
Specware 4.2 Language Manual

Specware 4.2 Language Manual
Copyright © 2001-2009 by Kestrel Development Corporation
Copyright © 2001-2009 by Kestrel Technology LLC

All rights reserved

The name Specware® is a registered trademark of Kestrel Development Corporation

Table of Contents
Disclaimer ... i
1. Introduction to Specware ..1

1.1. What is Specware?..1
1.2. What is Specware for? ..1
1.3. The design process in Specware ...2
1.4. Stages of application building...3

1.4.1. Building a specification..3
1.4.2. Refining your specifications to constructive specifications4

1.5. Reasoning about your code...5
1.5.1. Abstractness in Specware ..5
1.5.2. Logical inference in Specware...6

2. Metaslang..7
2.1. Preliminaries ...7

2.1.1. The Grammar Description Formalism ...7
2.1.2. Models..8
2.1.3. Type-correctness ..9
2.1.4. Constructive ...11

2.2. Lexical conventions ..11
2.2.1. Symbols and Names...12
2.2.2. X-Symbol...14
2.2.3. Comments ..14

2.3. Units..15
2.3.1. Unit Identifiers ...17
2.3.2. Specs ..18

2.3.2.1. Spec Forms..18
2.3.2.2. Qualifications ..19
2.3.2.3. Translations...22
2.3.2.4. Substitutions..24
2.3.2.5. Diagram Colimits..26
2.3.2.6. Obligators..26

2.3.3. Morphisms ...26
2.3.4. Diagrams ..28
2.3.5. Target Code Terms ...29
2.3.6. Proof Terms..30

2.4. Declarations ..30
2.4.1. Import-declarations ..31
2.4.2. Type-declarations ...33

iii

2.4.3. Type-definitions ...34
2.4.4. Op-declarations ..36
2.4.5. Op-definitions ..39
2.4.6. Claim-declarations ...42

2.5. Type-descriptors..43
2.5.1. Type-sums ..45
2.5.2. Type-arrows ...47
2.5.3. Type-products ..48
2.5.4. Type-instantiations ...48
2.5.5. Type-names ..49
2.5.6. Type-records ..49
2.5.7. Type-restrictions ..50
2.5.8. Type-comprehensions ..51
2.5.9. Type-quotients..51

2.6. Expressions ...52
2.6.1. Lambda-forms..54
2.6.2. Case-expressions..55
2.6.3. Let-expressions ..55
2.6.4. If-expressions...56
2.6.5. Quantifications ...57
2.6.6. Unique-solutions ..58
2.6.7. Annotated-expressions...58
2.6.8. Applications ...59
2.6.9. Op-names ...61
2.6.10. Literals ...62

2.6.10.1. Boolean-literals ...63
2.6.10.2. Nat-literals...63
2.6.10.3. Char-literals...64
2.6.10.4. String-literals...66

2.6.11. Field-selections ..67
2.6.12. Tuple-displays ..67
2.6.13. Record-displays..68
2.6.14. Sequential-expressions...68
2.6.15. List-displays...69
2.6.16. Monadic-expressions ...70
2.6.17. Structors ...71

2.6.17.1. Projectors ..72
2.6.17.2. Quotienters..72
2.6.17.3. Choosers..73
2.6.17.4. Embedders...74

iv

2.6.17.5. Embedding-tests..75
2.7. Matches and Patterns ..76

2.7.1. Matches ..76
2.7.2. Patterns...78

A. Metaslang Grammar...83
B. Inbuilts..99

v

vi

Disclaimer
As experience is gained with Specware 4.2, both the operation of the Specware system
and the Metaslang language are bound to undergo changes, which may not always be
fully “backwards compatible”.

For updates, news and bug reports, visit the Specware web site
http://www.specware.org.

i

Disclaimer

ii

Chapter 1. Introduction to Specware

1.1. What is Specware?
Specware is a tool for building and manipulating a collection of related specifications.
Specware can be considered:

• a design tool, because it can represent and manipulate designs for complex systems,
software or otherwise

• a logic, because it can describe concepts in a formal language with rules of deduction

• a programming language, because it can express programs and their properties

• a database, because it can store and manipulate collections of concepts, facts, and
relationships

Specifications are the primary units of information in Specware. A specification, or
theory, describes a concept to some degree of detail. To add properties and extend
definitions, you create new specifications that import or combine earlier specifications.
Within a specification, you can reason about objects and their relationships. You
declare types (data types) and operations (ops, functions), axioms that state properties
of operations, and theorems that follow logically from axioms.

