
Pda – The Protocol Derivation Assistant

Matthias Anlauff, Dusko Pavlovic, Kestrel Institute
{ma,dusko}@kestrel.edu

July 17, 2006

Disclaimer

Pda is a graphical editor and support tool for deriving protocols. This
document is under construction; some sections are incomplete, others
are entirely missing, or in a very early construction phase. Partly this
reflects the reality of a rapidly changing interface. Please do not hesitate
to contact us to identify problems or inquire about unclear or incomplete
documentation.

Contents

1 Introduction 3

2 User Manual 3

2.1 Overview . 3

2.2 Main panel . 4

2.3 Menu features . 9

2.3.1 Static menus . 10

2.3.2 Contextual menus . 12

2.4 Example . 18

2.4.1 Entering a protocol . 18

2.4.2 Creating an instance . 20

2.4.3 Sequential composition . 21

2.5 Variables . 22

2.6 Constructors . 23

2.7 Rules . 25

1

2.7.1 Applying a rule . 25

2.7.2 Creating a rule . 25

2.8 Tips for Use . 26

2.8.1 General tips . 26

2.8.2 Error alerts . 26

2.8.3 Candidate conventions . 27

2.8.4 Extending Pda . 30

3 Reference Manual 31

3.1 The Pda Protocol Derivation Language 31

3.1.1 Protocol Descriptions . 31

3.1.2 Protocol Instantiations . 34

3.1.3 Where to use which grammar rules 35

4 S-Expr Plug-in 37

5 Updates 38

6 Publications 38

6.1 References . 38

6.2 Related Work (using our framework) 39

A Installation 39

A.1 Installation from the distribution CD 40

A.1.1 New Installation . 40

A.1.2 Updating from earlier Pda-versions 41

A.1.3 Installation using existing Eclipse installation 41

A.2 Download/Installation . 42

2

1 Introduction

The Protocol derivation assistant (Pda) is a tool to support the incremental
derivation of security protocols, together with proofs of their security properties.
Just as proof derivations start from definitions and axioms and apply logical
transformations, Pda’s derivations start from basic protocol components, and
then support refinements and transformations to reach the desired protocol. The
guiding idea of Pda is to utilize incremental methods of protocol design found
in practice, and to support these methods in an open, evolving framework. This
idea stands in contrast to attempts to reduce security to a predetermined set of
formal rules.

Our goal for the Pda environment is an IDE for production of assured protocols,
their derivations, and their security properties, with accompanying proofs. We
will over time populate the IDE with a library of protocol components, generic
refinements and transformations, and a proof lineage. Of note and importance
to some is the fact that the IDE could also be used to identify and prove protocol
vulnerabilities and derive witnesses of (attacks on) those vulnerabilities.

2 The Architecture of Pda

Figure ?? sketches the architecture of the Pda tool. The user enters protocol
definitions and derivations in the graphical editor, which has a rich set of features
to ensure the scalability of the approach. Most prominently, the graphical nodes
representing protocols, agents, rules, etc. can be collapsed and expanded as
needed, which greatly improves the readability of complex derivation diagrams.
While drawing the nodes and edges that make up protocols or derivations, the
user gets some live feedback that prevents him/her from adding nodes and
edges that are not permitted. For instance, if one side of a send/receive edge
has been attached to a state in an agent node, then the user interface makes
it impossible to attach the other end of the edge to a state within the same
agent. The labels attached to protocols, internal actions, send/receive term,
agents and other elements of the derivation are subject to corresponding syntax
and semantics rules that are implemented in the parser and static analyzer. If
the user makes an error on one of these labels, the graphical editor displays
a visual feedback next to the place where the error has been detected. The
derivation engine is responsible for performing instantiations and transformation
operations, and for providing the result of these operations to the user as new
nodes in the graphical editor pane. For example,for an instantiation, the user
only enters the definition term for the refined protocol, the process graph of
the instance is created automatically by the derivation engine component. All
objects involved in the protocol derivations are stored in a database in order
to allow for efficient access and update operations. In its current version, the
database is built into Pda, but future versions will provide the possibility to use

3

server-based databases.

Figure 1: Pda architecture

Pda is also designed to be an integration platform for security-protocol related
tools.Pda provides an API that allows Java developers to write plugins for Pda.
The API gives access to the internal data structures of the protocols specified
by the user and/or loaded into the Pda-database. In order to make Pda also
available for extension on a non-Java basis, Pda comes with an S-expression
generator that translates the graphics of the protocols and the attached spec-
ifications into an S-expression format. The Specware-plugin mentioned earlier
makes use of this interface and provides itself a user interface that allows the
user to attach model descriptions to protocols. Other code generators can be
defined as needed, for instance one for generating executable agent code from

4

the protocol descriptions. Other tools can plug into Pda by either using one of
the code generators or by directly using the Java API.

3 User Manual

3.1 Overview

Our objective in the following sections is to introduce the basic elements of the
Pda interface as simply as possible. We will use elementary protocols to describe
Pda’s components and functionality. That should make more readily accessible
in the Example section, in which we develop a more complex protocol. Platform
dependencies (Windows, Mac, Linux) will be pointed out where necessary, al-
though we handle the main one here, namely right-click on Windows and Linux
is ctrl-click on Mac, but we will just write right-click.

Pda essentially works much as a word processor might for constructing (deriving)
your next magnum opus. There is a main panel, and collections of buttons,
special tool palettes, etc., to support your protocol derivation and analysis. In
one way Pda is simpler, since its palettes (on their surface) are not complicated.
Pda’s interface is possibly also more complicated, since the actions within its
toolbars and palettes are accessed through pop-up, context-dependent menus.

One attribute of Pda you will discover through use is its pliability. As you
become more expert, you will find that Pda offers you functionality to match
your skills. This owes not only to the design of Pda, but also to its nature as an
Eclipse plug-in. Tool power goes with tool complexity, but we will try to keep
complexities from the Eclipse IDE from distracting your efforts to learn Pda.

Start your exploration of Pdawith a tour around its main panel in the Main
Panel section. Once you have a sense for that, you will be better prepared to
understand the menus it contains. Their description can be found in the Menu
features section.

3.2 Main panel

Open Pda as you would any application on your machine. During loading, you
will be asked if you wish to select the folder in which your workspace is held.
Browse your own file system should you need to. You can also set a flag to avoid
that dialog each time.

Pda will then ask if you want to start Specware on your machine. The result
of your choice (and whether you have Specware installed, should you click OK,
shows in the colored (red/green) icon at the bottom of the Pda’s main panel.

Pda remembers where you were when you last saved and closed the application.
The following figure is what you would see if you had the 6 1 1 protocol open

5

for development. (6 1 1 is a name chosen for convenient reference into the
ClarkJacob97 listing of protocols.)

The main Pda panel contains four primary components:

• Pda toolbar

• Database browser pane

• Editing pane

• Properties/Outline pane

Pda toolbar The Pda toolbar is divided into two main groups, each with
several components. Where a component has an icon to illustrate the under-
lying functionality, there is also a cursor-activated descriptor providing a text
description. To expose this, simply hold the cursor over the icon (no mouse
click).

