open systems, the system must provide
strict information partitioning such that only applications with
matching security classifications interact with each other. The
anonymous publish/subscribe communication pattern is a pow-
erful interaction abstraction that has enjoyed great success in
previous space software architectures, such as NASA’s Core
Flight Executive. However, the difficulty is that existing solutions
that support anonymous publish/subscribe communication, such
as the OMG Data Distribution Service (DDS), do not support
information partitioning based on security classifications, which
is a key requirement for some systems. This paper makes two
contributions to address these limitations. First, we present
a transport mechanism called Secure Transport that uses a
lattice of labels to represent security classifications and enforces
Multi-Level Security (MLS) policies to ensure strict information
partitioning. Second, we present a novel discovery service that
allows us to use an existing DDS implementation with our custom
transport mechanism to realize a publish/subscribe middleware
with information partitioning based on security classifications of
applications. We also include an evaluation of our solution in the
context of a use case scenario.

I. INTRODUCTION

A cluster of satellites, whose overall mission functionality
is distributed across individual modules, provides a resilient
and highly dynamic architecture [1]. Such an architecture of
satellite clusters allows applications to take advantage of the
heterogeneity and redundancy of computing and sensing de-
vices available on different modules in the cluster. The hetero-
geneity of modules allows the system to provide a wide variety
of functionality while the redundancy becomes useful during
failures and outages of modules. Several existing and future
missions use this type of architecture including NASA’s Edison
Demonstration of SmallSat Networks, TANDEM-X, PROBA-
3, and PRISMA from Europe. In each of these missions, the
cooperating fractionated satellites are expected to provide the
foundations for truly distributed software applications.

In essence, the satellite clusters described above can be
thought of as “open” systems that provide a “cluster-as-a-
service” in space. Applications can be supplied by different
organizations, each of which may have different security
requirements and classifications. These applications should

not be allowed to interact arbitrarily, but rather only if they
have compatible security classifications. For example, an ap-
plication with classified information should not be allowed to
send it to an unauthorized application. Since the applications
themselves may not be fully trusted, the platform itself must
provide a secure execution environment that prevents arbitrary
flows of information between applications.

Applications in such distributed systems can interact with
each other using a variety of communication patterns, such
as the asynchronous method invocation and anonymous pub-
lish/subscribe patterns. For applications like flight software,
which need to distribute data without explicitly knowing
which applications wish to receive it, the publish/subscribe
interaction pattern [2] can be a solution. In this pattern, a
sender publishes messages without any knowledge of which
applications may be subscribing to them. Similarly, a receiver
subscribes to messages without any knowledge of which
applications are publishing the messages.

One notable example for the use of the publish/subscribe
pattern in spacecraft software is NASA’s Core Flight Executive
(CFE), which is a portable platform-independent framework
used as the basis for flight software for satellite data systems.
The CFE uses publish/subscribe to facilitate communication
between multiple applications. A review of the CFE revealed
that the publish/subscribe style architecture not only allowed
distributed development and easy integration of applications
but also allowed applications to be encapsulated, which im-
proved abstraction, flexibility, reuse and division of con-
cerns [3]. Thus, supporting this pattern in space systems is
highly desirable.

Unfortunately, existing technologies that support pub-
lish/subscribe communication, such as the OMG Data Dis-
tribution Service (DDS) [4], do not have a comprehensive
security model capable of partitioning information flows based
on the security classifications of applications, which is a key
requirement for open and distributed satellite clusters plat-
forms. The distributed system developers for satellite clusters
are now faced with a dilemma: there is a compelling argument
to use publish/subscribe in the clusters, however, existing
standardized publish/subscribe technologies do not support the
partitioning of information flows based on a strict security
model. The primary research contribution of this paper is to

address this key limitation in a standardized publish/subscribe
middleware in a way that does not need any non-standard
and invasive changes to the middleware so that the enhanced
but standards-compliant solution can continue to be used in a
variety of domains.

The research presented in this paper makes two primary
contributions. Our first contribution is motivated by the need
to remain standards-compliant and hence comprises a novel
mechanism called Secure Transport (ST), which is a net-
work transport layer that enforces information flow partitions
based on security classifications. ST uses Multi-Level Security
(MLS) labels [5] to represent security classification; and there-
fore, MLS policies are used to enforce information partitioning
based on a set of linearly ordered hierarchical classification
levels and non-hierarchical need-to-know categories. The stan-
dard MLS policy states that information can only flow on
the same level or from a lower to higher level according to
the dominance relation. In addition to supporting information
partitioning based on this MLS policy, ST also restricts any
communication topology that can be established between
any two application processes without any governance from
another process with elevated system privileges.