A morphism is a relationship between specifications that describes how the properties
of one map relate to the properties of another. Morphisms describe both part-of and is-a
relationships. You can propagate theorems from one specification to another using
morphisms; for example, if the QEII is a ship, and ships cannot fly, then the QEII
cannot fly.

1.2. What is Specware for?
Specware is a general-purpose tool that you can use to develop specifications for any
system or realm of knowledge. You can do this as an abstract process, with no
reference to computer programming; or you can produce a computer program that is
provably a correct implementation of a specification; or you can use the process to
redesign an existing program.

You can use Specware to:

1

Chapter 1. Introduction to Specware

• Develop domain theories

You can use Specware to do “ontological engineering” -- that is, to describe a
real-world domain of knowledge in explicit or rigorous terms. You might wish to
develop a domain theory in abstract terms that are not necessarily intended to
become a computer program. You can use the inference engine to test the internal
logic of your theory, derive conclusions, and propose theorems.

You can use specifications and morphisms to represent abstract knowledge, with no
refinement to any kind of concrete implementation.

More commonly, you would use Specware to model expert knowledge of
engineering design. In this case you would refine your theoretical specifications and
morphisms to more concrete levels.

• Develop code from specifications

You can use Specware to develop computer programs from specifications. One
advantage of using Specware for this task is that you can prove that the generated
code does implement the specification correctly. Another advantage is that you can
develop and compare different implementations of the same specification.

• Develop specifications from code

You can use Specware for reverse engineering -- that is, to help you derive a
specification from existing code. To do this, you must examine the code to determine
what problems are being solved by it, then use Specware’s language Metaslang to
express the problems as specifications. In addition to providing a notation tool for
this process, Specware allows you to operate on the derived specification. Once you
have derived a specification from the original code, you can analyze the specification
for correctness and completeness, and also generate different and correct
implementations for it.

1.3. The design process in Specware
To solve real problems, programs typically combine domain theories about the physical
world with problem solving theories about the computational world. Your domain
theory is an abstract representation of a real-world problem domain. To implement it,

2

Chapter 1. Introduction to Specware

you must transform the domain theory to a concrete computational model. The built-in
specification libraries describe mathematical and computational concepts, which are
building blocks for an implementation. Your specifications combine real-world
knowledge with this built-in computational knowledge to generate program code that
solves real-world problems in a rigorous and provable way.

You interpret designs relative to an initial universe of models. In software design, for
example, the models are programs, while in engineering design, they are circuits or
pieces of metal. To design an object is to choose it from among the universe of possible
models. You make this choice by beginning with an initial description and augmenting
it until it uniquely describes the model you desire. In Specware, this process is called
refinement.

Composition and refinement are the basic techniques of application building in
Specware. You compose simpler specifications into more complex ones, and refine
more abstract specifications into more concrete ones. When you refine a specification,
you create a more specific case of it; that is, you reduce the number of possible models
of it.

The process of refinement is also one of composition. To begin the refinement, you
construct primitive refinements that show how to implement an abstract concept in
terms of a concrete concept. You then compose refinements to deepen and widen the
refinement.

For example, suppose you are designing a house. A wide but not deep view of the
design specifies several rooms but gives no details. A deep but not wide view of the
design specifies one room in complete detail. To complete the refinement, you must
create a view that is both wide and deep; however, it makes no difference which view
you create first.

The final refinement implements a complex, abstract specification from which code can
be generated.

1.4. Stages of application building
Conceptually, there are two major stages in producing a Specware application. In the
actual process, steps from these two stages may alternate.

1. Building a specification

2. Refining your specifications to constructive specifications

3

Chapter 1. Introduction to Specware

1.4.1. Building a specification
You must build a specification that describes your domain theory in rigorous terms. To
do this, you first create small specifications for basic, abstract concepts, then specialize
and combine these to make them more concrete and complex.