• Error-handling controls The first toolbar group has arrow icons that
will eventually be activated to support moving among error alert notices,
which will be identified by small red, white-crossed circles above protocols
showing in the Editing pane. Using these arrows you may navigate among
any syntax errors detected by Pda in your protocol specfication. Note:
you may also view each error directly by placing the cursor over the alert
icons.

• Layout support tools The second toolbar group only appears when a pro-
tocol is open for editing in the Editing pane. It offers layout support for

6

protocol design actions. Its components are (1) undo/redo, (2) alignment,
(3) editor graphics scaling, and (4) a toggle for quick editing actions. In
the figure above, the scaling parameter shows as 100% of normal, and
Quick Edit as not selected.

The small square colored boxes icon inside in the Application toolbar is
your click-to-zoom button. Clicking it will zoom the figure in the Editing
pane to fill the window to a scaling that keeps the protocol graphic’s
relative height/width ratio untouched, while filling as much window as
possible, as the figure below shows. To return to the unzoomed depiction,
you can use the undo arrow in the toolbar or find 100% in the editor
graphics scaling measurement in the pull-down menu next to the zoom
icon. Alternatively, just click outside the protocol graphic and type the
numeral 1.

Alignment icons are useful when you want to clean up positions of the
internal agent actions in a protocol.

The Quick Edit option is a toggle that changes the default for toolbar
selection in the Editing pane. When turned off, after each choice of an
element from the Editing pane’s toolbar (e.g., Agent Stad), the default
selection reverts to the Select arrow. When on, the last toolbar element
used is again active for the next mouse click in the Editing pane.

Separated from these two groups, and located at the rightmost end of
the Application toolbar, are buttons for choice of perspective. For this
overview, we will work only with the default Pda perspective, which is
shown selected in the figure (the Pda icon). Additional information on
perspectives is available in the Preparation Subsection of the Example
Section.

7

Notice that the Pda toolbar has a dynamic aspect. When you close all protocols
in the Editing pane (see below), the Pda toolbar collapses to just the first two
components. In this state, with no protocol open, they are not operative.

Database Browser pane The Database Browser pane is where protocols
in your database are organized and displayed. (More precisely, this is where
those protocols in your working set within your database are displayed.) The
presentation is folder-based, ordered alphabetically, but the actual storage is
data-based. In the figure above, you will see displayed the first several pro-
tocols in the ClarkJacob library grouping. Each protocol will have derivation
constituents. In the case of 6 1 1, the derivation is trivial, i.e., there is just
the single derivation component. More complex protocol derivations will have
multiple protocol components. These will be listed below their parent in the
Browser.

To view a protocol, you right-click the tree icon adjacent to the protocol name.
Your protocol will open in the protocol graphic editing pane to the right and
will also be displayed above that graphic as a tab. This action produced the
figure above. Note: double- clicking a protocol component in the Browser will
also open the protocol in the Editing pane.

An important part of the Database Browser is the mini-toolbar that appears just
below the Pda Database Browser tab. The several icons there are divided into
three groups: (1) folder view, (2) derivation view, and (3) working set view. As
with the icons in the Application toolbar, there is a cursor-activated descriptor.

The Database Browser display control is particularly important. The first two
icons are just a collapse/expand duo. The third one, however, is a pull-down
menu that enables control over which folders are displayed in the browser. In
particular, notice there the concept of a working set, a feature that offers many

8

conveniences. For example, loading protocols into your workspace upon opening
Pda can be more efficient if you just load what you need. The same idea applies
for exporting a working set, which you might do in order to share your protocol
work with a colleague.

Editing pane Perhaps the region where you will place most of your focus is
the Editing pane. In the figure above, you see a simple icon that represents a
protocol named P 6 1 1. To its left are mini-toolbar buttons that operate within
the context of the Protocol editor: Select, Marquee, Protocols (expanded in the
figure), Constructors, and Rules. Below the main editor window are two tabs
(Graph, sexpr): these control what is displayed in the Editing pane. Graph is
the default selection; it shows the derivation graph depicted in a agent-arrows
format, while sexpr shows a lisp-like representation for the flow of actions in
the protocol under edit. See the Tips for Use Section for more information on
sexpr.

Expanding (double-clicking) P 6 1 1 reveals the picture in the next figure:

For convenience the protocol elements in this example are summarized here.(For
greater detail, please see the Reference Manual where the Pda protocol deriva-
tion language for protocol is presented.) The graph shows two agents, A (Alice)
and B (Bob). Alice arrives at the protocol with text elements t1 and t2 already
available. She creates a nonce x and sends to Bob a compound message with
components t1 and a payload of (x, B, t1) encrypted by a key K[A,B] shared
between them. The elements in the Protocol Mini Toolbar used to build P 6 1 1
are exposed. More information on their use is located below.

Properties/Outline pane The remaining section of the main panel is tied
closely to the protocol editor pane. The next figure shows the Outline tab
selected in the Properties/Outline pane. Often a protocol derivation will not

9

conveniently fit in the Editor pane. Move the shaded viewing port in the Outline
pane to expose the desired protocol section in the Editor pane.

The Properties pane is useful for seeing a summary of high level properties of
each aspect of a protocol, but perhaps even moreso for editing some of them.
The next figure shows how to do this. You reach this stage by clicking on the
Properties tab, then right-click on a protocol element, select edit from the pop-
up contextual window, click on the corresponding value in Properties, and then
double-click the small rectangle to its right.

10

3.3 Menu features

This section collects explanations of the various menu items throughout Pda.
There are two primary types of menus: static and contextual. The former are
available by the usual menu pulldown method; the latter by right-clicking on an
object in any of the main panel panes described in the Main panel section.

3.3.1 Static menus

The Application menubar contains five menus:Pda, File, Search, Window, Help.

Pda This menu is specific to Mac platforms. The menu items relevant to Pda
would be About Pda and Preferences. At this point, neither item is operational.
For Preferences, you go instead to the Window menu, where you will find an
item called Pda Preferences.

File The primary menu item under File is Switch Workspace.... This item
simply leads to a navigation dialogue in which you pick the folder location of the
next workspace you want to use. A workspace is a database containing protocol
libraries, in turn possibly partitioned into working sets. Use this menu item to
locate the folder in which your desired workspace is contained. You may have
different workspaces, but you should keep each in a separate folder.

Search This item has three entries: Search ..., File, and Pda Search, the
first of which really contains the other two. Pick Search... and you will see all
choices offered to you. The Pda tab is the most interesting, since it enables you
to search either your working set or your whole workspace for nodes (protocols,
constructors, or rules) or references to nodes. You can see this at work by
searching for P 6 1 1. The result is shown in the next figure. Notice that a
Search Glass icon has been inserted at the third slot in the Browser menubar to
indicate that the list of displayed protocols has been cut back to contain only
the single one with a reference to the node P 6 1 1. To recover your original
workspace display, you can select the Clear search results, which is available in
the context menu in the search view.