Our second contribution is motivated by the need for the
standards-compliant middleware to leverage the new mech-
anisms, and hence comprises a novel discovery service that
creates ST information flows between matching publisher and
subscriber endpoints of different applications. This is required
because without ST information flows, the publishers and
subscribers cannot communicate with each other. To realize
this service, we extended the centralized discovery mechanism
supported by OpenDDS [6] such that it becomes a privileged
system entity responsible for authorizing and establishing
ST information flows between application components with
security labels. This change does not interfere with the OMG
DDS standard. Furthermore, to make sure that this discovery
service is not abused, we ensure that only privileged entities
of the system can interact with it.

Impact of our work on space systems: Distributed space
systems, such as fractionated satellites, provide tremendous
flexibility and economic benefits since smaller and lighter
satellites are cheaper to build, launch, and maintain. It also
results in a system, which hosts distributed applications that
interact with each other via powerful and reusable interaction
paradigms including the anonymous publish/subscribe pattern.

Regardless of the communication patterns used by appli-
cations, security is of critical importance since (a) space
systems are extremely expensive and therefore cannot afford
security compromises with long term effects on the system,
(b) shared space systems are used by companies that are
extremely sensitive about their data and therefore require
a strict security model. Our research demonstrates how a
standardized publish/subscribe middleware can be extended
without invasive changes to the standard and applied in the
context of open, distributed satellite clusters to support the
strict security model of partitioned information flows between
publishers and subscribers.

The rest of this paper is organized as follows. Section II
provides a brief description of our system model, presents
an overview of the current OMG DDS standard, and finally
describes the problem and challenges that we solve in this
paper. Section III provides a description of Secure Transport
and how it supports information partitioning through the use
of MLS labels. Section IV describes, in detail, our solution ar-
chitecture for a novel, secure, discovery mechanism. Section V
presents experimental results, and Section VI presents related
research along with a comparison to our work. We conclude
in Section VII.

II. PROBLEM DESCRIPTION

This section describes the problem we address in this re-
search including the system model we assume and an overview
of technologies used to realize the solution.

A. System Model

We consider a cluster of satellites where each satellite has a
computing node that runs a copy of the Distributed REaltime
Managed System (DREMS) platform [7], [8]. DREMS is
a comprehensive information architecture that comprises an
operating system, middleware, and a component framework.
Applications are composed from reusable components, which
are hosted inside ‘actors’. Actors are the building blocks of this
information system and are similar to processes in traditional
operating systems except that the Actor identifiers are unique
across nodes and are not lost even after the death of the Actor.
Actors can be of two types: (a) Application Actors, and (b)
Platform Actors. Application Actors make up the mission-
specific application functionality and can be dynamically in-
stalled or removed. Platform Actors are extensions of the OS
in the sense that they serve to provide long running services
that are secure and therefore can invoke privileged system
calls. Platform Actors are part of the Trusted Computing Base
(TCB) [9]. Applications hosted in our platform cannot bypass
the TCB and access resources, such as the network.

To provide a higher level of abstraction to develop reusable
and composable application functionality, a middleware layer
provides an abstraction of lower-level operating system ser-
vices, simplifying their use and specifying well-defined pat-
terns for both local and remote communication. Primarily, both
point-to-point and anonymous publish/subscribe interactions
are available. The publish/subscribe interactions are provided
using a modified version of OpenDDS [6], which is an open
source implementation of the OMG DDS specification.

B. OMG DDS Overview

The OMG Data Distribution Service (DDS) specification [4]
defines a data-centric communication standard for communi-
cation between DDS entities (information producers and con-
sumers) in a wide variety of environments. A DDS application
consists of publishers and subscribers, where publishers use
data writers to produce data while subscribers use data readers
to consume data. The DDS specification also supports many
Quality of Service (QoS) policies which allows application

Fig. 1: OpenDDS Centralized Discovery Mechanism

developers to fine tune non functional properties of a DDS
middleware, and hence the communication between publishers
and subscribers.

