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Zero-knowledge circuits are sets of equality constraints over arithmetic expressions interpreted in a
prime field; they are used to encode computations in cryptographic zero-knowledge proofs. We make
the following contributions to the problem of ensuring that a circuit correctly encodes a computation:
a formal framework for circuit correctness; an ACL2 library for prime fields; an ACL2 model of the
existing R1CS (Rank-1 Constraint Systems) formalism to represent circuits, along with ACL2 and
Axe tools to verify circuits of this form; a novel PFCS (Prime Field Constraint Systems) formalism
to represent hierarchically structured circuits, along with an ACL2 model of it and ACL2 tools to
verify circuits of this form in a compositional and scalable way; verification of circuits, ranging from
simple to complex; and discovery of bugs and optimizations in existing zero-knowledge systems.

1 Introduction

In cryptography, a zero-knowledge proof is a method by which a prover can convince a verifier that they
know a secret x that satisfies a computable predicate P, without revealing x and without involving third
parties [22, 10]. Spurred by recent advances that have greatly improved their efficiency [9, 23, 14, 7, 13],
zero-knowledge proofs are finding increasingly wide application, particularly in the blockchain world
[20, 32, 8, 19, 12, 1], holding promise to rebalance privacy on the Internet [37, 18].

While most of the technical details of zero-knowledge proofs are irrelevant to this paper, the one
crucial fact is that the predicate P must be expressed as a zero-knowledge circuit, which can be defined1

as a set of equality constraints over integer variables where the only operations are addition and multipli-
cation modulo a large prime number. This is a low-level representation PL of P, at odds with the need for
P to be clearly understood by both prover and verifier, who we presume would understand a higher-level
representation PH of P, e.g. expressed in a conventional programming language. Unless PL and PH denote
the same P, the zero-knowledge proof may not quite prove what is expected.

This leads to the mathematically well-defined problem of formally proving that a zero-knowledge
circuit correctly represents a higher-level description. Note the difference between formal proofs, which
provide logic-based unconditional evidence of mathematical assertions, and zero-knowledge proofs,
which provide cryptography-based statistically overwhelming evidence of computational assertions. Be-
sides formal proofs about zero-knowledge proofs, which is the topic of this paper, one could imagine
doing zero-knowledge proofs of formal proofs (i.e. prove a theorem without revealing the proof, which
may have interesting applications), but we have not explored that yet. Given the above characterization
of the problem in terms of zero-knowledge circuits, the zero-knowledge proof aspect is largely irrelevant
here; the unqualified ‘proof’ and similar words in the rest of this paper have the familiar meaning.

This paper describes our endeavors, in the course of various projects, to tackle the zero-knowledge
circuit verification problem, using ACL2 [26] and tools built on it. Our contributions are:

(a) A general formal framework for zero-knowledge circuit correctness, i.e. that PL ⇐⇒ PH.
(b) A library of rules to reason about prime fields—the arithmetic basis for zero-knowledge circuits.

1There seems to be no universal definition of zero-knowledge circuits and of some related notions in the literature.
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(c) A formal model of Rank-1 Constraint Systems (R1CS), an existing formalism commonly used to
represent zero-knowledge circuits.

(d) Rules and tools to verify R1CS circuits, including a new specialized version of Axe [38, axe].
(e) A formal model of Prime Field Constraint Systems (PFCS), a novel formalism developed by us

that generalizes R1CS with richer forms of constraints and with hierarchical structure.
(f) Rules and tools to verify PFCS circuits, in a compositional and scalable way.
(g) Verification of zero-knowledge circuits, ranging from simple to complex, in R1CS and PFCS form.
(h) Discovery of two bugs and several optimizations in a zero-knowledge circuit construction library.

Section 2 provides the necessary background on zero-knowledge circuits. Section 3 describes con-
tribution (a). Section 4 describes contribution (b). Section 5 describes contributions (c), (d), (g), and (h).
Section 6 describes contributions (e), (f), and (g). Related work is discussed in Section 7. Future work is
outlined in Section 8. Some conclusions are drawn in Section 9.

2 Background

A prime field is a set Fp = {0, . . . , p−1}, consisting of the natural numbers below p, where p is a prime
number. The arithmetic operations on Fp are:

addition: x⊕p y = (x+ y) mod p
subtraction: x⊖p y = (x− y) mod p
multiplication: x⊗p y = (x× y) mod p
division: x⊘p y = z, where x = y⊗p z, if y ̸= 0

That is, all the operations are modular versions of the ones on the integers, except that the division of x
by y yields the unique z (which always exists) that yields x when multiplied by y, provided that y ̸= 0.
We may denote the prime field arithmetic operations with the same symbols as the integer arithmetic
operations, i.e. +, −, ×, /. We may also omit the multiplication symbol altogether, e.g. (x+ 1)(y− 1)
may stand for (x+1)× (y−1), which in turn may stand for (x⊕p 1)⊗p (y⊖p 1). We may also just write
F, leaving p implicit. Context should always disambiguate these commonly used abbreviations.

A zero-knowledge circuit is a set of constraints that are equalities between expressions built out of
variables, constants, additions, and multiplications, all interpreted in F. By designating certain vari-
ables as inputs and outputs, the constraints can represent a computation of outputs from inputs. Zero-
knowledge circuits generalize arithmetic circuits, which are like boolean circuits, except that wires carry
integers instead of booleans, and gates perform arithmetic operations instead of boolean ones.

For reasons that depend on the details of zero-knowledge proofs, such constraints must be written in
specific forms [15]. A popular formalism is Rank-1 Constraint Systems (R1CS), whose constraints have
the form (a0+a1x1+ · · ·+anxn) (b0+b1y1+ · · ·+bmym) = (c0+c1z1+ · · ·+clzl), where n,m, l ≥ 0, each
ai,b j,ck is a coefficient in F, and each xi,y j,zk is a variable ranging over F. That is, an R1CS constraint
is an equality between the product of two polynomials and a polynomial, each polynomial having zero or
more variables with exponent 1, i.e. a linear combination. An R1CS circuit is a set of these constraints.
Literature definitions of R1CS are usually in terms of vectors and matrices; the definition just given here
is more like an abstract syntax of R1CS.

(w) (x− y) = (z− y) z :=

{
x if w = 1
y if w = 0

Figure 1: An ‘if-then-else’ conditional.

For example, if w is boolean, i.e. either 1 or
0, the circuit in the left part of Figure 1 represents
the computation in the right part, which sets z to
x or y based on whether w is 1 or 0. If w = 0, the
left side of the constraint is 0 and thus z = y; if

http://acl2.org/manual?topic=ACL2____AXE
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w = 1, the −y cancels and thus z = x.

(u− v) (s) = (1−w)
(u− v) (w) = (0)

w :=

{
1 if u = v
0 if u ̸= v

Figure 2: An equality test.

As another example, the circuit in the
left part of Figure 2 represents the compu-
tation in the right part, which sets w to 1 or
0 based on whether u= v or not. If u= v, the
first constraint makes w = 1, and the second
constraint is satisfied because 0× 1 = 0. If
u ̸= v, the second constraint makes w = 0, and the first constraint is satisfied by s = 1/(u− v).