To relate concepts to each other in Specware, you use specification morphisms. A
specification morphism shows how one concept is a specialization or part of another.
For example, the concept “fast car” specializes both “car” and “fast thing”. The concept
“room” is part of the concept “house”. You can specialize “room” in different ways,
one for each room of the house.

You specialize in order to derive a more concrete specification from a more abstract
specification. Because the specialization relation is transitive (if A specializes B and B
specializes C, then A specializes C as well), you can combine a series of morphisms to
achieve a step-wise refinement of abstract specifications into increasingly concrete
ones.

You combine specifications in order to construct a more complex concept from a
collection of simpler parts. In general, you increase the complexity of a specification by
adding more structural detail.

Specware helps you to handle complexity and scale by providing composition
operators that take small specifications and combine them in a rigorous way to produce
a complex specification that retains the logic of its parts. Specware provides several
techniques for combining specifications, that can be used in combination:

• The import operation allows you to include earlier specifications in a later one.

• The translate operation allows you to rename the parts of a specification.

• The colimit operation glues concepts together into a shared union along shared
subconcepts.

A shared union specification combines specializations of a concept. For example, if
you combine “red car” with “fast car” sharing the concept “car”, you obtain the shared
union “fast, red car”. If you combine them sharing nothing, you obtain “red car and fast
car”, which is two cars rather than one. Both choices are available.

1.4.2. Refining your specifications to constructive
specifications

You combine specifications to extend the refinement iteratively. The goal is to create a

4

Chapter 1. Introduction to Specware

refinement between the abstract specification of your problem domain and a concrete
implementation of the problem solution in terms of types and operations that ultimately
are defined in the Specware libraries of mathematical and computational theories.

For example, suppose you want to create a specification for a card game. An abstract
specification of a card game would include concepts such as card, suit, and hand. A
refinement for this specification might map cards to natural numbers and hands to lists
containing natural numbers.

The Specware libraries contains constructive specifications for various types, including
natural numbers and lists.

To refine your abstract specification, you build a refinement between the abstract Hand
specification and the List-based specification. When all types and operations are refined
to concrete library-defined types and operations, the Specware system can generate
code from the specification.

1.5. Reasoning about your code
Writing software in Metaslang, the specification and programming language used in
Specware, brings many advantages. Along with the previously-mentioned possibilities
for incremental development, you have the option to perform rigorous verification of
the design and implementation of your code, leading to the a high level of assurance in
the correctness of the final application.

1.5.1. Abstractness in Specware
Specware allows you to work directly with abstract concepts independently of
implementation decisions. You can put off making implementation decisions by
describing the problem domain in general terms, specifying only those properties you
need for the task at hand.

In most languages, you can declare either everything about a function or nothing about
it. That is, you can declare only its type, or its complete definition. In Specware you
must declare the signature of an operation, but after that you have almost complete
freedom in stating properties of the operation. You can declare nothing or anything
about it. Any properties you have stated can be used for program transformation.

For example, you can describe how squaring distributes over multiplication:

5

Chapter 1. Introduction to Specware

axiom square_distributes_over_times is
fa(a, b) square(a * b) = square(a) * square(b)

This property is not a complete definition of the squaring operation, but it is true. The
truth of this axiom must be preserved as you refine the operation. However, unless you
are going to generate code for square, you do not need to supply a complete definition.

The completeness of your definitions determines the extent to which you can generate
code. A complete refinement must completely define the operations of the source
theory in terms of the target theory. This guarantees that, if the target is implementable,
the source is also implementable.

1.5.2. Logical inference in Specware
Specware performs inference using external theorem provers; the distribution includes
SRI’s SNARK theorem prover. External provers are connected to Specware through
logic morphisms, which relate logics to each other.

You can apply external reasoning agents to refinements in different ways (although
only verification is fully implemented in the current release of Specware).

• Verification tests the correctness of a refinement. For example, you can prove that
quicksort is a correct refinement of the sorting specification.

• Simplification is a complexity-reducing refinement. For example, given appropriate
axioms, you can rewrite 3*a+3*b to 3*(a+b).

• Synthesis derives a refinement for a given specification by combining the domain
theory with computational theory. For example, you can derive quicksort
semi-automatically from the sorting specification as a solution to a sorting problem,
if you describe exactly how the problem is a sorting problem.

6

Chapter 2. Metaslang
This chapter introduces the Metaslang specification language.