From an application’s perspective, publishers and sub-
scribers are anonymous; yet they need to communicate with
each other, which needs a mechanism for them to discover
each other. To discover and match publishers and subscribers
(and therefore data writers and data readers), the DDS mid-
dleware uses a discovery service. Even though the exact
implementation of this discovery service varies from one
implementation to another, a common requirement for this
service is to be able to discover matching publishers and
subscribers and to establish connections between them. To
perform this matching, the discovery service uses topics. A
topic is a data type that serves the fundamental mechanism to
match up publishers and subscribers. Communication between
a data writer and a data reader does not occur unless the
topic published by the writer matches the topic subscribed
to by the reader. Figure 1 illustrates the centralized discovery
mechanism used by OpenDDS.

C. Problem Statement

The main problem we address in this paper is the need
to support secure interactions between distributed applications
that use the publish/subscribe pattern in open distributed sys-
tems. We have identified the following two primary challenges
that we resolve in this paper:

1) Challenge 1: A mechanism for secure interaction: To
support secure interactions between applications with varying
security classifications (and hence security labels), we need a
mechanism that permits interactions between applications with
matching security labels only. This means that an application
with a higher security label should be able to receive infor-
mation from another application that has the same or a lower
security label, but an application with a lower security label
must not be able to receive information from an application
with a higher security label. Primarily, our focus is on sup-
porting such a capability that can be leveraged by OMG DDS
without making invasive changes to the standard. Section III
describes our solution involving a secure transport mechanism.
We do not consider non interference in this work, which is a
stronger policy and often requires performance isolation.

2) Challenge 2: Secure publish/subscribe interaction:
Since we use DDS middleware to provide publish/subscribe

Fig. 2: Topic based application interaction in OMG DDS

capabilities to applications with different security classifica-
tions, we require these interactions be secure and provide
appropriate information partitioning. However, the OMG DDS
specification, as it stands currently, does not support any
specific security policy, and therefore existing DDS imple-
mentations lack a well-defined security model1

Existing DDS entities, such as topics and partitions cannot
be used as mechanisms to enforce information partitioning
based on security labels since applications associated with the
same topic can have different security classifications. A naive
solution would be to create a topic for each security label,
as shown in Figure 2. However, this approach has a number
of problems. First, it makes the applications responsible to
subscribe to topics that are appropriate to their security level.
Second, this approach also relies on higher security level
applications to correctly refrain from publishing samples to
topics to which lower security level applications are subscribed
to. Both these shortcomings are unworkable as we cannot trust
applications to behave correctly.

Therefore, to solve this problem, we need to leverage the so-
lution for Challenge 1, described in Section II-C1. Specifically,
we require a mechanism that is capable of using the solution
for Challenge 1 in order to establish secure publish/subscribe
communications between applications with correct security
labels. Section IV describes our solution.

III. RESOLVING CHALLENGE 1: SECURE TRANSPORT

This section presents Secure Transport (ST), which is a
novel transport mechanism implemented in the OS kernel
that (a) restricts the communication pathways that can exist
between any two processes on the same computing node or on
different computing nodes, (b) supports both unicast as well as
multicast transfers, (c) supports message authentication before
transmission and reception according to rules of a Multi-Level
Security (MLS) policy [5], [11], [7], and (d) provides packet
level encryption for messages using IPSec 2.

1There is a DDS security specification in development [10], however it
relies on the correct operation of the application and middleware to configure
and enforce these policies, which are not trusted in our model. This is
discussed in more detail in Section VI.

2The IPSec implementation in ST is the subject of ongoing work

MLS defines a policy based on partially ordered security
labels that assign classifications and need-to-know categories
to all information that may pass across process boundaries.
This policy ensures that information is allowed to flow from
a producer to a consumer in DDS if and only if the label of
the consumer is greater than or equal to that of the producer.
Both the allowed communication topology and the MLS policy
labels must be configured for each task by the secure discov-
ery mechanism, which uses processes with elevated system
privileges to do so. By designing a solution that resides at
the level of a transport mechanism, we shield higher level
middleware, such as OMG DDS, from invasive changes while
at the same time providing them an opportunity to leverage
these new mechanisms.

Secure Transport (ST) comprises the following key mecha-
nisms described below.

A. Endpoints

Endpoints are the basic communication resources used
by applications to transmit and receive messages; they are
analogous to socket handles in the traditional BSD socket
APIs. Like traditional sockets, user space programs pass an
endpoint identifier to the send and receive system calls.
Unlike traditional sockets, however, unprivileged tasks may
not arbitrarily construct endpoints that allow for inter-process
communication with other tasks; such endpoints must be
explicitly configured by a privileged Actor which is part of a
trusted system configuration infrastructure. All endpoints are
configured with a set of security labels that can be used for
sending messages through that endpoint.