11

Window This item has four options: Open Perspective, Show View, Reset
Perspective, Pda Preferences. Open Perspective has the same functionality as
the Other icon at the rightmost end of the Pda toolbar. You will probably
just need the Pda option within that dialogue. Show View is more interesting.
The next figure displays the various palettes that can be brought up for your
support. We will address key palette options in the section on Usage Tips.

For now we just display the result of selecting the Navigation option.

12

Reset Perspective returns you to the default setting for Pda. Pda Preferences
provides a list of options, some self-explanatory. We refer the reader to the
Usage Tips section for a discussion of the more advanced options.

Help Search contents is not yet available in Pda. Software updates offers the
dialogue shown in the next figure. We advise the reader to pick the second radio
button option and then select the Pda filter to check for Pda updates.

13

3.3.2 Contextual menus

Contextual menus appear in the Browser pane, the Editing pane, and the Prop-
erties pane. To pop-up a contextual menu, right-click in the pane itself or on
an object within the pane.

Browser pane menus

Right-clicking in the browser pane produces results that are state dependent.
If you have no folder nor protocol selected, your pop-up menu will offer you
the option to create a New Root Folder. You would accept the option if
you wanted to create an additional protocol collection at the top level of your
browser hierarchy.

If you right-click with a folder already selected, you see a more elaborate pop-up
offering, as shown in the next figure.

New provides a pull-out menu with options for Folder, Pda Diagram, and Pda
Rule Diagram. Selecting the first will create a folder within your selected folder,
useful for collecting subgroups of protocols. The next two, respectively, create
an entry for a new protocol or rule. Pick one and you will be presented with a
dialogue to name it.

New Root Folder is the same option offered when no folder is selected.

Move to Trash will install a Trash icon in your Browser toolbar and put a
selected Folder or protocol or rule into it. If you open the Trash (double-click
its icon), select and right-click an item, you are offered the option to restore it.
If the Trash is empty, its icon is no longer displayed. If you click on the Trash
icon in the Browser toolbar, then right-click on the Trash icon in the Browser,
you gain the option of emptying the Trash. As usual, this is not undoable.

14

Rename provides a dialogue for changing the name of a folder, protocol, or
rule.

Export to snapshot file, resp. Import from snapshot are the means by
which you export, resp. import an item from your database, for sharing or
archiving. Each will enable you to navigate in your platform’s file system for
the operation.

Create working set allows you to create a filter in your database for conve-
nience in loading and display. The next figure shows the dialogue with options
for naming, overwriting, or merging working sets.

If you right-click with a protocol already selected, you see a pop-up menu with
only one new option,Copy, as shown in the next figure.

The paired Paste can be executed if you select and right-click a target folder in
the Browser.

Editing pane menus

The contextual menus in the Editing pane depend upon whether you wright-
click on or in a protocol box or not. If you click outside all protocol boxes,
a menu pops up, but only Zoom and Save result in any action that, in each
case,is self-explanatory. The other items will be removed in future versions.

Clicking inside a protocol box, but not on an agent or send/receive arrow, brings
up the important menu shown in the next figure.

15

Copy reference If you click inside a protocol box, outside of all agents, stads,
and arrows, you will see Copy reference in the contextual menu. You can then
paste the result into the existing protocol folder or another one that is open.
Note, open protocols are shown as tabs above the Editor pane. Copying a
reference is analogous to an alias (Mac) or shortcut [pointer] (Win). See the
Usage Tips section for more information on this.

Edit Click on an item within a protocol box to open an editing window for
that object. The editable items include in and out, stads and arrows. Actually,
you edit the contents of the arrow, i.e., its payload description. Editing for
in and out and arrows produces the same contextual menu. The entries are
self-descriptive. Select Edit to change the value, then click anywhere outside
the element to accept the change. Another option after Edit is selected for
an object is to click on the object’s value in the Properties pane. If a small
rectangle appears, clicking that will bring up a larger editing window. See the
end of the Main Panel section for an example.

For a stad, the contextual menu contains items that relate to a state in the
protocol’s evolution (that’s what a stad is). Many of the menu items are self-
descriptive. The other ones of interest are: Specware: this will generate a
MetaSlang representation for the stad. Generate s-expr: this will generate an
s-expression for the stad. Specware and sexpr data for the collection of stads can
be viewed by selecting the specware, resp. sexpr tab below the editing pane.

Collapse This option will collapse the detailed internal view of the protocol to
the generic icon form. If your editing pane is full of protocols, you may wish to
reduce the display’s complexity by collapsing all but the protocol of immediate
interest.

Check Element(s) When you have edited a protocol in the Editing pane,
you may wish to check for syntactic correctness without regenerating the whole

16

protocol. Use this option to carry out that function.

Generate Protocol Contents When you edit certain elements in a protocol,
the changes may naturally propagate to other items in the current protocol and
child nodes in the refinement graph. Although you do not have to regenerate
the contents, not doing so affects referential integrity.That is, your protocol will
no longer necessarily adhere to structures in its lineage. By the same token, if
you want to override a feature in a parent (or higher in the lineage) protocol, do
not regenerate the contents you have edited. Opt carefully for override, since
this action will immediately update your protocol’s definition in your database,
with no recourse to Undo.

Create New Instance In many protocol derivations you will want a copy of
a protocol for describing your refinement . Click on the parent, select Create
New Instance, and the result is a child instance as shown in the next figure.
Now work your refinement into the new instance. More detail can be found in
the Example section.

Edit spec To examine and edit the specs associated with a protocol, use the
Edit Spec command. As shown in the next figure this brings up a window with
3 tabs labeled User-Spec, Auth-Spec, and Prove Commands.

17

The User-Spec is where the user can enter a spec for the functions in the protocol.
For example, in the CR protocol (the abstract Challenge-Response protocol) the
following spec was entered to characterize the c and r functions.

spec
op c: Agent * Agent * Nonce -> Term
op r: Agent * Agent * Nonce -> Term
axiom cr is
fa(m:Nonce,agentA,agentB,sendingC,receivingR)
agentA = creator(m) &&

firstSendIn(sendingC, agentA, c(agentA,agentB,m)) &&
receivingR isA receiveIn(agentA,r(agentA,agentB,m)) &&
sendingC precedes receivingR

=>
(ex(receivingC,sendingR)
receivingC isA receiveIn(agentB,c(agentA,agentB,m)) &&
firstSendIn(sendingR, agentB, r(agentA,agentB,m)) &&
sendingC precedes receivingC &&
receivingC precedes sendingR &&
sendingR precedes receivingR)

endspec

The Auth-Spec tab contains specs automatically generated by the Pda system.
It contains several specs. The first spec is labeled UserBase and is a copy of the
user spec with an import of the base theory for protocols.

If the protocol is an instance of another protocol, then the Auth-Spec contains
a spec called Instance that contains theorems and conjectures derived from the
specs for which this is an instance.

The last spec under the Auth-Spec tab is called Conjectures. It contains authen-
tication conjectures generated by Pda from the protocol diagram.