The following sections give the grammar rules and meaning for each Metaslang
language construct.

2.1. Preliminaries

2.1.1. The Grammar Description Formalism
The grammar rules used to describe the Metaslang language use the conventions of
(extended) BNF. For example, a grammar rule like:

wiffle ::= waffle [waffle-tail] | piffle { + piffle }*

defines a wiffle to be: either a waffle optionally followed by a waffle-tail, or a sequence
of one or more piffles separated by terminal symbols + . (Further rules would be
needed for waffle, waffle-tail and piffle.) In a grammar rule the left-hand side of ::=
shows the kind of construct being defined, and the right-hand side shows how it is
defined in terms of other constructs. The sign | separates alternatives, the square
brackets [...] enclose optional parts, and the curly braces plus asterisk { ... }* enclose
a part that may be repeated any number of times, including zero times. All other signs
stand for themselves, like the symbol + in the example rule above.

In the grammar rules terminal symbols appear in a bold font. Some of the terminal
symbols used, like | and {, are very similar to the grammar signs like | and { as
described above. They can hopefully be distinguished by their bold appearance.

Grammar rules may be recursive: a construct may be defined in terms of itself, directly
or indirectly. For example, given the rule:

piffle ::= 1 | M { piffle }*

here are some possible piffles:

1 M M1 M111 MMMM M1M1

Note that the last two examples of piffles are ambiguous. For example, M1M1 can be
interpreted as: M followed by the two piffles 1 and M1, but also as: M followed by the

7

Chapter 2. Metaslang

three piffles 1, M, and another 1. Some of the actual grammar rules allow ambiguities;
the accompanying text will indicate how they are to be resolved.

2.1.2. Models

op ::= op-name

In Metaslang, op is used used as an abbreviation for “op-name”, where op-names are
declared names representing values. (Op for operator, a term used for historical
reasons, although including things normally not considered operators.)

spec ::= spec-form

The term spec is used as short for spec-form. The semantics of Metaslang specs is
given in terms of classes of models. A model is an assignment of “types” to all the
type-names and of “typed” values to all the ops declared -- explicitly or implicitly --
in the spec. The notion of value includes numbers, strings, arrays, functions, etcetera.
Each type has a set of “inhabitants”, which are similar values. A typed value can be
thought of as a pair (T, V), in which T is a type and V is a value that is an inhabitant of
T. For example, the expressions 0 : Nat and 0 : Integer correspond, semantically,
to the typed values (N , 0) and (Z, 0), respectively, in which N stands for the type of
natural numbers {0, 1, 2, ...}, and Z for the type of integers {..., -2, -1, 0, 1, 2, ...}. For
example, given this spec:

spec
type Even
op next : Even -> Even
axiom nextEffect is
fa(x : Even) ~(next x = x)

endspec

one possible model (out of many!) is the assignment of the even integers to Even, and
of the function that increments an even number by 2 to next.

Each model has to respect typing; for example, given the above assignment to Even,
the function that increments a number by 1 does not map all even numbers to even
numbers, and therefore can not -- in the same model -- be assigned to next.
Additionally, the claims (axioms, theorems and conjectures) of the spec have to be
satisfied in the model. The axiom labeled nextEffect above states that the function
assigned to op next maps any value of the type assigned to type-name Even to a

8

Chapter 2. Metaslang

different value. So the squaring function, although type-respecting, could not be
assigned to next since it maps 0 to itself.

If all type-respecting combinations of assignments of types to type-names and values
to ops fail the one or more claims, the spec has no models and is called inconsistent.
Although usually undesirable, an inconsistent spec is not by itself considered ill
formed. The Specware system does not attempt to detect inconsistencies, but associated
provers can sometimes be used to find them. Not always; in general it is undecidable
whether a spec is consistent or not.

In general, the meaning of a construct in a model depends on the assignments of that
model, and more generally on an environment: a model possibly extended with
assignments to local-variables. For example, the meaning of the claim fa(x : Even)

~(next x = x) in axiom nextEffect depends on the meanings of Even and next,
while the sub-expression next x, for example, also depends on an assignment (of an
“even” value) to x. To avoid laborious phrasings, the semantic descriptions use
language like “the function next applied to x” as shorthand for this lengthy phrase:
“the function assigned in the environment to next applied to the value assigned in the
environment to x”.