Endpoints are separated into four different categories with
different restrictions on their creation and use; for the purposes
of this discussion, we will describe only the two endpoint
classes that are used for Inter-Process Communication (IPC):

• Local Message Endpoints (LME): Local message end-
points are the basic method for IPC and may be used to
send messages to other Actors hosted by the same operat-
ing system instance. These endpoints must be configured
by the trusted system configuration infrastructure and are
subject to restrictions placed by flows and security rules.

• Remote Message Endpoints (RME): Similar to LMEs,
RMEs are a mechanism for network IPC between Actors,
but may be used to communicate with Actors hosted by
different operating system instances.

B. Flows and Message Transfer Rules

Communication in ST is allowed between two LMEs or
RMEs if and only if there exist mutually compatible flows on
each endpoint. A flow can be thought of as a logical pipe
between two endpoints and determines the direction in which
messages can travel. It provides system integrators the ability
to specify the actors that are allowed to share messages. The
actual transfer of the message is further restricted by the MLS
rules (see below).

More concretely, a flow that is assigned to an endpoint
is a connectionless association with an endpoint owned by

a designated Actor. This association determines if the local
endpoint is allowed to send or receive messages with the
remote endpoint. Unicast flows connect a source endpoint
to a destination endpoint; multicast flows connect a source
endpoint to multiple destination endpoints.

In all cases, the flow assignment between two endpoints
must be mutual in order for communication to succeed.
Additionally, each message must be marked with the specific
label that indicates the security classification of that message.
Message transmission is allowed if and only if the following
rules are satisfied. We refer the readers to [8] for a full list of
formal MLS rules.

• The label of the message must be within the label set of
the sender endpoint.

• The sender must have an outbound flow to the recipient,
and the recipient must have a inbound flow from the
sender.

• The receiver’s endpoints label must be either at the same
classification level or at a higher classification level of the
received message. Thus, a lower classification application
cannot extract information from a higher classification ap-
plication on the reply path for a two-way communication
because the labels on the return path do not satisfy the
MLS rules.

Performing message exchange via endpoints and flows en-
ables decoupling between senders and receivers, which operate
only on their local endpoints without explicit knowledge of
the flows attached to those endpoints. For example, the flow
connecting a client to a failed server can be switched over to
an alternative server transparently to the client.

IV. RESOLVING CHALLENGE 2: A SECURE DISCOVERY
MECHANISM

Recall from Challenge 2 that the DDS publish/subscribe
communication was required to be secure and support the
information partitioning. To shield the DDS standard from
invasive changes, our security mechanism was designed at
the transport layer, in ST. This section therefore describes
how our DDS infrastructure leverages the ST mechanism. To
that end we first need to understand how the Deployment and
Configuration (D&C) infrastructure in DREMS works because
it is responsible for assigning the security labels, setting
up endpoints and the flows between communicating actors
and ultimately playing a key role in the secure discovery.
Subsequently, we present a detailed description of our novel
discovery mechanism that establishes secure publish/subscribe
interactions between applications using the ST.

A. Overview of the D&C Infrastructure

The D&C infrastructure is responsible for the deployment
and configuration of component-based applications. Once an
application is deployed, the D&C infrastructure is also respon-
sible for managing the application’s lifecycle throughout its
lifetime. The D&C infrastructure is an implementation of the
OMG D&C specification [12] and it is composed of multiple
Deployment Managers (DMs) at different levels of the cluster.

TABLE I: Entities involved in the Secure Discovery Mechanism

Entity Functionality
DDS Entity This represents the various DDS related entities such as domain participants, data writers and data readers. These entities are part

of a user’s component-based applications and therefore hosted inside their respective Component Servers (CSs).
DCPSInfo A singleton used to keep track of various DDS entities created by different applications and inform the DDS middleware.
CS ORB This is the default CORBA Object Request Broker (ORB) [13] that is created when a CS is instantiated by a Node Deployment

Manager (NDM). This ORB is used by the CS to communicate with its parent NDM.
Discovery Callback All new data readers and data writers register a callback object, which is used by the discovery mechanism to provide information

regarding data reader/data writer matches.
DictM Proxy Since NDMs do not have access to the Dictionary Manager (DictM), this proxy is used for communicating with the DictM, which

is collocated with the CDM.
Callback Proxy The Callback proxy is created by the DictM proxy. Upon creation of the Callback proxy, the DictM proxy provides this information

to the DictM. This is important because the DictM provides the data reader/data writers match information to the Callback proxy,
which in turn uses this information to establish the ST flows between endpoints used by matching data readers and writers.
The Callback proxy uses the ST interfaces to create these flows. Note that the ST flows must be established before the DDS
middleware can establish connection between data readers and data writers by using their respective callback objects.