Under the Prove Commands tab are prove commands of the form prove conjec-
ture name where conjecture name is a conjecture in the Conjectures spec. The

18

user can ask Pda to try to prove a conjecture by right clicking on a conjecture,
moving the mouse down to Specware and then clicking on one of the Prove
commands that pops up (these come from the contents of the Prove Commands
tab). This causes Specware to try to prove the conjecture using Snark.

For more details, please see the Proofs section.

Apply Constructor Constructor design is under review. Design changes are
certain, so until then this command should not be used.

Show in Derivation Browser If you right-click on a protocol in the Editing
pane, this command will create a derivation browser palette to the right of the
pane. All the protocols in your working set will be examined for their dependen-
cies, which the browswer palette then displays. This is the same functionality
you will find with the tree icon above the Browser pane.

Add default agent input/output edges This command refers to the in-
put/output annotations at the top/bottom of an agent’s slice of the protocol.
Select the protocol, choose this menu item and the notations for each Agent
Ai will be created: in[Ai]/out[Ai], for each i. If the annotations are already
present, even if not the default, no change will be made. One situation where
this feature might be convenient is to roll back a user’s changes to the default
in[]/out[].

Specware This item pulls out to offer the option Generate spec for protocol.
Selecting this option will have no effect unless a Specware process has been
started. (See the Installation Section). If you do have a process running, a
formal specification in Specware’s language MetaSlang will be created.

Generate s-expr Please see the S-Expr Plug-in section for an explanation of
this menu item.

Change font size This command can help make a protocol derivation easier
to read. Click on any text entry in a protocol to select that component. Then
right-click to bring up the contextual menu and select Change font size. You
will be provide with a pop-up menu with options to increase or decrease the
font size of the selected component.

Adjust bounds ... @@ to be completed

Property pane menus

Fast View, Move, Size, Max/Min, Close

These contextual menu items provide options for altering the location of the
panes. You reach the options by clicking in the Properties/Outline pane title
area.

@@ to be completed

Copy

If you click in the region within the Properties pane, the item you are pointing

19

to is placed on the Clipboard in the usual manner.

3.4 Example

In this section we demonstrate the basic functionality of Pda with a simple
derivation. First, however, we set the stage with workspace, perspective, and
project steps you need to carry out. Then we will show how to build a two-way
authentication protocol out of a one-way authentication protocol using simple
derivation steps.

3.4.1 Entering a protocol

A protocol is a distributed program. To specify a protocol, you must specify a
sequence of actions to be executed by every participant in the protocol. Actions
divide into two groups: external actions, i.e., sending and receiving a message
and internal actions, i.e., generating nonces, keys, hashes, decryption and other
local computation. (For agent actions, note that the reserved terms are if, then,
match and new. For full details on the language to describe actions, functions,
and variables, please see the Reference Manual.)

Protocols are entered into Pda with the elements of the Protocol Toolbar. The
program of every agent is a linear sequence of state descriptions (Stads), with
transitions being either send, receive, or agent step (internal compuation).

The next figure shows where you are after creating a new protocol diagram
called CR Template in your Browser and opening it for edit.

In the Editing pane, select Protocol from the Protocol toolbar, click in the Edit-
ing pane, and enter CR[I,R](c, r) to replace the default text (Unnamed Protocol).
Click outside the text area and you will see the next screen.

Double-click the collapsed icon to show/edit the protocol, (alternatively, you
can right-click to expand it), and you find:

20

Now click on Agent Stad in the toolbar, then near the top of the Agent I box,
then do the same steps again at the middle and then the bottom. You will
see the next figure. Notice, after each placement of an Agent Stad, you must
reselect the Agent Stad option from the toolbar. That’s where Quick Edit can
save you time (see the Main panel section).

For now, let’s use a different aid, namely, Zoom. Click inside the protocol,
between the two agents, to select it. Then type “z”. Return to the toolbar, pick
Agent Step. Then click first in the top Agent Stad, release the mouse, position
the cursor over the middle Agent Stad, and click/release again. In the window
that appears, type “new m”, and click outside the agent. You can reposition
text by selecting it and using your arrow keys, e.g., to produce the next figure.

Now use the toolbar items yourself to produce the following two party CR[I,R](c, r)
protocol description. Don’t forget that you have to reselect toolbar items after
each step. For example, when you want to reposition text, you must select
Select.

In this protocol, Agent I (initiator) has the carried out the following sequence
of actions: generate a new nonce m, send the message c(I,R, m) to R, receive

21

a message r(I,R, m) from R. Correspondingly, Agent R (responder) receives a
message c(I,R, m) from I and sends a message r(I,R, m) to I.

Messages exchanged in a protocol contain concrete cryptographic primitives
such as encryption, signature and hash, and function variables such as c and r
in this example. The only reserved term for these operations (at this time) is the
keyword new. Other notations are up to the user. See the section Conventions
for suggested usage.

When a protocol contains function variables, we say that it is a protocol template.
In this example, the protocol header CR[I,R](c, r) should be read: CR is a two
party protocol (agents are named I and R), using abstract function variables c
and r.

3.4.2 Creating an instance

The simplest derivation step is protocol instantiation. Using the Create New
Instance command (right-click on the CR protocol), some (or all) of the func-
tion variables can be refined to concrete primitives or other function variables.
For example, we can get a one-way challenge-response protocol using nonces
and signature as an instance of CR[I, R](c, r) with the following instantiation:
c(x,y,z)=z, r(x,y,z)=Sig(y,z,x), where Sig is a signature function. You enter this
instantiation in the editing dialogue that is presented once the instance has been
created.

In the resulting protocol SCR[I,R], agent I sends a fresh nonce to R who replies
with his signature over the nonce and I’s identity.

Notice that the figure illustrates having collapsed the Template and expanded
the instance.

3.4.3 Sequential composition

Protocols can be combined using sequential composition. In a resulting protocol,
the program of each agent is a concatenation of their respective programs from
two protocols. For example, protocol Two CR[I,R](c, r, c0, r0) is obtained by
sequentially composing CR[I,R](c, r) with its reverse copy Reverse CR[I,R](c0, ro)
(which is in turn obtained by simple instantiation Reverse CR[I,R](c0, ro) =
CR[R, I](c0, r0)). The result is shown in the next figure.

22

Let’s step back to see one way to get to this result. Go to CR Template, open
it, select the protocol CR, right-click and pick Copy Reference. Now go to
Two CR and Paste into the Editing pane. Notice that the icon is grayed and
has a pointer, indicating that it is a reference instance. Select it, right-click and
pick Create New Instance, creating CR inst. Do the same to CR inst, but edit
its signature to Reverse CR inst, with the agent names reversed ([R,I]). At this
stage you will see the following figure:

Now use the Protocol toolbar to create another protocol (wait to name it), and
the toolbar again to create Instance Edges from the two CR instances above.
Now name the composed protocol Two CR[I,R](c,r,c0,r0)=CR inst[I,R](c,r);Reverse CR inst[I,R](c0,r0).
The curly brackets indicate sequential composition of the protocols separated
by a semicolon.

Finally, select the composed protocol, right-click and select Generate Protocol
Contents.