When an environment is extended with an assignment to a local-variable, any
assignments to synonymous ops or other local-variables are superseded by the new
assignment in the new environment. In terms of Metaslang text, within the scope of the
binding of local-variables, synonymous ops and earlier introduced local-variables
(that is, having the same simple-name) are “hidden”; any use of the simple-name in
that scope refers to the textually most recently introduced local-variable. For example,
given:

op x : String = "op-x"
op y : String = let v = "let-v" in x
op z : String = let x = "let-x" in x

the value of y is "op-x" (op x is not hidden by the local-variable v of the
let-binding), whereas the value of z is "let-x" (op x is hidden by the local-variable
x of the let-binding).

2.1.3. Type-correctness
Next to the general requirement that each model respects typing, there are specific
restrictions for various constructs that constrain the possible types for the components.
For example, in an application f(x), the type of the actual-parameter x has to match

9

Chapter 2. Metaslang

the domain type of function f. These requirements are stated in the relevant sections of
this language manual. If no type-respecting combinations of assignments meeting all
these requirements exist for a given spec, it is considered type-incorrect and therefore
ill formed. This is determined by Specware while elaborating the spec, and signaled as
an error. Type-incorrectness differs from inconsistency in that the meaning of the
claims does not come into play, and the question whether an ill-formed spec is
consistent is moot.

To be precise, there are subtle and less subtle differences between type-incorrectness of
a spec and its having no type-respecting combinations of assignments. For example,
the following spec is type-correct but has no models:

spec
type Empty = | Just Empty
op IdoNotExist : Empty

endspec

The explanation is that the type-definition for Empty generates an implicit axiom that
all inhabitants of the type Empty must satisfy, and for this recursive definition the
axiom effectively states that such creatures can’t exist: the type Empty is uninhabited.
That by itself is no problem, but precludes a type-respecting assignment of an
inhabitant of Empty to op IdoNotExist. So the spec, while type-correct, is actually
inconsistent. See further under Type-definitions.

Here is a type-incorrect spec that has type-respecting combinations of assignments:

spec
type Outcome = | Positive | Negative
type Sign = | Positive | Zero | Negative
def whatAmI = Positive

endspec

Here there are two constructors Positive of different types, the type Outcome and the
type Sign. That by itself is fine, but when such “overloaded” constructors are used, the
context must give sufficient information which is meant. Here, the use of Positive in
the definition for op whatAmI leaves both possibilities open; as used it is
type-ambiguous. Metaslang allows omitting type information provided that, given a
type assignment to all local-type-variables in scope, unique types for all typed
constructs, such as expressions and patterns, can be inferred from the context. If no
complete and unambiguous type-assignment can be made, the spec is not accepted by
the Specware system. Type-ambiguous expressions can be disambiguated by using a
type-annotation, as described under Annotated-expressions. In the example, the
definition of whatAmI can be disambiguated in either of the following ways:

10

Chapter 2. Metaslang

def whatAmI : Sign = Positive
def whatAmI = Positive : Sign

Also, if the spec elsewhere contains something along the lines of:

op signToNat : Sign -> Nat
def sw = signToNat whatAmI

that is sufficient to establish that whatAmI has type Sign and thereby disambiguate the
use of Positive. See further under Op-definitions and Structors.

2.1.4. Constructive
When code is generated for a spec, complete “self-contained” code is only generated
for type-definitions and op-definitions that are fully constructive.
Non-constructiveness is “contagious”: a definition is only constructive if all
components of the definition are. The type of a type-name without definition is not
constructive. A type is only constructive if all component types are. An op without
definition is non-constructive, and so is an op whose type is non-constructive. A
quantification is non-constructive. The polymorphic inbuilt-op = for testing equality
and its inequality counterpart ~= are only constructive for discrete types (see below).

A type is called discrete if the equality predicate = for that type is constructive. The
inbuilt and base-library types Boolean, Integer, NonZeroInteger, Nat, PosNat,
Char, String and Compare are all discrete. Types List T and Option T are discrete
when T is. All function types are non-discrete (even when the domain type is the unit
type). Sum types, product types and record types are discrete whenever all component
types are. Subtype (T | P) is discrete when supertype T is. (Predicate P need not be
constructive: the equality test is that of the supertype.) Quotient type T / Q is discrete
when predicate Q is constructive. (Type T need not be discrete: the equality test on the
quotient type is just the predicate Q applied to pairs of members of the Q-equivalence
classes.)