These and other examples can be found in the literature, e.g. [30] and [24, Appendix A]. Circuits vary
in size and complexity. Even the ones in Figure 1 and Figure 2 require a little thought to understand.

Larger circuits are built from smaller ones by joining their constraints and sharing some variables.
For instance, combining Figure 1 and Figure 2 yields a circuit that represents the computation that sets
z to x or y based on whether u = v or not; the variable w is shared, with Figure 2 guaranteeing that it
is boolean as assumed in Figure 1. In this kind of hierarchical construction, a gadget is a circuit with a
well-defined purpose, usable as a component of larger gadgets, and possibly made of smaller gadgets.
The zero-knowledge circuit PL in Section 1 is a top-level gadget; it represents the computation, described
in some high-level way PH, of the predicate P on the secret input x.

While all the variables in the gadget in Figure 1 are involved in the represented computation, the
variable s in the gadget in Figure 2 is not. It is an internal variable, while the other ones are external
variables; the latter are divided into input and output variables according to the represented computation.
When the two gadgets are combined as just described, the shared external variable w becomes internal
to the combined gadget. The distinction between external and internal variables, and between input
and output variables, is not captured in the R1CS formalism, but it is arguably implicit in the notion
of gadget. In general, internal variables cannot be avoided in gadgets; attempts to eliminate them often
result in subtly non-equivalent constraints that fail to adequately represent the intended computation.

Although direct support is limited to F as a data type and (field) addition and multiplication as
operations, R1CS circuits are at least as expressive as boolean circuits: if x and y are boolean variables
(like w earlier), the constraint (x)(y) = (1−z) represents a ‘nand’ gate with output z (and similarly simple
constraints represent other logical gates); and higher-level data types can be always encoded as bits. But
more efficient representations (fewer variable and constraints) are often possible.

(z0) (1− z0) = (0)
...

(zn) (1− zn) = (0)
(∑n

i=0 2izi) (1) = (∑n−1
i=0 2ixi +∑

n−1
i=0 2iyi)

Figure 3: An unsigned n-bit integer addition.

For example, two unsigned n-bit integers, en-
coded as the bits x0, . . . ,xn−1 and y0, . . . ,yn−1 in
little endian order, can be added via the gadget
in Figure 3. The first n + 1 constraints force
z0, . . . ,zn to be boolean. The last constraint forces
them to be the bits of the sum, in little endian or-
der, where zn is the carry. This assumes that the
prime p has at least n+ 2 bits, so that the field
operations do not wrap around p; a typical p has about 250 bits, sufficient for fairly large integers.

R1CS circuits are normally constructed programmatically using libraries [3, 4, 6, 27, 28] that pro-
vide facilities to build gadgets hierarchically. These libraries are invoked directly, by programs written to
build specific circuits, or indirectly, by compilers of higher-level languages to R1CS [2, 5, 25, 31, 11, 29].
As these libraries are invoked, they generate growing sequences of the R1CS constraints that form the
gadgets.2 Separate instances of the same gadget have different variables, which are typically generated

2The final sequence consists of the constraints for the predicate P in Section 1, and is part of the zero-knowledge proof.



A. Coglio, E. McCarthy, E. Smith 97

via monotonically increasing indices. The gadgets’ hierarchical structure, reflected in both the static or-
ganization and the dynamic execution of the libraries, is lost in the generated flat sequence of constraints;
this is not an issue for zero-knowledge proofs, but it can be for formal proofs, as elaborated later.

3 Formal Framework

An R1CS circuit, along with an ordering of the r variables that occur in it, determines a relation R ⊆ Fr

consisting of the r-tuples that satisfy all the constraints, when assigned element-wise to the variables.
If additionally the variables are partitioned into q external ones and r − q internal ones (in the sense
of Section 2), and ordered so that the former precede the latter, a relation R̃ ⊆ Fq is also determined,
defined as R̃ = {⟨φ1, . . . ,φq⟩ | ∃⟨φ ′

1, . . . ,φ
′
r−q⟩.R(φ1, . . . ,φq,φ

′
1, . . . ,φ

′
r−q)}, i.e. consisting of the q-tuples

that satisfy all the constraints, when assigned element-wise to the external variables, for some (r− q)-
tuples assigned element-wise to the internal variables. The tuples are solutions of the constraints. The
informal notion of gadget described in Section 2 can be more precisely defined as an R1CS circuit
accompanied by an ordering and designation of its variables as just described; R̃ is the semantics of the
gadget. For example, for the gadget in Figure 2, R = {⟨u,v,w,s⟩ | (u− v) s = 1−w ∧ (u− v)w = 0} and
R̃ = {⟨u,v,w⟩ | ∃s.R(u,v,w,s)}.

Given this semantic characterization, it is natural to use a relation S ⊆ Fq as specification of the gad-
get, and to express correctness of the gadget as R̃ = S. The specification S may be defined in whichever
high-level way that is convenient (more on this later), but in any case it denotes the set of q-tuples that
must be the solutions of the gadget. Correctness consists of soundness R̃ ⊆ S (i.e. every solution of the
gadget satisfies the specification) and completeness S ⊆ R̃ (i.e. everything satisfying the specification is
a solution of the gadget). To prove soundness and completeness, the definition of R̃ must be expanded,
to expose the constraints that define R. To prove soundness, the existential quantification over the an-
tecedent can be turned into a universal quantification over the implication, leading to the quantifier-free
formula R(φ1, . . . ,φq,φ

′
1, . . . ,φ

′
r−q) =⇒ S(φ1, . . . ,φq). To prove completeness, no such move is possible:

the formula S(φ1, . . . ,φq) =⇒ ∃⟨φ ′
1, . . . ,φ

′
r−q⟩.R(φ1, . . . ,φq,φ

′
1, . . . ,φ

′
r−q) demands dealing with the exis-

tential quantification explicitly, typically by exhibiting witnesses for the internal variables φ ′
1, . . . ,φ

′
r−q.

When a gadget represents a computation (as in Section 2), the specification S must specify the com-
putation. For this, a computation is modeled as a function f : I1 ×·· ·× In → (O1 ×·· ·×Om)∪{E} from
n ≥ 0 inputs to m ≥ 0 outputs or to a distinct error E. The case n = 0 is uninteresting but unproblematic.
The case m = 0 models assertion-like computations, e.g. for each gadget (zi)(1− zi) = (0) that checks
whether zi is a bit, used in Figure 3: the computation represented by the gadget returns the empty tuple
of outputs ⟨⟩ if zi is boolean, or E otherwise. The function f always models a deterministic computation,
which is appropriate for zero-knowledge applications.3 The function f only captures the computation’s
input/output behavior, not other aspects of its execution; this is consistent with the fact that R1CS con-
straints only express relations among variables. For example, for the gadget in Figure 2, I1 = I2 =O1 =F,
f (u,v) = 1 if u = v, f (u,v) = 0 if u ̸= v, and thus f (u,v) ̸= E always.