3.5 Variables

For convenience of use, the diagrammatic protocol representation in Pda is set
up to resemble, as much as possible, the informal protocol notation of ”arrows-
and-messages”. On the other hand, one of the main goals of this tool is to
support *formal* reasoning about security. To balance between these two goals,

23

for better or for worse, we use a generous set of graphic abbreviations and
annotations.

The formal model underlying Pda has evolved through the papers available from
www.kestrel.edu/@@. Here we provide a brief summary.

A protocol specification consists of a process, a desired run, and a specification
of its security properties. A process is specified as a multiset of agents, which
may be the protocol principals, or attackers. Each agent is a program, i.e. a
partially ordered multiset of actions. The actions can be internal or external.The
internal actions include the usual computational operations, such as assignment
and test; and the specific security operations, such as generation of random
values.

The external actions can be:

• (send A→B:t), where A and B are constant agent identifiers, and t is a
closed term; or

• (recv X→Y:z), where X and Y are agent variables, and z is a term variable

The sender denotes by A and B the purported source and destination of the
message, which may or may not be the actual sender and receiver: an attacker
can spoof these fields; a router can use them to direct traffic. The receiver
denotes by X and Y the claimed source and destination of the received message,
and by z its payload.

The desired run of a protocol is an assignment of a unique send action to each
receive action. In Pda, this is denoted by drawing arrows between agents. In
this way, the process and the desired run are specified together. However,
this is a matter of convenience, and it should be clear that processes can have
many different runs. In many cases, security means that undesired runs will be
detected.

Connecting (send A→B:t) with (recv X→Y:z) in a run has the effect of simulta-
neously assigning X:=A, Y:=B and z:=t in receiver’s environment. In Pda, the
source and the destination fields of these two actions are elided from the graphic
display whenever they coincide with the actual sender and receiver of the actions
linked in the run. Note that this is just a display feature: in the underlying
formal model, the source and the destination fields are always present.

The variables that occur in the receive action are bound to the received values
only when the process is run, i.e., dynamically. These variables are necessary
to allow specifying statically (at design time), any computations that are to
be undertaken at run time. Moreover, while the term structure of the received
data (e.g., that it is encrypted by Alice’s key) may not be discernible to Bob,
he can still manipulate such data, e.g., for passing it forward to a trusted third
agent.This is illustrated in the following figure.@@ create figure

24

@@ need figures and examples

3.6 Constructors

This section describes Constructors through one example. However, at this
point, Constructors are being rethought, and subsequent Pda versions will most
likely implement them in a different fashion. You are not advised at this point
to use them.

Constructors capture a wide space of protocol transformations. They work like
macro recorders. To define a new constructor, you have to specify its parameters
by dragging the desired protocols into the constructor window. After that you
generate the resulting protocol out of the constructor parameters using the same
tools available for protocol construction.

For example, we will define a constructor binding that will replace the second
and the third message in protocol Two CR[I,R](c, r, c0, r0), by b(I,R, m0,m1)
obtaining protocol CR2[I,R](c, b, r0).

The structure of the final derivation can be explored in the workspace or with
the derivation browser.

25

3.7 Rules

This description is preliminary. Please expect changes because the design of
Rules and Constructors is an active research effort.

Rules are a more general form of Constructors. The latter take one (or more)
protocol(s) as input and provide a form of specialization. (See Section @@ for
examples of Constructors.) Rules operate on two or more protocols to combine
them in a desired manner. A good model is the case of mutual authentication.
Think of such a protocol as either nested or sequential challenge-response (CR)
protocols. A rule can be built to compose two instances of a CR protocol into
the desired mutual authentication result.

If you open a rule in the Database browser, you will see two additional com-
ponent entries: Rule Argument and Rule Result. The idea is that you define
a number of rule arguments representing pattern of the protocols you want to
apply the rule to, and exactly one rule result, which represents the combination
of parts of the rule arguments and possibly new parts.

26

3.7.1 Applying a rule

3.7.2 Creating a rule

Rules are defined in a special kind of file, a Pda Rule file, that can be created
as shown in the next figure.

The rule can be applied in a (regular) pda-file by selecting the rule on the palette
adjacent to the Editing pane, and placing a reference to it in the diagram. You
then draw instance edges from the protocols in the diagram that serve as the
rule arguments into the rule symbol.

If all instance edges are attached, double click on the rule symbol and you will
get a wizard dialog that allows you to further specify the mappings of the sub-
protocols that you have defined in the rule definition with (parts of) the actuals
argument protocols. The mapping is done by marking parts of a protocol using
a Sub-Protocol-Marker, and by connecting each of them with a sub-protocol of
the rule argument using a Sub-Protocol Map Edge. The labels on the edge can
be used to define mappings of terms and agents.

@@ to be completed (need to expand, provide figures, etc.)

3.8 Tips for Use

Here we collect various topics to help you further with Pda.

3.8.1 General tips

Perspective On occasion you may close a pane that you then wish were open.
the easiest way to return to the desired view is just to use the PdaPerspective
icon in the Pdamenubar.

Arrows When you are placing arrows in a protocol derivation, you may find that
Pda’s graphics editor are different from others. In Pda, when you have selected
either agent step, send/receive, or instance edge, you click/release first in the
source box and then in the center of the target box.

27

Using rules @@ tips for using rules, e.g., make duplicate

Using constructors @@ to be completed

New root folder To create a new root folder, just right-click in the Browser pane
to bring up the menu.

Working set @@ to be completed

Reference instance To create a reference instance ... @@ to be completed

Undo Pda provides an infinite depth of undo’s. Enjoy.

Advanced Pda Preferences @@ to be completed

3.8.2 Error alerts

You will make syntactic errors during your editing work in protocol derivation.
For example, in the next figure you can see that the protocol name CS[A,B] has
been mistakenly entered in refining the parent CR[A,B] to create CRI[A,B]. To
expose the error report, simply hold the cursor over the red circle (no clicking
needed).

Notice in the next figure that not only has the protocol name been corrected,
but the incorrect response term y has been replaced with the desired term x.

28

You may navigate among the error alerts by the arrows in the Pda application
toolbar. Please see the Main Panel section.

3.8.3 Candidate conventions

This section provides possible conventions for protocol descriptions in Pda.
Users are free, of course, to use their own choices to choose the notation used
in a protocol description, as the examples in this manual demonstrate.

• agent names A, B, C, ...

This image shows the engagement of two agents, A and B. Each agent’s
internal activities, including accepted input and output produced, will be
illustrated in its respective column.

• server names: S, S1, S2,...

29

Protocols can also include a trusted third party, for example a key server
for authentication. This image shows the structure to build when a server
is part of the protocol. Note that the display of agent activities follows
the same order as listed in the argument to the protocol name.

• agent action names: new, if, then, and match are reserved words in Pda,
and are the only action names currently supported.

An agent can carry out internal actions, e.g., generation of a nonce, a
timestamp, a clear text message, a key, etc. Internal action reserved names
include: new, if, then, match. Generic action result names may be labeled
q, q1, q2,... The image here shows creation of a new datum labeled q.