11

Chapter 2. Metaslang

2.2. Lexical conventions
A Metaslang text consists of a sequence of symbols, possibly interspersed with
whitespace. The term whitespace refers to any non-empty sequence of spaces, tabs,
newlines, and comments (described below). A symbol is presented in the text as a
sequence of one or more “marks” (ASCII characters). Within a composite (multi-mark)
symbol, as well as within a unit-identifier, no whitespace is allowed, but whitespace
may be needed between two symbols if the first mark of the second symbol could be
taken to be the continuation of the first symbol. More precisely, letting X, Y and Z
stand for arbitrary (possibly empty) sequences of marks, and m for a single mark, then
whitespace is required between two adjacent symbols, the first being X and the second
mY , when for some Z the sequence XmZ is also a symbol. So, for example, whitespace
is required where shown in succ 0 and op! :Nat->Nat, since succ0 and !: are valid
symbols, but none is required in the expression n+1.

Inside literals (constant-denotations) whitespace is also disallowed, except for
“significant-whitespace” as described under String-literals.

Other than that, whitespace -- or the lack of it -- has no significance. Whitespace can be
used to lay-out the text for readability, but as far as only the meaning is concerned, the
following two presentations of the same spec are entirely equivalent:

spec
type Even
op next : Even -> Even
axiom nextEffect is
fa(x : Even) ~(next x = x)

endspec

spec type Even op next : Even -> Even axiom nextEffect
is fa(x : Even)~(next x = x)endspec

2.2.1. Symbols and Names

symbol ::= simple-name | literal | special-symbol

simple-name ::= first-syllable { _ next-syllable }*

first-syllable ::= first-word-syllable | non-word-syllable

12

Chapter 2. Metaslang

next-syllable ::= next-word-syllable | non-word-syllable

first-word-syllable ::= word-start-mark { word-continue-mark }*

next-word-syllable ::= word-continue-mark { word-continue-mark }*

word-start-mark ::= letter

word-continue-mark ::= letter | decimal-digit | ’ | ?

letter ::=
A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

decimal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non-word-syllable ::= non-word-mark { non-word-mark }*

non-word-mark ::=
‘ | ~ | ! | @ | $ | ^ | & | * | -

| = | + | \ | | | : | < | > | / | ’ | ?

special-symbol ::= _ | (|) | [|] | { | } | ; | , | .

Sample simple-names:

Date $$?!
yymmdd2date <*> :=:
well_ordered? ~== x’
c_<+> /_47a

For convenience, here are the 13 printing ASCII marks that, next to letters and
decimal-digits, can not occur as a non-word-mark:

% " _ ; , .
() [] { }

Restriction. As mentioned before, no whitespace is allowed in symbols: while anode
is a single simple-name, both a node and an ode consist of two simple-names.
Further, the case (lower or upper) of letters in simple-names is significant:
grandparent, grandParent and grandpaRent are three different simple-names.

13

Chapter 2. Metaslang

Restriction. In general, simple-names can be chosen freely. However, the following
reserved symbols have a special meaning and must not be used for simple-names:
They each count as a single symbol, and no whitespace is allowed inside any reserved
symbol. Symbols beginning with _ are reserved for use with X-Symbol, as described
in the following section.

Non-word-syllables can be used to choose convenient simple-names for ops that,
conventionally, are written with non-alphabetic marks.

Some Metaslang users follow the convention of using simple-names that start with a
capital letter for unit-identifiers and type-names and for constructors, while
simple-names chosen for ops and field-names start with a lower-case letter. Both
plain local-variables and local-type-variables are often chosen to be single
lower-case letters: x, y, z, a, b, c, with the start of the alphabet preferred for
local-type-variables. Op-names of predicates (that is, having some type T ->

Boolean) often end with the mark ?. These are just conventions that users are free to
follow or ignore, but in particular some convention distinguishing constructors from
ops and local-variables is recommended.