To represent f in R1CS form, its inputs and outputs must be represented as field elements, via injec-
tive encoding functions eI

i : Ii →Fni , where eI
i maps each input xi ∈ Ii to some number ni of field elements,

and eO
j : O j → Fm j , where eO

j maps each output y j ∈ O j to some number m j of field elements. This leads
to a computation on encoded inputs and outputs f̂ : FN → FM ∪{E}, with N = ∑i ni and M = ∑ j m j,
defined as follows: (1) if f (x1, . . . ,xn) = ⟨y1, . . . ,ym⟩ then f̂ (eI

1(x1), . . . ,eI
n(xn)) = ⟨eO

1 (y1), . . . ,eO
m(ym)⟩;

3While zero-knowledge proofs themselves involve non-deterministic computations, normally they (probabilistically) prove
facts about deterministic computations.
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(2) if f (x1, . . . ,xn) = E then f̂ (eI
1(x1), . . . ,eI

n(xn)) = E; and (3) f̂ returns E outside the range of the input
encodings. For example, for the gadget in Figure 2, eI

1 = eI
2 = eO

1 = id (identity) and f̂ = f .
The computation f̂ is represented by a gadget with q = N +M external variables for the inputs and

outputs. The specification of f̂ is S(x1, . . . ,xN ,y1, . . . ,yM) = [ f̂ (x1, . . . ,xN) = ⟨y1, . . . ,yM⟩]. Thus, sound-
ness means that every solution of the gadget corresponds to a non-erroneous instance of the computation,
and completeness means that every non-erroneous instance of the computation corresponds to a solution
of the gadget. Soundness alone is not sufficient for correctly representing a computation: a gadget with-
out solutions is trivially sound; completeness ensures that there is a solution for every input for which
the computation is not erroneous. For example, for the gadget in Figure 2, S = {⟨u,v,w⟩ | f (u,v) = w}.

For a top-level gadget PL that represents P in a zero-knowledge proof (see Section 1 and Section
2), whose formal semantics is a relation R̃P as above, the specification SP is derived from the high-level
description PH of P. If PH is a program in a higher-level language [2, 5, 25, 31, 11, 29], a function fP that
denotes the execution of the program is formally defined, based on a formalization of the language, and
a specification relation SP is derived from it as above. If PH is a description of a fixed application-specific
computation (e.g. Zcash shielded transactions [19]), fP is defined by formalizing that description, and SP

is derived from it as above. For sub-gadgets of PL, specifications may be written in any formal form that is
convenient; these specifications play a role in the formal verification of PL (see Section 5.5 and Section 8),
but they are not directly exposed to the zero-knowledge prover and verifier mentioned in Section 1. The
understandability of PH by prover and verifier, mentioned in Section 1, as with all complex technologies,
boils down to trusting authoritative high-level informal descriptions for users from the general public,
analyzing the aforementioned programs for users who are also software developers, and examining the
formalizations and theorems for users who are also formal verification specialists.

4 Prime Fields

Starting with the recognizer of prime numbers primep from [39, [books]/projects/numbers], the
prime fields library [38, prime-fields] introduces a recognizer fep of field elements, and functions
add, sub, mul, div, neg, inv, pow, and minus1 for field operations. These are all parameterized over a
prime p, e.g. (fep x p) checks if x is in Fp, and (add x y p) returns x⊕p y (see Section 2).

The recognizer and operations are executable. The multiplicative inverse inv is calculated via pow,
according to the known equation 1⊘p x = xp−2 mod p; we prove that this definition indeed yields the
multiplicative inverse. The definition of pow is an mbe whose :logic is recursively repeated multiplica-
tion and whose :exec is fast modular exponentiation mod-expt-fast from [38, arithmetic-3].

The library provides basic theorems, such as all the standard field axioms (e.g. commutativity of ad-
dition); these theorems often suffice for relatively simple reasoning. The library also provides collections
of rules that realize certain normalization strategies, useful for more elaborate reasoning.

5 Rank-1 Constraint Systems

5.1 Model

Based on the prime fields library described in Section 4, the R1CS library [38, r1cs] provides an ACL2
model of R1CS. It follows the nomenclature of literature definitions of R1CS, which are in terms of
vectors and matrices. The model consists of a dense formulation, where linear combinations have mono-
mials for all the involved variables (many with zero coefficients), and a sparse formulation, where linear

https://github.com/acl2/acl2/tree/master/books/projects/numbers
http://acl2.org/manual?topic=PFIELD____PRIME-FIELDS
http://acl2.org/manual?topic=ACL2____ARITHMETIC-3
http://acl2.org/manual?topic=R1CS____R1CS
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combinations may omit monomials with zero coefficients. The dense formulation is of intellectual inter-
est but impractical for verification; the rest of this paper focuses on the sparse formulation.

The model formalizes a pseudo-variable as either a variable (an ACL2 symbol) or the number 1. A
linear combination is formalized as a (sparse) vector, i.e. an ACL2 list of pairs (ACL2 lists of length 2)
where each pair consists of a coefficient (a field element) and a pseudo-variable; the notion of pseudo-
variable provides uniformity between monomials of degrees 1 and 0 in linear combinations. A constraint
is formalized as an aggregate [38, defaggregate] with components a, b, and c that are the three linear
combinations; this corresponds to the equality (a) (b) = (c), referring to Section 2. Finally, a (rank-1
constraint) system is formalized as an aggregate consisting of a prime, a list of variables, and a list of
constraints. The model also defines well-formedness conditions on this aggregate and its sub-structures,
e.g. that all the variables in the constraints are also in the list of variables of the R1CS aggregate. This
aggregate and its sub-structures form the model’s formal syntax of R1CS.

The semantics of R1CS is formalized in terms of satisfaction of constraints by valuations, which are
ACL2 alists from variables to field elements, i.e. assignments of field elements to variables. Given a
valuation, a linear combination evaluates to a field element, in the obvious way; the model defines this
evaluation in terms of dot product of vectors, as in the literature. Given a valuation, a constraint evaluates
to a boolean, in the obvious way. A valuation satisfies a system iff it makes all its constraints true.

Besides basic theorems about the syntax and semantics sketched above, the R1CS library also in-
cludes rules for reasoning about R1CS, for both ACL2 and Axe (see below).

5.2 Extraction

To verify gadgets using the R1CS model described above, the gadgets must be represented in the syntactic
form defined by the model. The gadget construction libraries mentioned in Section 2 produce R1CS
constraints that are not in that form, and sometimes they do not provide facilities to export them in any
form. Thus, the approach to extract gadgets for verification is case by case.

In a Kestrel project funded by the Ethereum Foundation, we worked on the verification of Ethereum’s
Semaphore circuit [38, semaphore]. Since Semaphore was written in the high-level language Circom
[25], whose compiler had a facility to export the R1CS constraints in JSON format, we developed an
ACL2 converter from that format [39, [books]/kestrel/ethereum/semaphore/json-to-r1cs], and
we used that along with our ACL2 JSON parser [39, [books]/kestrel/json-parser]. Taking advan-
tage of the modularity of the Circom code, we extracted not only the complete circuit gadget, but also
several sub-gadgets.

In a Kestrel project funded by the Tezos Foundation, we worked on the verification of Zcash’s Jubjub
elliptic curve operation circuits [38, zcash]. Since these circuits were generated programmatically in
Rust, we instrumented that Rust code, with help from the Zcash team, to export R1CS constraints directly
as s-expressions in the R1CS model’s format. We extracted the top-level gadgets and several sub-gadgets,
by invoking the library at different points.