• nonce names x, x1, x2, ... Nonces are fresh values used typically in au-
thentication protocols. One form of nonce is a timestamp (see below), but
many protocols simply prescribe a value that is randomly generated.

• timestamp names ts, ts1, ts2,... Timestamps are an alternative to nonces
for authentication. They are used to prevent replay as new of captured
messages.

• clear text names t, t1, t2,... Clear text can include items such as agent
names, public keys, and non-sensitive text messages. The following figure
shows Agent A sending clear text along with a shared key to Agent B.

• key function names K(), K[A,B](), K[B,S](),... Keys are functions in Pda.
The generic key reference is K(), but if the parties sharing the key are
named, the convention is to list them as arguments in square brackets, as
shown in this figure.

30

The function notation for arguments is empty when the key is the payload.
When a message payload includes encrypted text, it is included in the key
function’s arugments. The following figure shows this convention.

• hash function names H(), H[A,B](), H[B,S](),... Hashes are functions in
Pda. The generic hash reference is H().

• crypto variable names cv, cv1, cv2,...2

• names Protocol names are, of course, up to the designer. For the Clark-
Jacob libraries, the numerical naming scheme was chosen for convenient
referencing into the paper. Intermediate protocols in a derivation (also,
Rule or Constructor) may be used by other derivations, so some attention
to their naming may be helpful. Give some thought to picking names,
since you will want to recognize reference instances among possibly long
lists of protocols in your browser.

3.8.4 Extending Pda

In order to communicate with other tools, Pda uses the Eclipse mechanism of
defining extension points to provide an interface for tool developers to hook up
their tools to Pda. In the current version, only the direction from Pda to an
external tool is provided by the interface, but future version will provide for a
tighter integration between external tools and Pda.

An example tool plugin for generating s-expressions from protocol descriptions
is available at the Pda update site as an additional Eclipse plugin that can be
installed on top of Pda. This plugiin also serves for now as the main source of
documentation about how to use the interface and about the API for accessing
the data provided at the tool plugin interface.

31

In general, the following things need to be done in order to provide a Pda tool
plugin:

1. Create an Eclipse plugin project and extend the edu.kestrel.pda.toolPlugin
extension point provided by the edu.kestrel.pda plugin

2. Let the class given in the extension definition extend the class edu.kestrel.pda.ext.ToolPlugin.

3. In that class, implement the processProtocol() for processing the data
structure representing a procotol. The methods getToolPluginId(),
getToolPluginName(), getProcessProtocolActionLabel() should also
be implemented and just return suitable strings. The latter is used as a
label in the context menu of the protocol.

4. If deployed, the processProtocol() method will be invoked using the
corresponding context menu entry on a protocol in a Pda diagram.

The Java api documentation for the interface classes can be found here.

32

4 Reference Manual

This section presents a formal description of the language used in Pda for in-
cremental protocol derivation. The language is both graphical and textual; the
former addressing nodes & arrows for encapsulating protocol agents and actions;
the latter to describe the local agent actions and the payload of send/receive
actions.

4.1 The Pda Protocol Derivation Language

In this section, we will define the language of protocol derivations used in the
Pda tool. The general idea of the derivational approach is that derivations
of protocols go hand in hand with that of proofs of security properties of the
protocols. The benefit of this approach is that complex protocols can be derived
incrementally from much simpler ones. At the same time the security property
proofs are also incrementally developed, so that already proven properties of
abstract protocols can be used as theorems in more specific ones. This gives the
derivational approach a huge gain compared to other approaches, which try to
prove security properties on the final protocols. Because in the latter case the
protocol is treated as a monolithic piece of code and/or spec, the complexity of
security property proofs can become huge so that it can become infeasible to
try proving them with state-of-the-art proving techniques (see [?]).

Technically, Pda separates the language of protocol derivations from the lan-
guage to express security properties and proofs. While the latter one is ex-
changable in the tool, the language of protocol derivations is pre-defined in
order to provide a general framework to define protocols and derivations. In its
distributed version, Pda comes with a module for expressing specs and proofs in
Specware, Kestrel’s state-of-the-art specification language. (Specware itself is
not included in the release, but is the framework to communicate to a Specware
server process running in the background.) In the following, we will present the
Pda protocol derivation language in detail.

4.1.1 Protocol Descriptions

The general idea is that protocols in Pda are described as abstract entities and
that certain projection functions exist that further characterize the protocol.
For instance, a simple Challenge-Response protocol may be abstractly defined
by the term

CR[A,B](c, r)

which means that the protocol name is CR, the principals (or agents) are A
and B, and that the protocol has two function variables c for the challenge and
r for the response function. If the developer wishes to define the behavior of
this protocol more precisely, he or she can define the actions of the protocol

33

and the partial order between them defining the “desired run” of the protocol.
This information is captured by providing a projection function process and
providing a definition term for the abstractly specified protocol. In Pda, the
process description of a protocol is the core projection function for protocols
and therefore often referred to as the definition of the protocol.

The Pda protocol language consists of textual as well as graphical elements for
describing the entities of the protocol derivations. The graphical elements used
are nodes and arrows representing connections between a pair of nodes. Nodes
can be nested, i.e., a node can be a child of another node. Graphically this means
that the outline of the child node is fully contained within the outline of the
parent node. Nodes as well as arrows haves text labels. The following extensions
to the EBNF grammar notations are used to represent those relationships:

L
N

represents a graphical node with label L and graphi-
cal elements N . N must reduce to a list of nodes and
arrows.

〈L | N1 → N2〉 represents a graphical arrow with label L connecting
graphical nodes N1 and N2.

Using this notation, the description of a protocol is given by the following excerpt
of the Pda protocol language:

ProtocolNode ::=
ProtDecl
(AgentNode | 〈SendReceive | StateNode → StateNode〉)∗

The label of the protocol node obeys the following syntax rules, where the
notation “. . .” means that the definition of this non-terminal contains more
alternatives than shown in this particular rule

ProtDecl ::= SimpleProtDecl
| . . .

SimpleProtDecl ::= ProtocolNameIdentifier
[StaticParams] [FunctionParams]

StaticParams ::= ‘[’ AgentNameIdentifier
(‘,’ AgentNameIdentifier)∗ ‘]’

FunctionParams ::= ‘(’ FunctionNameIdentifier
(‘,’ FunctionNameIdentifier)∗ ‘)’

ProtocolNameIdentifier ::= 〈 capitalized identifier 〉
AgentNameIdentifier ::= 〈 capitalized identifier 〉
FunctionNameIdentifier ::= 〈 lower case identifier 〉

An example of a SimpleProtDecl would be the abstract representation of the
Challenge-Response protocol as mentioned above: “CR[A,B](c,r)”.

As specified in the rule for the protocol declaration, the agent nodes are used
to specify the principals of the protocol. An agent itself is described by a state
machine that specifies the agent’s behavior. This state machine is expressed

34

using nodes and arrows between them; the arrows carrying local agent action
information.