DM ORB This is the ORB used by the NDM and CDM to communicate with each other.
DictM The Dictionary Manager (DictM) is a Platform Actor collocated with the CDM. It acts as a central information repository, which is

notified every time a new data reader or data writer is created. Upon creation of a new data writer, the DictM updates information
content and upon creation of a new data reader, the DictM finds a matching writer (if any) and propagates this information to the
callback objects of the created data readers.

In a satellite cluster there is exactly one Cluster Deployment
Manager (CDM), which is responsible for orchestrating the
deployment and configuration (D&C) of applications across
multiple nodes in the cluster. Each node has a single Node
Deployment Manager (NDM) that is responsible for perform-
ing node-specific D&C activities. The CDM and NDM are
Platform Actors and are therefore considered to be part of the
TCB. Finally, each node can have multiple Component Servers
(CS), which are spawned by NDMs as per requirement. All
parts of an application, i.e., component servers, components,
and secure transport endpoints are created by the D&C infras-
tructure according to a deployment plan, which is created by a
trusted system integrator. The trusted system integrator is also
responsible for assigning MLS labels to different applications.
A more detailed description of this D&C infrastructure can be
found in our earlier work [7].

B. An Architecture for Secure Discovery Mechanism

The discovery mechanism discussed in this section lever-
ages existing discovery capabilities provided by OpenDDS.
OpenDDS supports two forms of discovery mechanisms: (1)
using a centralized information repository called the InfoRepo,
and (2) using a peer-to-peer approach where participating DDS
applications discover each other in a collaborative way rather
than using a centralized information repository.

The peer-to-peer discovery approach requires all appli-
cations in a network be able to communicate each others
existence in order to perform discovery. This is not a workable
solution for our purpose as the communication restrictions
enforced by ST mechanism preclude any two unprivileged
application processes spontaneously connecting with each
other. In addition, an application with lower security label
must not be able to discover the existence of other applications
with a higher security label. Since we cannot use the peer-to-
peer discovery mechanism, our solution extends the central-
ized discovery service provided by OpenDDS. Our extended
capabilities require the following functionalities:

Cluster
Deployment
Manager

DM ORB

DictM

Node Deployment
Manager

DM ORB

DictM
Proxy

Callback
Proxy

Component Server

DCPSInfo

CS ORB

DDS
Entity

Discovery
Callback

Fig. 3: Discovery Architecture. Table I describes the entities
shown in this figure.

• The discovery mechanism should be able to establish
Secure Transport information flows between data writers
and data readers of applications with matching security
labels. Since ST is a transport mechanism implemented
in the kernel itself, it requires the discovery mechanism
to have elevated system privileges to create ST endpoints
and establish ST information flows.

• In addition to the discovery mechanism itself having sys-
tem privileges, it should only interact with other processes
with system privileges. This prevents the centralized
repository from being a target of “data-at-rest” attacks.

• Normally, a discovery mechanism only checks for topic
and relevant Quality of Service (QoS) parameters when
matching data writers and data readers. However, since
we are using the concept of security classification repre-
sented by security labels, we require that the discovery
mechanism also check these security labels during the
discovery process.

To address these challenges and since we build on top
of OpenDDS’ centralized approach, a centralized discovery
mechanism called the Dictionary Manager (DictM) is used.
The DictM is a Platform Actor and therefore has system
privileges to establish Secure Transport information flows and
it only interacts with other Platform Actors.

Create
DW_Proxy

DCPSInfoCS
Domain

Participant

DataWriter
Callback

DictM
Proxy

Callback
Proxy

DictM

Create
DW_Callback

Add
DW_Callback

Create
DW

Add
DW_Callback

Add
DW_Proxy

Create Data Writer

DictM
Callback

Proxy
DataWriter

Callback

Add
Association

Add
Association

Association
Complete

Association
Complete

Configure
SecureTransport

Data Reader Association

Fig. 4: Sequence Diagram illustrating the process of (a) Data Writer creation, and (b) Data Reader association

Figure 3 presents the architecture for the secure discovery
mechanism showing how it leverages the D&C infrastructure
(and hence the TCB). Table I enlists the functionalities of these
entities. Figure 4 presents sequence diagrams illustrating (1)
creation of a data writer, and (2) association of a data reader
with an existing data writer.