At Aleo, we are working on the verification of the snarkVM gadgets [17]. With our Aleo colleagues,
we have instrumented snarkVM’s Rust code to export R1CS constraints in JSON format (different from
Circom’s). We have developed an ACL2 converter from that format to the model’s format, which we are
using along with the ACL2 JSON parser. We are extracting gadgets at varying levels of granularity.

In the current situation, in all the above cases, the gadget extraction is trusted: an error in our instru-
mentation of the gadget construction libraries, or in our conversion to ACL2, may cause us to unwittingly
verify a different gadget from the real one. However, the top-level gadget PL (discussed in Section 1, Sec-
tion 2, and Section 3) is part of the zero-knowledge proof, which has a well-defined (protocol-dependent)

http://acl2.org/manual?topic=STD____DEFAGGREGATE
http://acl2.org/manual?topic=ZKSEMAPHORE____SEMAPHORE
https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore/json-to-r1cs
https://github.com/acl2/acl2/tree/master/books/kestrel/json-parser
http://acl2.org/manual?topic=ZCASH____ZCASH
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format, and is generated by tools like snarkVM [3] that use or include gadget construction libraries, That
format can be formalized in ACL2, and the formal verification can be applied directly to (the PL gad-
get in) the zero-knowledge proof. In this eventual situation, the extraction of sub-gadgets of PL via
instrumentation and conversion will merely provide building blocks for the top-level formal proof of PL
(especially in the compositional approach in Section 5.5), but will no longer be trusted.

5.3 Verification in ACL2

Regardless of the exact approach, the result of the above extraction is an ACL2 constant, say *gadget*,
whose value is an R1CS aggregate of the form described in Section 5.1. The model confers semantics to
this aggregate, amounting to the relation R in Section 3. More precisely, the model provides a predicate
over an assignment of field elements to variables: (r1cs-holdsp *gadget* asg) means that the assign-
ment asg satisfies all the constraints in *gadget*, given the prime that is part of the *gadget* aggregate
(which is left implicit in R). This can be turned into a finitary relation over the field elements assigned to
the variables, like R, by specializing r1cs-holdsp with an assignment to the gadget’s specific variables,
e.g. if the variables in *gadget* are ’x0, ’x1, . . . , the relation R is formalized as

(defun gadget (x0 x1 ...)
(r1cs-holdsp *gadget* (list (cons 'x0 x0) (cons 'x1 x1) ...))

where each ’xi is a variable and each xi is a field element.
To state and prove correctness, a specification is written in ACL2, amounting to S in Section 3:

(defun spec (x0 x1 ...) ...) ; this can be defined in any form

If the gadget has no internal variables, correctness is stated as

(defthm gadget-correctness
(implies (and ... ; boilerplate hypotheses

...) ; preconditions (if applicable)
(equal (gadget x0 x1 ...) (spec x0 x1 ...)))) ; R = S

where the boilerplate hypotheses say that x0, x1, . . . are field elements, and where examples of precon-
ditions are that some xi is boolean or that some xi is non-zero. If the gadget has internal variables,
spec has fewer parameters, but soundness can be stated and proved similarly, using implies in place of
equal. Completeness is less straightforward; it is discussed, in a more general context, in Section 5.5.

The proofs are carried out by first enabling certain functions of the R1CS semantics, so that the
(evaluated) constraints deeply embedded in ACL2 are rewritten to ACL2 terms involving prime field
operations, i.e. constraints shallowly embedded in ACL2. Then the core of the proof is handled via other
hints and lemmas, of varying complexity, that depend on the details of the constraints and specification.

After verifying, in the manner just described, the correctness of a number of Semaphore sub-gadgets
for elliptic curve operations and data multiplexing [39, [books]/kestrel/ethereum/semaphore], two
related issues became apparent. One issue was that the numbers of variables and constraints and the
resulting ACL2 terms grew quickly as we moved from simpler to more complex gadgets, making the
proofs harder and less efficient. Another issue was that because each gadget was extracted in isolation,
with its own specific variable names generated by the gadget construction libraries (typically via mono-
tonically increasing indices), it was not easy to use proofs of sub-gadgets in proofs of super-gadgets:
the same sub-gadget could appear with different variable names in different super-gadgets, or in differ-
ent instantiations within the same super-gadget, but the proof for the separate sub-gadget used different
variable names than would be seen in any of these instantiations.

https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore
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5.4 Verification in Axe

To combat the growth of terms mentioned in Section 5.3, we turned to the Axe toolkit [38, axe]. The Axe
Rewriter is functionally similar to the ACL2 rewriter, but it represents terms as directed acyclic graphs
(DAGs) instead of trees: these DAGs share sub-terms, affording the practical handling of very large
terms, such as fully unrolled AES implementations.

We developed a specialization of the Axe Lifter for R1CS, which turns deeply embedded constraints
into shallowly embedded ones, similarly to what is described in Section 5.3, and also performs some
simplifications of the lifted constraints using the Axe Rewriter. This specialized lifter [38, lift-r1cs]
generates an ACL2 constant whose value is a DAG representing the simplified lifted constraints.

We developed a specialization of the Axe Prover for R1CS, which, given a DAG from the lifter
as above and a specification like spec in Section 5.3, attempts to prove soundness [38, verify-r1cs]
or completeness (via a more general event macro to prove implications). This specialized prover uses
rewriting and variable elimination via substitution, and it supports applying different sets of rewrite
rules in sequence. Substitution is enabled by the fact that certain constraints essentially equate certain
variables to expressions over other variables, though rewriting must often be performed first to make this
explicit by solving the constraints. A constraint is a candidate for substitution if it equates a variable
with some sub-DAG not involving that variable. Large R1CS proofs can involve hundreds or thousands
of substitution steps, and we optimized Axe to apply many substitutions at once when possible. For
each round of substitution, Axe substitutes a set of variables each of which is equated to a sub-DAG
not involving any variables in the set. The set of equalities used in the round is then removed from
the assumptions of the proof. Repeated substitution of intermediate variables can incrementally turn
a large unstructured conjunction of constraints into a deeply nested operator tree (represented in DAG
form), of the kind commonly verified by Axe. The ability to apply the rewriting tactic with different sets
of rewrite rules supports the staging of inter-dependent proof steps, which depend on previous steps and
enable subsequent steps. Suitable rewrite rules can recognize R1CS idioms and turn them into equivalent
higher-level formulations that may facilitate the rest of the proof. Similarly, certain sub-gadgets may also
be recognized and raised in abstraction using rewrite rules based on the correctness properties of such
sub-gadgets; this partially addresses the second issue described in Section 5.3.