AgentNode ::=
AgentNameIdentifier
(StateNode |
〈AgentAction | StateNode → StateNode〉)∗

StateNode ::=
〈empty〉
〈empty〉

AgentAction ::= ‘new’ VariableIdentifier
| ActionVariableIdentifier
| VariableIdentifier ‘:=’ Terms
| ‘if’ Term ‘then’ AgentAction

VariableIdentifier ::= 〈 lower case identifier 〉
ActionVariableIdentifier ::= 〈 lower case identifier 〉

The Pda protocol language defines the following set of terms that can be used
in local agent actions as well as the payload of the send/receive messages, the
syntax of which is defined further below:

Term ::= VariableIdentifier (’[’ AgentNameIdentifier ’]’)?
| FunTerm
| ‘(’ Terms ‘)’
| 〈 number 〉
| Term InfixOp Term

FunTerm ::= FunctionNameIdentifier [AgentArgs] [Args]
InfixOp ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’ | ‘@’ | ‘==’ | ‘!=’ |
AgentArgs ::= ‘[’ AgentNameIdentifier

(‘,’ AgentNameIdentifier)∗ ‘]’
Args ::= ‘(’[Terms] ‘)’
Terms ::= Term (‘,’ Term) ∗

The send/receive arrows represent the message exchange between the agents
of the protocol. In their basic format they just contain the payload in form
of a term or a list of terms as specified above. In general, the send/receive
arrow can also contain data for the sender and/or receiver field of a message;
this is used, for instance, to model an intruder who manipulates the original
message in order to sham the honest protocol principal. Another use of the ex-
plicit sender/receiver field is the “trusted-third-party” protocol, where the agent
representing the trusted third party receives and sends the messages with the
actual sender/receiver information. The syntax for the send/receive messages
is as follows:

35

SendReceive ::= [SenderReceiverAgents ‘:’]
Terms [‘|->’ [SenderReceiverAgents ‘:’] Terms]

SenderReceiverAgents ::= AgentNames ‘->’ AgentNames
AgentNames ::= AgentNameIdentifier (‘,’ AgentNameIdentifier)∗

4.1.2 Protocol Instantiations

Protocol instantiations can be used to instantiate agent, function, and action
parameters of abstract protocols. An example of a protocol instantiation is

CRI[A,B](c) = CR[A,B](c=c,r[A,B](x)=x)

which means that the protocol CRI is defined in terms of CR by declaring the r
parameter to be the identity function. The syntax rules for protocol instantia-
tions are as follows:
ProtDecl ::= . . .

| ProtInst
ProtInst ::= SimpleProtDecl ’=’ ProtTerm
ProtTerm ::= ProtTermInst

| . . .

The protocol term for instantiations is defined as follows:

ProtTermInst ::= ProtocolNameIdentifier StaticParams FunctionAndActionInsts
FunctionAndActionInsts ::= (’(’ (FunctionInst | ActionInst) ∗ ’)’)?

A function instantiation provides a definition for a function parameter of the
abstract protocol that is being instantiated. There are two variants that can be
used to instantiate the functions of an abstract protocol:

• If only function identifiers are used in the instantiation list, then the func-
tions parameters are mapped to the arguments according to the order in
the parameter list. For instance, an instantiation

CRH[A,B](r1) = CR[A,B](H,r1)

would instantiate the c parameter of CR with H and the r parameter of CR
with the local parameter r1 of CRH.
FunctionInst ::= 〈 identifier 〉

| . . .

• Complete function definitions can be specified in those cases where the
simple form can’t be used; each function instantiation resembles a func-
tion definition for the parameter on the left-hand side. The function in-
stantiation list must in any case give instantiation for all parameters in
the abstract protocol, in either of the formats.

36

FunctionInst ::= . . .
| FunTerm ’=’ Term An example of a function def-

inition of the second form is given in the above instantiation example:
r[A,B](x)=x;

In either of the forms all function parameters must be mentioned in the argument
list of the instantiation.

Action instantiations can be used to replace an action variable attached to a
local agent edge in the abstract protocol. The syntax for an action instantiation
is

ActionInst ::= 〈 identifier 〉’ =’ ’{’ AgentAction ’}’

Because, function and action instantiations can occur in any order in the in-
stantion list, the use of an action instantiation implies that use of the second
variant for function instantiations, i.e. action instantiations cannot be mixed
with function instantiations using only identifier and the argument position. An
example of an action instantiation would be:

a = {new x}

4.1.3 Where to use which grammar rules

The following graphic depicts which grammar rules are to be used for which
part of a graphical protocol definition in Pda:

37

No. Non-terminal symbol Description
1 ProtDecl Protocol declarations
2 AgentNameIdentifier Agent declarations
3 Terms Input/output terms of agents (optional)
4 AgentAction Local agent actions (might be empty)
5 SendReceive Send/Receive action specs (might be empty)

38

5 S-Expr Plug-in

This plugin provides a first example of a tool extension of Pda.. The S-Expr
Plug-in generates s-expressions from protocols in an Pda diagram and writes
them to a file. In the current version, the individual programs of the proto-
col agents is captured in the generated s-expressions; it is assumed that the
connections between the local states of an agents are complete; otherwise the
s-expression is not generated correctly.

The S-Expression grammar

The current version of the s-expression grammar that describes the structure of
the s-expressions generated by Pda can be found here.

Usage

Specifying the output file: The output file that will be used for writing the
s-expression is specified in the Preference page for the plugin. It is acces-
sible from the main menu at Window → Preferences → Pda Preferences
→ S-Expr Generation

Usage: In a Pda diagram, select a protocol node and right-click to get its con-
text menu. The s-expression representing the protocol will be generated
into the specified file.

Inspecting the source code

In order to inspect the source code of this Pda tool extension, you have to import
the S-Expression plugin as a binary project into your workspace. This allows
you to browse the source code in order to get an idea how to write customized
Pda tool interfaces.

In more detail, the following steps need to be performed:

1. In the running Pda/Eclipse tool change to the Java perspective and des-
elect any working sets

2. Run ”Import” from the ”File” menu

3. Select ”Existing Plug-ins and Fragment” and click ”Next”

4. Don’t change anything on the following screen, click ”Next”

5. Select ”edu.kestrel.pda.SExprPdaPlugin” on the next screen and click
”Add”, then ”Finish”

6. A project named ”edu.kestrel.pda.SExprPdaPlugin” should have been cre-
ated in your workspace; the source code can be found in the ”src” folder
of that project.

39

6 Updates

This link(s) below point to gzip-ed tar-files that can be used to update Pda in
case there are difficulties to access the Pda update site from within Eclipse. After
downloading the file into a local directory, unpack the file (using the command
tar zxvf file.tgz) in a terminal window and use the local directory as
“New Local Site” in the Eclipse update dialog.

Download updates
Click on the links below to download the update site gzip-ed tar-file:

PdaUpdate 1.8.45

7 Publications

7.1 References

• A derivational system and compositional logic for security pro-
tocols

– with A. Datta, A. Derek and J. Mitchell, J. of Comp. Security 2005,
60 pp.

• An encapsulated authentication logic for reasoning about key
distribution protocols

– with I. Cervesato and C. Meadows, Proceedings of CSFW 2005 (IEEE),
12 pp.