As shown in Figure 4, to create a data writer, first the
Component Server creates a DDS domain participant which
in turn is used to create the data writer. Both the domain
participant and data writer are DDS Entities. The domain
participant also creates a data writer callback, which is the
Discovery Callback that will later be used to inform the
data writer about matching data readers. Once the data writer
callback object is created, this information is propagated to the
DCPSInfo and DictM Proxy, which in turn creates a Callback
Proxy and sends this information to be stored in the DictM.

Data reader creation follows the same pattern as that of a
data writer. Once the data reader is created and this informa-
tion is propagated to the DictM, it finds the matching data
writer and adds the association. This process is also shown
in Figure 4. Adding an association consists of configuring a
ST flow between endpoints of the matched data reader and
data writer. Once the ST flow is established, the association
is complete and now the DDS middleware can establish a
connection between the data writer and the data reader.

V. EVALUATION

This section evaluates our solution in the context of a use
case scenario. Since the Secure Transport (ST) leverages IPv6,
we also compare the effective performance of ST against
native IPv6; both transmitted over the same physical medium.
This evaluation is important since ST will be used for all the
secure communication by our system and hence the cost of
using such a mechanism must be understood prior to its use.

A. Experimental Setup

Figure 5 presents the setup of our experiment comprising
two applications. These applications use DDS pub/sub for
communication. Each application consists of a publisher and

Publisher-1

Subscriber-1

Publisher-2

Subscriber-2

Node 1 Node 2

Topic-T

App-1 App-2 SecretUnclassified

Security label relation:
Secret > Unclassified

Fig. 5: Use case scenario: Two DDS applications with different
security labels

subscriber. App-1 is hosted on node-1 and has security label
unclassified, whereas, App-2 is hosted on node-2 and has the
security label secret. App-2’s security label thus dominates
the label of App-1, and hence only App-1 is allowed to send
information to App-2.

Based on the setup mentioned above, the subscriber in App-
2 should be able to receive messages published by publishers
in both App-2 and App-1. However, the subscriber in App-
1 should only be able to receive messages published by
a publisher in App-1 since App-2 is publishing messages
with higher security label. To demonstrate this behavior,
Figures 6(a) and 6(b) present log message snippets3 captured
during the execution of the above-described use case with the
appropriate App shown circled.

B. Secure Transport Network Utilization

The Secure Transport (ST) mechanism presented previously
in Section III is built on top of IPv6. With any communication
protocol, performance is a key concern, so the effective
performance (i.e., network utilization) of ST versus native IPv6
transmitted over Ethernet was evaluated. First the overhead of

3These log message snippets have been slightly modified in order to exclude
irrelevant log messages.

CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <0>
[LM_DEBUG] - 23:45:17.824504 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:18.707008 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <1>
[LM_DEBUG] - 23:45:18.708406 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:19.707905 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <2>

(a) App-1 log message snippet which shows that App-1 only receives messages published by itself and not from App-2 since the latter has
higher security label

CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App2> Hello World. Test message from Provider <12>
[LM_DEBUG] - 23:45:17.183886 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:17.738411 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <0>
[LM_DEBUG] - 23:45:17.739916 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:18.180700 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App2> Hello World. Test message from Provider <13>
[LM_DEBUG] - 23:45:18.182083 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:18.706913 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <1>
[LM_DEBUG] - 23:45:18.708378 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:19.180884 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App2> Hello World. Test message from Provider <14>
[LM_DEBUG] - 23:45:19.183357 - MessageDispatcher::execute_message - Message executed
[LM_DEBUG] - 23:45:19.706862 - MessageDispatcher::execute_message - Deadline_type = DLT_NONE. Execute CMObject.
CONSUMER EVENT: Consumer_Message_data_listener_exec_i::on_one_data: received message <App1> Hello World. Test message from Provider <2>

(b) App-2 log message snippet which shows that App-2 receives messages published by both itself and App-1 since it has higher security label
than App-1

Fig. 6: Log message snippets for App-1 and App-2

the protocol and its average and maximum throughput were
calculated and compared to native IPv6. Since ST is built on
top of IPV6, each ST packet on the network incurs the same
header overhead as an IPv6 packet.