The Axe verification of the soundness of an R1CS gadget looks like

(lift-r1cs *gadget-dag* ; name of the generated defconst
'(x0 x1 ...) ; variables of the gadget
... ; constraints of the gadget
... ; prime of the gadget
...) ; options

(verify-r1cs *gadget-dag* ; gadget (simplified and lifted, in DAG form)
(spec x0 x1 ...) ; specification
:tactic ... ; proof tactics, e.g. (:rep :rewrite :subst)
...) ; other information and options

We used this approach to verify the soundness, and in some cases also the completeness, of a
number of Semaphore and Zcash (see Section 5.2) sub-gadgets that perform fixed-size integer opera-
tions, elliptic curve operations, instances of the MiMC cipher, and parts of the BLAKE2s hash [39,
[books]/kestrel/ethereum/semaphore] [39, [books]/kestrel/zcash/gadgets]; these range from
relatively small and simple to relatively large and complex. We also verified the soundness of the large
and complex BLAKE2s hash gadget generated by (an earlier version of) snarkVM [3]; this is currently
not open-source, but it will be in the future.

http://acl2.org/manual?topic=ACL2____AXE
http://acl2.org/manual?topic=R1CS____LIFT-R1CS
http://acl2.org/manual?topic=R1CS____VERIFY-R1CS
https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore
https://github.com/acl2/acl2/tree/master/books/kestrel/zcash/gadgets
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While using Axe helps address the term growth problem, the sub-gadget proof re-use problem re-
mained largely unsolved. The recognition and rewriting of sub-gadgets mentioned above, which worked
for certain cases, in general may need to recover the sub-gadgets from a sea of constraints. Each sub-
gadget may consist of multiple constraints, some of which may even have the same form across different
sub-gadgets, requiring the exploration of multiple recovery paths. Furthermore, constraint optimiza-
tions, such as the ones performed by the Circom compiler and by snarkVM, which blend gadgets under
certain conditions, may greatly complicate, or defeat altogether, the recovery of sub-gadgets. Solving
these problems is not necessarily impossible, but it is challenging; as a data point, the aforementioned
soundness verification of snarkVM’s BLAKE2s took several person-days to develop and takes several
machine-hours to run.

5.5 Compositional Verification

As mentioned in Section 2, the hierarchical structure in the gadget construction libraries gets flattened
away in the generated R1CS constraints. Thus, as discussed in Sections 5.3 and 5.4, the gadgets extracted
from the libraries are verified as wholes, with limited ability to discern their hierarchical structure and
leverage proofs of their sub-gadgets, resulting in difficult and slow proofs.

More scalability can be achieved via compositional verification, where the proof of a gadget uses
the proofs of its sub-gadgets and is used in the proofs of its super-gadgets. This could be accomplished
by extending the gadget construction libraries to generate such compositional proofs along with the
gadgets, but doing so is impractical due to the libraries’ complexity and ownership. A viable approach
is to (1) replicate the gadget constructions in the theorem prover, (2) verify correctness properties of
the constructions, and (3) validate the replicated gadget constructions by checking that the constructed
gadgets are the same as the ones extracted from the libraries. We propound the term detached proof-
generating extension for this kind of solution.

The gadget constructions are formalized by ACL2 functions that take variable names as inputs and
return lists of R1CS constraints as outputs. The constraints are built either directly or by calling functions
that build sub-gadgets, concatenating all the resulting constraints together. These functions return lists
of constraints, which are readily composable by concatenation; they do not return R1CS aggregates
(see Section 5.1), which are not readily composable. The gadget hierarchy corresponds to the function
hierarchy. The parameterization over the variable names is critical, because separate instances of the
same gadget have different variables, as mentioned in Sections 2 and 5.3.

To validate that these constructions are consistent with the libraries, we extract sample gadgets from
the libraries as in Section 5.2, and we formulate ACL2 ground theorems saying that the extracted R1CS
constraints are identical to the ones built by the ACL2 functions when passed suitable variable names as
arguments. Currently this validation process amounts to testing our constructions against the libraries.
Eventually, this validation will be performed every time the libraries are run to generate a zero-knowledge
proof, as explained in Section 8.

The correctness of the ACL2 gadget constructions is proved for generic variable names and generic
prime p (sometimes under restricting hypotheses). The proof opens the function definition and uses the
theorems for any called functions, whose definitions are unopened; if the function builds some constraints
directly, certain semantic functions of the R1CS model are also opened, lifting those constraints to equal-
ities and prime field operations. Given this proof setup, the correctness of the gadget (family) built by
the function is proved by reasoning over the specifications of the sub-gadgets (not the sub-gadgets’ con-
straints) and/or the constraints of the gadget; the details depend on the gadget, and may involve hints and
lemmas of varying complexity.
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For example, a gadget to force a variable to be boolean as in Section 2 is constructed as

(defun boolean-assert-gadget (x)
(list (make-r1cs-constraint :a (list (list 1 x)) ; (x)

:b (list (list 1 1) (list -1 x)) ; (1 - x)
:c nil))) ; (0)

where x is the variable name to use. Correctness (soundness and completeness) is expressed as

(defthm boolean-assert-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (r1cs-constraints-holdp (boolean-assert-gadget x) asg p) ; R
(bitp (lookup-equal x asg))))) ; S

where asg assigns field elements to variables, lookup-equal retrieves them, and bitp is the specification
of this gadget; in the notation of Section 3, this theorem rewrites R (= R̃ in this case) to S.

As another example, the gadget in Figure 2 is constructed as

(defun equality-test-gadget (u v w s)
(append (list (make-r1cs-constraint ...)) ; (u - v) (s) = (1 - w)

(list (make-r1cs-constraint ...)))) ; (u - v) (w) = (0)

Soundness is expressed as

(defthm equality-test-gadget-soundness
(implies (and ... ; boilerplate hypotheses

(r1cs-constraints-holdp (equality-test-gadget u v w s) asg p)) ; R
(equal (lookup-equal w asg) ; S

(if (equal (lookup-equal u asg) (lookup-equal v asg)) 1 0))))

where the specification of this gadget is that the value of w is 1 or 0 based on whether the values of u and
v are equal or not; in the notation of Section 3, this theorem derives S from R (̸= R̃ in this case).

The gadget described in Section 2 as the combination of Figure 2 and Figure 1 is constructed as

(defun if-equal-then-else-gadget (u v x y z w s)
(append (if-then-else-gadget w x y z)

(equality-test-gadget u v w s)))

which calls the functions for the sub-gadgets (the definition of if-then-else-gadget is not shown).
To exemplify varying numbers of variables and constraints, the gadget in Figure 3 is constructed as

(defun addition-gadget (xs ys zs)
... ; guard requires (len xs) = (len ys) = (len zs) - 1
(append (boolean-assert-list-gadget zs)

(list (make-r1cs-constraint
:a (append (pow2sum-vector xs) (pow2sum-vector ys))
:b (list (list 1 1))
:c (pow2sum-vector zs)))))

where xs, ys, and zs are lists of variables, boolean-assert-list-gadget constructs boolean con-
straints for all the variables in zs, and pow2sum-vector constructs a powers-of-two weighted sum. The
parameterization covers not only the names of the variables, but also the number of bits n in Figure 3,
which is the length of xs and ys. Correctness is expressed as

(defthm addition-gadget-correctness
(implies (and ... ; boilerplate hypotheses

(< (1+ (len xs)) (integer-length p)) ; restriction on n
(bit-listp (lookup-equal-list xs asg)) ; precondition
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(bit-listp (lookup-equal-list ys asg))) ; precondition
(equal (r1cs-constraints-holdp (addition-gadget xs ys zs) asg p)

(and (bit-listp (lookup-equal-list zs asg))
(equal (lebits=>nat (lookup-equal-list zs asg))

(+ (lebits=>nat (lookup-equal-list xs asg))
(lebits=>nat (lookup-equal-list ys asg))))))))

where lebits=>nat turns a list of bits into the integer they denote in little endian order, and where the
restriction on n ensures that the modular weighted sums can be turned into non-modular sums. This is
proved for every n, using a property of pow2sum proved by induction. While the proofs for the previously
exemplified gadgets are straightforward, this gadget takes a little more work.