• Deriving, attacking and defending GDOI

– with C. Meadows, Proceedings of ESORICS 2004 (Springer LNCS),
20 pp.

• Abstraction and refinement in protocol derivation

– with A. Datta, A. Derek and J. Mitchell, Proceedings of CSFW 2004
(IEEE), 10 pp

• Secure protocol composition

– with A. Datta and A. Derek and J. Mitchell, Proceedings of MFPS
2003 (ELNCS); ext. abstract in FMCS 2003 (ACM)

• Derivation system for security protocols and its logical formal-
ization

– with A. Datta, A. Derek and J. Mitchell, Proceedings of CSFW 2003
(IEEE)

40

• Compositional logic for protocol correctness

– with N. Durgin and J. Mitchell, J. of Comp. Security 2003; eariler
version in CSFW 2001 (IEEE)

• Composition and refinement of behavioral specifications

– with D. Smith, ASE 2002 (IEEE)

see also www.kestrel.edu/home/people/pavlovic

7.2 Related Work (using our framework)

• A Modular Correctness Proof of TLS and IEEE 802.11i

– C. He, M. Sundararajan, A. Datta and A. Derek and J. Mitchell,
to appear in Proceedings of 12th ACM Conference on Computer and
Communications Security (ACM 2005)

• Compositional Analysis of Contract-Signing Protocols

– M. Backes, A. Datta and A. Derek , J. Mitchell and M. Turuani,
Proceedings of 18th IEEE Computer Security Foundations Workshop,
pp. 94-110 (IEEE 2005)

• Honesty Inferences for Proving Correctness of Security Proto-
cols

– K. Hasebe and M. Okada, Workshop on New Approaches to Software
Construction, pp. 45-57 (IEEE 2004)

• Non-monotonic Properties for Proving Correctness in a Frame-
work of Compositional Logic

– K. Hasebe and M. Okada, Foundations of Computer Security Work-
shop, pp. 97-113(IEEE 2004)

• Inferences on Honesty in Compositional Logic for Security Anal-
ysis

– K. Hasebe and M. Okada, International Symposium on Software Se-
curity, Lecture Notes in Computer Science, vol. 3233, pp. 65-86
(Springer 2004)

A Installation

The section contains a brief description on how to install the Pda software. The
contents of the Pda CD can also be accessed online at https://pda.kestrel.edu/pda/CD.

41

A.1 Installation from the distribution CD

The Pda tool is implemented as a plugin for the public-domain IDE Eclipse.
The Pda distribution CD includes a complete installation of Eclipse and the
plugins required by the Pda-plugin.

A.1.1 New Installation

If you run Pda on MacOSX, please check whether you have Java version 1.5.x
installed on your machine. To do that open a terminal and enter the command
“java -version”. The result must show something like

java version "1.5.0_05"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_05-89)
Java HotSpot(TM) Client VM (build 1.5.0_05-52, mixed mode, sharing)

For the windows and linux version, a suitable Java runtime environment is part
of the Pda-release.

If you don’t have Java installed, you can install it from the CD; the directory
“java” contains the suitable installation files for Windows, Linux, and MacOsX
architectures.

Installation of Pda on Windows

• Open a file browser and open the “win32” directory on your CD-drive

• Double-click on the zip-file in that directory; this should open the program
that is associated with these kind of files (e.g. WinZip).

• Use the zip-tool to extract the contents of the zip-file to some directory,
say C:\Pda.

• On completion of the extraction the installation is complete. You can exit
the zip-tool.

• The executable of the Pda-tool can be found at

C:\Pda\Pda

(assuming you have extracted the files in C:\Pda). You may want to make
a desktop shortcut for that file.

• See Section ?? on how to get started with the Pda-tool.

42

Installation of Pda on Linux and MacOsX

• Open a terminal window.

• Create a new directory where you want the Pda be installed, say $HOME/pda.

• cd into the directory and unpack the archive from the cd using the fol-
lowing command, assuming CD-mount-dir stands for the directory where
your CD drive is mounted (e.g., /mnt/cdrom on linux systems):

– for Linux:

tar zxvfp CD-mount-dir/linux-gtk/Pda-x x x-linux-gtk.tgz

– for MacOsX:

tar zxvfp CD-mount-dir/macosx-carbon/Pda-x x x-macosx-carbon.tgz

(substitute x x x with the current version number) You should see the
files contained in the archive listed on the screen, while they are unpacked
into the tool directory.

• After completion of this operation, the installation is complete; the system
can by launched by invoking the executable “$HOME/pda/Pda” (assuming
you have chosen $HOME/pda as the tool directory).

• You can call the executable either directly from the command line, make
a desktop shortcut, or define an alias in your shell startup file. (e.g.,
alias pda=$HOME/pda/Pda in bournce shell-based environments).

• See Section ?? on how to get started with the Pda-tool.

A.1.2 Updating from earlier Pda-versions

If you have Eclipse 3.x already installed on your machine (which is the case if
you have installed an earlier version of Pda before), then you can use the Eclipse-
internal update mechanism to install/update Pda. Follow the steps described
in Section A.2 except that in step 3 you must select “New Local Site” and
navigate to and select the “updates” directory on the CD (e.g., “D:\updates”
on windows) instead of entering the remote update site.

A.1.3 Installation using existing Eclipse installation

If you have Eclipse version 3.x installed you will need to additionally install the
GEF plugin, the graphical editing framework for Eclipse. You can download it
from the GEF project site. After that the installation is the same as updating
from an earlier Pda-version; follow the instructions above.

43

A.2 Download/Installation

The Pda tool is implemented as a plugin for the public-domain IDE Eclipse. If
you haven’t installed it, you can download and install it from here; Pda requires
Eclipse version 3.x. You also need to install the GEF plugin for Eclipse,
which can be downloaded from here.

Also, make sure that you have a Java runtime environment/development kit
installed; Pda require j2sdk or j2re version 1.4 and above. The Java software
can be downloaded, for instance, at here.

The installation of the Pda-plugin can be done from within the running Eclipse-
IDE:

1. Start the Eclipse environment and start the update wizard by selecting the
menu item “Help→Software Updates→Find and Install” as shown here:

2. On the following page, select “Search for new features to install”; select
this also, if you are upgrading from an earlier Pda version; click “Next”.

3. On the following page, enter a “New Remote Site” with the following
parameters

44

Name: Pda Update Site
URL: http://www.kestrel.edu/software/pda/updates

After that an entry for “Pda Update Site” should appear in the list of
update sites.

Note: if you are upgrading from an earlier version, you don’t need setup
the update site, as you already have it.

4. Check the box next to the “Pda Update Site” line and click “Next”

5. On the following page you should see an entry for the latest Pda version.
If not it means that you have probably the latest version installed or that
your Eclipse configuration is missing a required plugin for Pda.

6. Check the box next to the Pda version you want to install, click “Next”.

45

7. Accept the license agreement and click “Finish” to start the installation.

8. There will be one more screen, where you have to click “Install”.

9. After restarting the Eclipse workbench (done automatically on confirma-
tion) the Pda-Plugin should be ready to use.

46