Additionally, each message includes a ST-specific header
containing information about the sending actor, the flow, the
security labels, etc. This ST header is a minimum of 34 bytes
for the smallest security label, averages around 60 bytes for
most security label lengths, and has a maximum of 1,052 bytes
for the longest security labels. Since a ST message can be up
to 8 Kilobytes and an Ethernet packet is at most 1500 bytes,
only one transmitted packet of each message will have the ST
header. Since our test network on which we run IPv6 and ST
is a tunneled 6-to-4 network, we must add the IPv4 header
length to our total packet header. Finally, we choose UDP as
our transport protocol for both IPv6 and the underlying ST
protocol, so UDP’s 8 byte header must be taken into account.
The network utilization calculations are presented in Table II.
These calculations are based on experiments executed on a
private testbed of nodes connected to each other through a
gigabit Ethernet switch.

VI. RELATED WORK

The OMG DDS specification, as currently specified, lacks
an extensive security specification and therefore all DDS
implementations lack a well-established security model. How-
ever, RTI [14] and PrismTech [15] have combined their efforts
to put forward a DDS security proposal [10]. This proposal

TABLE II: Network Utilization Calculations for IPv6 and for
Secure Transport tunneled through an IPv4 network.

Message Utilization (8192B)
IPV6 0.927956502

Minimum ST Header 0.924396299
Average ST Header 0.921692169

Maximum ST Header 0.820348488

focuses on providing fine-grained, data-centric security by
providing (1) access control per DDS topic, (2) read/write
permissions for related DDS entities, and (3) field-specific
permissions, which allow different fields of a particular topic
to have different permissions.

Even though this proposal is critical to the advancement of
the state of the art in DDS, however, a key issue that we
have identified is that it relies on applications to correctly
configure the security policies required, and the middleware
to correctly enforce them. This requirement is fundamentally
incompatible with a threat model where applications cannot
be trusted. Furthermore, unlike our approach, this proposal
is directed towards a solution that involves the entire DDS
middleware to be part of the security model and therefore the
TCB. Since the TCB is assumed to be trusted, care should be
taken to keep its size small. Thus, maintaining the entire DDS
middleware in the TCB is infeasible.

Similarly, prior efforts [16], [17] also require the entire DDS
middleware to be part of the TCB. In [16], the authors present

an approach in which Authentication and Authorization (AA)
is embedded in the discovery mechanism which is imple-
mented as a special network application located within the
DDS Real-time Pub/Sub (RTPS) layer. This approach differs
from ours since we place the centralized repository, used for
discovery, outside of the DDS middleware. The work presented
in [17], focuses on integrating Role-based Access Control
(RBAC) with pub/sub communications. RBAC is similar to
MLS in that the different roles (security labels) provide
principals (actors) with different services (access restrictions).
However, RBAC allows for the roles, in our case security
labels, of a principal to change during the lifetime of the
application, something that we do not support as we consider
such flexibility as a potential source of attack.

In [18], the authors present the notion of microguards for
data access restrictions. Microguards are distinct from the
pub/sub middleware and are placed on domain boundaries
to facilitate information sanitization via transitioning policies
between any two domains. The authors argue that these
microguards can be configured to perform checks that realize
MLS policies. A limitation with guards is that they tend to
be very specific to a data type and do not support generic
data communications. Also, in their network configuration, the
guards sit between networks or systems and connects them.
They are not part of an actual system so it is possible to use a
different communication path to bypass the security enforced
by these guards. Such bypassing is not feasible in our solution.
Furthermore, in our approach, all of the MLS-related label
checks are done by a single entity that provides the discovery
service rather than by distributing the task among multiple
guards which introduces unnecessary complications and leads
to an increase in the number of possible points of attack.

The Component Information Flow (CIF) framework pre-
sented in [19] provides a way of achieving data integrity
and confidentiality during both intra- and inter-component
communication. Labels are assigned to component ports at
design-time via a policy file. However, that work has some
limitations with the type of systems considered here because
it supports label checking only at design and compile time,
whereas we allow participants to arrive and leave dynamically.