The details of the examples above, and of the other ones in Section 2, are in the supporting mate-
rials, in [39, [books]/workshops/2023/coglio-mccarthy-smith]. Other examples are in the R1CS
library, in [39, [books]kestrel/crypto/r1cs/sparse/gadgets], where in particular the proofs in
range-check.lisp were quite laborious.

We have employed this approach to verify compositionally a substantial portion of the snarkVM
gadgets [17], specifically most of the ones for boolean, field, and integer operations. In the process, we
have discovered two bugs in the gadgets, which have been fixed:4 (i) the gadget to convert a field element
into its bits failed to constrain the integer value of the bits to be below the prime, leading to indeterminacy
(e.g. the field element 0 could be converted to not only all zero bits as expected, but also to the bits that
form the prime, since p mod p = 0); and (ii) the gadget to calculate square root allowed both positive and
negative roots (when the input is a non-zero square), leading to indeterminacy. We have also identified
some possible optimizations, which have been or are being applied, saving a large number of constraints
in some cases. Our ACL2 work on snarkVM is currently not open-source, but it will be in the future.

But even this approach eventually runs into a scalability issue, due to the internal variables of gadgets.
The names of these variables are exposed as function parameters of not only the gadgets that directly use
them to build constraints, but also any super-gadgets that contain (possibly many instances of) those
sub-gadgets. As increasingly large gadgets are constructed, the function parameters for variable names
keep growing, including all the internal variables at every level. Furthermore, while soundness theorems
like equality-test-gadget-soundness above can ignore internal variables in the consequent of the
implication, completeness theorems need to say something about the internal variables. In the notation of
Section 3, a gadget correctness theorem R̃ = S reduces to R = S if there are no internal variables, which is
a good rewrite rule, as in boolean-assert-gadget-correctness above. But internal variables cannot
be existentially quantified in the gadget construction functions, because these functions must return the
gadgets given all their variables. Instead, the specification S over the external variables must be extended
to a specification S′ over all variables, including the internal ones at every level. This exposure of internal
variables violates modularity and impedes compositionality.

6 Prime Field Constraint Systems

The scaling issue discussed in Section 5.5 is addressed by Prime Field Constraint Systems (PFCS),
a formalism introduced by the authors. PFCS generalizes R1CS in two ways: (1) constraints can be
equalities between any expressions, built out of variables, constants, additions, and multiplications; and
(2) constraints can be grouped into named relations with parameters, and these relations can be used as
constraints with the parameters replaced by argument expressions (as in function calls).

4The Aleo blockchain mainnet had not been launched yet, so these bugs did not affect real applications and assets.

https://github.com/acl2/acl2/tree/master/books/workshops/2023/coglio-mccarthy-smith
https://github.com/acl2/acl2/tree/master/books/kestrel/crypto/r1cs/sparse/gadgets
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The first extension is useful to represent zero-knowledge circuit formalisms different from R1CS,
but is not especially relevant to verifying R1CS gadgets. The second extension is important for verifying
R1CS and other kinds of gadgets, because it explicitly captures their hierarchical structure. A PFCS
relation formalizes a gadget; the relation’s parameters are the gadget’s external variables, while the other
variables in the relation’s defining body are the gadget’s internal variables.5 PFCS explicitly handles
the existential quantification that takes R to R̃: while R is the semantics of a PFCS relation’s body, R̃ is
the semantics of the PFCS relation itself. The internal variables of a gadget are taken into consideration
when proving the correctness R̃ = S of a gadget, which involves R, but can be ignored when proving the
correctness of super-gadgets that include that sub-gadget, whose semantics R̃ can be rewritten to S in
proofs for the super-gadgets; no extended specification S′ (see end of Section 5.5) is needed.

Our development and use of PFCS is still somewhat preliminary. It is overviewed here, but it will be
described in more detail in future publications. More information is in the PFCS library [38, pfcs].

6.1 Model

names N ::= ⟨letter then letters/digits/underscores⟩
integers I ::= . . . | -2 | -1 | 0 | +1 | +2 | . . .

expressions E ::= N | I | E+E | E*E
constraints C ::= E=E | N(E∗ )

relations R ::= N(N∗ ){C∗ }

Figure 4: PFCS syntax.

The syntax of PFCS is approximately
described by the grammar in Figure 4,
consistently with the informal descrip-
tion above. A relation R consists of a
name N, a sequence of parameters N∗,
and a defining body that is a sequence
of constraints C∗. The abstract syntax
is formalized via recursive types [38,
fty]. The concrete syntax is formalized via an ABNF grammar [38, abnf] complemented by some
(upcoming) restricting predicates.

α(e1) = α(e2)

α ⊢ρ e1 = e2

r(v1 · · ·vn){c1 · · ·cm} ∈ ρ

α ′ ⊇ {v1 7→ α(e1), . . . ,vn 7→ α(en)}
∀i ∈ {1, . . . ,m}. α ′ ⊢ρ ci

α ⊢ρ r(e1 · · ·en)

Figure 5: PFCS semantics.

The semantics of PFCS is approximately described
by the inference rules in Figure 5, which inductively de-
fine when an assignment α (a finite map from variables
to field elements) satisfies a constraint c in the context
of a set of relations ρ , written α ⊢ρ c. The first rule
says that α satisfies an equality constraint e1 = e2 when
the evaluations α(e1) and α(e2) yield the same field ele-
ment; α extends from variables to expressions in the ob-
vious way. The second rule says that α satisfies a rela-
tion constraint r(e1 · · ·en) when ρ includes the relation
r(v1 · · ·vn){c1 · · ·cm} and each constraint ci in its body is satisfied by an assignment α ′ that extends the
assignment of each evaluated argument expression α(e j) to the corresponding parameter v j of the rela-
tion; besides the parameters, α ′ must assign field elements to the other variables (if any) in the body of
the relation, which are internal to the gadget. Since α ′ appears in the premises but not in the conclu-
sion, it is existentially quantified; since the values of the relation’s parameters are prescribed by the rule,
the existential quantification reduces to the values assigned to the internal variables (if any), capturing
exactly the existential quantification in R̃. The prime p is left implicit in Figure 5.

Since ACL2 disallows mutually recursive defun and defun-sk, the PFCS semantics is formalized,
over the PFCS abstract syntax, via (1) proof trees for the inference rules in Figure 5 and (2) a proof

5PFCS does not distinguish between input and output external variables. This distinction only matters to the formulation of
the specification S, which is still always a relation over the external variables, as is the semantics R̃ of the gadget.

http://acl2.org/manual?topic=PFCS____PFCS
http://acl2.org/manual?topic=ACL2____FTY
http://acl2.org/manual?topic=ABNF____ABNF
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checker for those proof trees; that is, a mini-logic is formalized in ACL2. Since this definition is in-
convenient for reasoning about gadgets, ACL2 rules are provided that capture the inference rules more
directly, without proof trees and proof checker, as if defun and defun-sk were mutually recursive.

6.2 Verification

In the PFCS framework, gadget constructions are formalized by ACL2 functions that take no or few
inputs and return (abstract syntax of) PFCS relations as outputs. Gadgets with fixed numbers of variables
and constraints are built by ACL2 functions with no inputs. Gadgets with varying numbers of variables
or constraints are built by ACL2 functions whose inputs are non-negative integers that specify those
varying numbers. None of these ACL2 functions take variable names as inputs, because variables in
PFCS relations are local to the relations and can be fixed for each gadget: the external variables, i.e.
the parameters, can be replaced when the relations are called; and the internal variables are existentially
quantified. These ACL2 functions do not call each other, unlike the ones that construct R1CS gadgets;
the gadget hierarchy is captured directly in the PFCS relations.

Correctness is proved for generic prime p and (if applicable) for generic numbers of variables and
constraints (sometimes under restricting hypotheses). The deeply embedded PFCS relations built by the
ACL2 functions are lifted to shallowly embedded PFCS relations, which are ACL2 predicates over field
elements, with parameters for the external variables and an existential quantification (via defun-sk)
for the internal variables. These predicates are defined as conjunctions of (1) calls of other predicates,
one per sub-gadget, and (2) equalities between terms involving prime field operations, one per equality
constraint; the predicates’ call graph corresponds to the gadget hierarchy. For gadgets with fixed numbers
of variables and constraints, a deep-to-shallow lifter automatically generates the predicates, along with
theorems connecting the deep and shallow formulations; for gadgets with varying numbers of variables
and constraints, currently the predicate and theorem are manually generated, but a future extension of
the lifter may automate these as well. Correctness of a shallowly embedded PFCS relation is proved by
opening the predicate definition, using the called predicates’ correctness theorems as rewrite rules, and
using other hints and lemmas of varying complexity as needed. Correctness is extended to the deeply
embedded PFCS relation via the lifting theorem, in a way that may be automated in the future.

For example, a PFCS version of boolean-assert-gadget in Section 5.5 is constructed as

(defun boolean-assert-gadget () ; deeply embedded PFCS relation
(pfdef "boolean_assert" ; name

(list "x") ; parameter
(pf= (pf* (pfvar "x") ; (x)

(pf+ (pfconst 1) (pfmon -1 "x"))) ; (1 - x)
(pfconst 0)))) ; (0)

The lifter call (lift (boolean-assert-gadget)) generates the predicate

(defun boolean-assert (x p) ; shallowly embedded PFCS relation
(and (equal (mul x (add (mod 1 p) (mul (mod -1 p) x p) p) p)

(mod 0 p))))

and the lifting theorem

(defruled definition-satp-of-boolean-assert-to-shallow
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert" defs (list x) p) ; deep
(boolean-assert x p)))) ; shallow
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where (definition-satp r ρ (list φ1 · · · φn) p) formalizes {v1 7→ φ1, . . . ,vn 7→ φn} ⊢ρ r(v1 · · ·vn).
The correctness of the predicate is expressed as

(defthm boolean-assert-correctness
(implies ... ; boilerplate hypotheses

(equal (boolean-assert x p) ; R (shallow)
(bitp x)))) ; S

which is extended to the gadget via the lifting theorem as

(defthm boolean-assert-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert" defs (list x) p) ; R (deep)
(bitp x)))) ; S

As another example, a PFCS version of if-equal-then-else-gadget in Section 5.5 is built as

(defun if-equal-then-else-gadget ()
(pfdef "if_equal_then_else"

(list "u" "v" "x" "y" "z")
(pfcall "if_then_else" (pfvar "w") (pfvar "x") (pfvar "y") (pfvar "z"))
(pfcall "equality_test" (pfvar "u") (pfvar "v") (pfvar "w"))))

The lifter generates the predicate

(defun-sk if-equal-then-else (u v x y z p)
(exists (w)

(and (fep w p)
(and (if-then-else w x y z p)

(equality-test u v w p)))))

which existentially quantifies w and which calls the lifted predicates for its sub-gadgets (not shown here).
Correctness is expressed as

(defthm if-equal-then-else-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "if_equal_then_else" defs (list u v x y z) p) ; R
(equal z (if (equal u v) x y))))) ; S

which rewrites R to S without involving the internal variable w.
To exemplify varying numbers of variables and constraints, a PFCS version of boolean-assert-

list-gadget mentioned (but not shown) in Section 5.5 is constructed as

(defun boolean-assert-list-gadget (n)
(pfdef (iname "boolean_assert_list" n) ; "boolean_assert_list_<n>"

(iname-list "x" n) ; (list "x_0" "x_1" ...)
(boolean-assert-list-gadget-aux ; ((pfcall "boolean_assert" (pfvar "x_0"))
(iname-list "x" n))))) ; (pfcall "boolean_assert" (pfvar "x_1"))

; ...)
(defun boolean-assert-list-gadget-aux (vars)
(cond ((endp vars) nil)

(t (cons (pfcall "boolean_assert" (pfvar (car vars)))
(boolean-assert-list-gadget-aux (cdr vars))))))

where iname constructs an indexed name, iname-list constructs a list of indexed names, and the aux-
iliary function constructs a list of PFCS relations calls for generic variable names (which is useful for
induction), which the main function instantiates to specific variable names. Correctness is expressed as
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(defthm boolean-assert-list-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert_list" defs xs p) ; R
(bit-listp xs)))) ; S

The details of the examples above, and of the other ones in Section 2, are in the supporting materials,
in [39, [books]/workshops/2023/coglio-mccarthy-smith]. Other examples are in the PFCS library,
in [39, [books]kestrel/crypto/pfcs/examples.lisp].

We are porting the verified snarkVM gadgets mentioned in Section 5.5 from R1CS form to PFCS
form, which we will also use for the remaining snarkVM gadgets.

6.3 Validation

The PFCS gadget constructions in ACL2 are built in the same way as the R1CS gadget constructions
in Section 5.5, namely by replicating what the gadget construction libraries do. For the ACL2 R1CS
constructions, different choices of function call graph are possible, so long as they produce the same
R1CS constraints as the libraries. For the ACL2 PFCS constructions, different choices of PFCS hierarchy
are possible, so long as, when flattened, they produce the same R1CS constraints as the libraries.

We plan to develop a flattener of PFCS to R1CS, which will also generate theorems of correct flat-
tening, i.e. that the flattened R1CS constraints are equivalent to the PFCS constraints. The flattener will
inline all the relation constraints, resulting in a sequence of equalities, all of which have the R1CS form
because our PFCS constructions use equality constraints of the R1CS form.

The PFCS gadget constructions in ACL2 will be validated against sample gadgets from the libraries
in the same way as explained in Section 5.5 for the R1CS gadget constructions in ACL2, with the addition
of the aforementioned PFCS flattener.

7 Related Work

The authors are not aware of any other work to formally verify zero-knowledge circuits using ACL2;
the paper [17] describes our snarkVM verification work in more detail. There is work using other tools,
discussed below.

The QED2 tool [36] is a specialized verifier that combines a dedicated algorithm with an SMT solver
to automatically establish whether the outputs of a zero-knowledge circuit are uniquely determined by the
inputs, or are instead under-constrained; it may also fail to find an answer. Their approach is automated,
but our work addresses a stronger property (correctness); the unique determination of outputs from inputs
is implied by soundness, when the specification of a gadget is that the gadget represents a computation
(see Section 3). Their approach works on individual circuits like the ones in Sections 5.3 and 5.4, not on
parameterized circuit families like the ones in Sections 5.5 and 6.2.