VII. CONCLUSIONS

This paper presented our work towards establishing secure
publish/subscribe communication between applications with
varying security classifications levels. These requirements
were motivated by the open nature of distributed systems, such
as the satellite clusters, in which applications from different
vendors are likely to be hosted on the shared resources of the
satellite cluster. Consequently, strict isolation among the traffic
belonging to different applications and assuring communica-
tions only between entities that satisfy the MLS policies is
needed. To that end we presented (1) Secure Transport, which
is our transport mechanism that supports Multi-Label Security
(MLS) labels and MLS policies to represent and validate
security classifications, and (2) a secure discovery mechanism
that is capable of establishing Secure Transport flows between

DDS-based publish/subscribe applications that have matching
security classifications. The use of a transport-level security
mechanism ensures that no invasive changes need to be made
to standard, application-level middleware, such as DDS. Our
experimental evaluations indicate that our system provides the
necessary information partitioning and that the extra overhead
of the ST is negligible.

Acknowledgments: This work was supported by the
DARPA System F6 Program under contract NNA11AC08C
and USAF/AFRL under Cooperative Agreement FA8750-13-
2-0050. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of DARPA
or USAF/AFRL. The authors thank Olin Sibert of Oxford
Systems, Graham O’Neil of Kinsey Technical Services and
all the team members of our project for their invaluable input
and contributions to this effort.

REFERENCES

[1] O. Brown and P. Eremenko, “The Value Proposition for Fractionated
Space Architectures,” AIAA Paper 2006-7506, 2006.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[3] L. Fesq and D. Dvorak, “Nasa’s software architecture review board’s
(sarb) findings from the review of gsfc’s "core flight executive/core flight
software",” in Workshop on Spacecraft Flight Software (FSW), 2012.

[4] Data Distribution Service for Real-time Systems Specification, 1.2 ed.,
Object Management Group, Jan. 2007.

[5] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” MITRE, Technical Report 2547, Volume I, 1973.

[6] Object Computing Incorporated, “OpenDDS,” http://www.opendds.org,
2007.

[7] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons,
C. Szabo, A. Coglio, E. Smith, and P. Bose, “A Software Platform
for Fractionated Spacecraft,” in Proceedings of the IEEE Aerospace
Conference, 2012. Big Sky, MT, USA: IEEE, Mar. 2012, pp. 1–20.

[8] T. Levendovszky, A. Dubey, W. R. Otte, D. Balasubramanian, A. Coglio,
S. Nyako, W. Emfinger, P. Kumar, A. Gokhale, and G. Karsai, “Dis-
tributed real-time managed systems: A model-driven distributed secure
information architecture platform for managed embedded systems,”
IEEE Software, vol. 31, no. 2, pp. 62–69, 2014.

[9] J. Rushby, “The design and verification of secure systems,” in Eighth
ACM Symposium on Operating System Principles (SOSP), Asilomar,
CA, Dec. 1981, pp. 12–21, (ACM Operating Systems Review, Vol. 15,
No. 5).

[10] Object Management Group, DDS Security Joint Revised Submission,
OMG Document dds/2013-02-15 ed., Object Management Group, Mar.
2013.

[11] O. Sibert, “Multiple-domain labels,” 2011, presented at the F6 Security
Kickoff.

[12] Deployment and Configuration of Component-based Distributed Appli-
cations, v4.0, Document formal/2006-04-02 ed., OMG, Apr. 2006.

[13] The Common Object Request Broker: Architecture and Specification
Version 3.1, Part 1: CORBA Interfaces, OMG Document formal/2008-
01-04 ed., Object Management Group, Jan. 2008.

[14] R.-T. Innovations, “RTI Data Distribution Service,”
http://www.rti.com/products/dds/index.html.

[15] PrismTech, “OpenSplice Data Distribution Service from PrismTech,”
http://www.prismtech.com/opensplice.

[16] F. Ronci and M. Listanti, “Embedding authentication & authorization in
discovery protocols for standard based publish/subscribe middleware: A
performance evaluation,” Communications and Network, vol. 3, no. 1,
pp. 39–49, 2011.

[17] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch, “Access control in
publish/subscribe systems,” in Proceedings of the second international
conference on Distributed event-based systems. ACM, 2008, pp. 23–34.

[18] C. Partridge, R. Walsh, M. Gillen, G. Lauer, J. Lowry, W. T. Strayer,
D. Kong, D. Levin, J. Loyall, and M. Paulitsch, “A secure content
network in space,” in Proceedings of the seventh ACM international
workshop on Challenged networks. ACM, 2012, pp. 43–50.

[19] T. Abdellatif, L. Sfaxi, R. Robbana, and Y. Lakhnech, “Automating
information flow control in component-based distributed systems,” in
Proceedings of the 14th international ACM Sigsoft symposium on
Component based software engineering. ACM, 2011, pp. 73–82.