The SMT solver for finite fields described in [34] has been used to verify automatically whether
circuits produced by certain compilers are sound (with respect to the compilation source) and determin-
istic (i.e. the outputs are uniquely determined by the inputs, as in [36]). Since our circuit specifications
prescribe computations, in a way that may be similar to the sources of circuit compilers, their sound-
ness proofs are analogous to ours (with determinism implied by soundness, at least in our case, as noted
above); but their work does not cover completeness proofs. Their approach works on individual circuits,
not on parameterized circuit families (as also noted above for [36]). For example, in our work, an un-
signed n-bit integer addition circuit family as in Figure 3 is verified once, quickly, for every possible n
(see Section 5.5), and can be used to verify correct compilation via a syntactic check; in contrast, in their

https://github.com/acl2/acl2/tree/master/books/workshops/2023/coglio-mccarthy-smith
https://github.com/acl2/acl2/tree/master/books/kestrel/crypto/pfcs/examples.lisp
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work, instances of that family for different values of n are verified separately, taking increasing resources
as n grows. Another advantage of verifying parameterized circuit families is that their definitions are
essentially formal models of the circuit construction libraries and therefore help validate the libraries’
design and implementation. The tradeoff between their and our approach is automation versus generality.

The Ecne tool [40] uses a dedicated algorithm to perform weak verification (their term to mean that
the outputs are uniquely determined by the inputs) and witness verification (their term to mean that the
outputs and the internal variables are uniquely determined by the inputs); their paper also discusses strong
verification (i.e. correctness in our work), but only as future work. As already noted, the determinism
of output variables is a consequence of soundness in our work. The determinism of internal variables is
unnecessary for correctness, but it becomes a consequence of correctness if the latter is stated with respect
to an extended specification S′ that includes the internal variables (as in Section 5.5) and prescribes their
computation from the inputs; Ecne’s witness verification can be thus addressed with our techniques.

There is work on verifying the compilation of higher-level languages to zero-knowledge circuits [21,
35, 29]. While there is probably overlap with our work, and thus the opportunity for cross-fertilization,
the purpose is a bit different: we verify the circuits constructed by existing libraries, which may be used
as compilation targets, or for more general purposes such as programmatic construction of circuits; as
noted above, our approach also helps validate the libraries.

As a final remark, the notion of existentially quantified circuits (EQCs) in [33] is related to the
existential quantification of internal variables in PFCS.

8 Future Work

The main thread of future work is the continued verification of the snarkVM gadgets at Aleo, extending
and improving the ACL2 PFCS library along the way. We plan to extend the PFCS lifter to work on
parameterized gadgets, which requires a leap in sophistication in order to operate on the ACL2 functions
that construct those gadgets rather than on the PFCS abstract syntax produced by the ACL2 functions.
We also plan to build a proof-generating flattener of PFCS to R1CS form, to enable validation against
samples extracted from snarkVM (see Section 6.3). To handle the gadget optimizations in snarkVM, we
plan to develop proof-generating PFCS-to-PFCS transformations that correspond to those optimizations:
these can be composed with the proofs for the vanilla (unoptimized) gadgets to obtain proofs of the
optimized gadgets. The end goal is to verify all the snarkVM gadgets, including complex ones for
cryptographic operations. These gadgets are being verified against specifications written in ACL2, which
are not directly exposed to prover and verifier (cf. end of Section 3); they are building blocks for the next
steps described below.

After reaching the above goal, the next verification target is the snarkVM compiler from Aleo in-
structions (the assembly-like language used to represent program code in the Aleo blockchain) to R1CS
constraints, which uses the snarkVM gadget constructions to generate the constraints. The approach
will be a detached proof-generating extension of the snarkVM compiler, built on the detached proof-
generating extension of the snarkVM gadget constructions; every time the compiler is run, its generated
constraints will be syntactically compared to the ones generated in ACL2, including flattening and op-
timizations as described above, to ensure that they are identical and thus that the proof applies to that
exact compilation, as in a verifying compiler. The specification for the R1CS constraints generated by
the snarkVM compiler is the source Aleo instructions program, which software developers can read and
understand; the formal proof relies on a formalization of Aleo instructions that we are building in ACL2.

The same detached proof-generating extension approach will then be used for the compilation from
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Leo [2] (a high-level programming language for the Aleo blockchain) to Aleo instructions, providing an
end-to-end verifying compiler functionality from Leo to R1CS constraints via Aleo instructions. The
specification for the R1CS constraints generated by the Leo and snarkVM compilers is the Leo source
program, which software developers can read and understand; the formal proof relies on a formalization
of Leo that we are building in ACL2 [16].

The roadmap delineated above is part of our overarching work to apply formal verification to ideally
every aspect of the Aleo blockchain and ecosystem. The aforementioned formalizations of Aleo instruc-
tions and of Leo have more general value than their role in the formal verification of the compilation.

Alongside the PFCS-based compositional verification approach, it would also be interesting to con-
tinue exploring the Axe-based whole-gadget verification approach, in particular to improve the ability
to recover sub-gadgets. There are tradeoffs between the two approaches: the first one keeps the proofs
more manageable and efficient, but requires the formalization of the gadget constructions; the second
one does not require that formalization, but needs to recover some of that structure during the proofs.

It would also be interesting to investigate the use or specialization of Axe for PFCS-based composi-
tional proofs. Although PFCS aims at keeping proofs relatively small via parameterization and compo-
sition, Axe may come handy in case some large proof tasks arise. Axe’s tactics may also be useful for
certain proofs regardless of size, and not only for zero-knowledge circuits.

While interactive theorem proving is needed to verify parameterized circuit families with efficiency
and generality, automated tools like SMT solvers could be useful for certain proof sub-tasks. ACL2
already has facilities to interface with automated reasoning tools.

There may be opportunities to partially automate the replication of the gadget constructions in the
theorem prover, in the detached proof-generating extension approach (see Section 5.5). One avenue is
the abstraction and translation of code in the gadget construction libraries. Another avenue, suggested
by a reviewer, is to leverage any structure that can be recovered from generated gadgets.

9 Conclusion

Our exploration of the zero-knowledge circuit verification problem has shed more light into the problem,
created and improved libraries and tools of more general use (e.g. the prime fields library), and evaluated
increasingly sophisticated solution approaches. The PFCS-based compositional approach is promising,
but completing the verification of the snarkVM gadgets will provide a more definitive validation.

The inherent restrictions on zero-knowledge circuits might initially lead to think of their verification
as more tractable than general verification. Our exploration shows the opposite. As the size and com-
plexity of the circuits grows, one eventually hits the “program verification wall”. This should not be sur-
prising, for a formalism that can describe sufficiently general computations. Although zero-knowledge
circuits are not Turing-complete, and their verification is technically decidable because of their finiteness,
the constraint solution space is so large that their verification is “practically undecidable”.

Our exploration also confirms the importance of structure in formal verification. Preserving and
leveraging the structure that is naturally available when the circuits are built promotes more manageable
and efficient proofs, compared to losing that structure and then attempting to recover it.
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