2.2.2. X-Symbol
X-Symbol is an XEmacs package that allows ASCII strings to encode non-ASCII
symbols. Specware files contain the ASCII strings, but when displayed in an XEmacs
window with X-Symbol mode, the special symbol is shown. For example, the
Specware symbol _forall is displayed as ∀ and _or is displayed as ∨. Many of the
mathematical symbols have X-Symbol aliases, for example, fa and _forall

(displayed ∀ by X-Symbol) are alternatives for universal quantification, and
_rightarrow (displayed −→ by X-Symbol) may be used anywhere where -> is
allowed. The user may use non-reserved X-Symbol tokens as symbol names. The
available X-Symbols are listed under the X-Symbol menu in XEmacs when X-Symbol
mode is in effect.

2.2.3. Comments

comment ::= line-end-comment | block-comment

line-end-comment ::= % line-end-comment-body

line-end-comment-body ::=

14

Chapter 2. Metaslang

any-text-up-to-end-of-line

block-comment ::= (* block-comment-body *)

block-comment-body ::=
any-text-including-newlines-and-nested-block-comments

Sample comments:

% keys must be unique
(* op yymmdd2Date : String -> Date *)

Metaslang allows two styles of comments. The %-style is light-weight, for adding
comment on a line after the formal text (or taking a line on its own, but always confined
to a single line). The (*...*)-style can be used for blocks of text, spanning several
lines, or stay within a line. Any text remaining on the line after the closing *) is
processed as formal text. Block-comments may be nested, so the pairs of brackets (*
and *) must be balanced.

A block-comment can not contain a line-end-comment and vice versa: whichever
starts first has “the right of way”. For example, (* 100 % or more! *) is a
block-comment with block-comment-body 100 % or more! . The % here is a mark
like any other; it does not introduce a line-end-comment. Conversely, in the
line-end-comment % op <*> stands for (*) the (* is part of the
line-end-comment-body; it does not introduce a block-comment. Note also that %
and (* have no special significance in literals (which must not contain whitespace,
including comments): "100 % or more!" is a well-formed string-literal.

2.3. Units
A “unit” is an identifiable unit-term, where “identifiable” means that the unit-term can
be referred to by a unit-identifier. Unit-terms can be “elaborated”, resulting in specs,
morphisms, diagrams or other entities. The effect of elaborating a unit-definition is that
its unit-term is elaborated and becomes associated with its unit-identifier.

For the elaboration of a unit-term to be meaningful, it has to be well formed and result
in a well-formed -- and therefore type-correct -- entity. Well-formedness is a stricter
requirement than type-correctness. If a unit-term or one of its constituent parts does
not meet any of the restrictions stated in this language manual, it is ill formed. This
holds throughout, also if it is not mentioned explicitly for some syntactic construct.

15

Chapter 2. Metaslang

Well-formedness is more than a syntactic property; in general, to establish
well-formedness it may be necessary to “discharge” (prove) proof obligations
engendered by the unit-term.

A Specware project consists of a collection of Metaslang unit-definitions. They can be
recorded in one or more Specware files. There are basically two styles for recording
unit-definitions using Specware files. In the single-unit style, the file, when processed
by Specware, contributes a single unit-definition to the project. In the multiple-unit
style, the file may contribute several unit-definitions. The two styles may be freely
mixed in a project (but not in the same Specware file). This is explained in more detail
in what follows.

unit-definition ::= unit-identifier = unit-term

unit-term ::=
spec-term

| morphism-term
| diagram-term
| target-code-term
| proof-term

specware-file-contents ::=
unit-term

| infile-unit-definition { infile-unit-definition }*

infile-unit-definition ::= fragment-identifier = unit-term

fragment-identifier ::= simple-name

Unit-definitions may use other unit-definitions, including standard libraries, which in
Specware 4.2 are supposed to be part of each project. However, the dependencies
between units must not form a cycle; it must always be possible to arrange the
unit-definitions in an order in which later unit-definitions only depend on earlier ones.
How unit-definitions are processed by Specware is further dealt with in the Specware
User Manual.

As mentioned above, unit-definitions are collected in Specware files, which in
Specware 4.2 must have an .sw extension. The Specware files do not directly contain
the unit-definitions that form the project. In fact, a user never writes unit-definition
explicitly. These are instead determined from the contents of the Specware files using
the following rules. There are two possibilities here. The first is that the

16

Chapter 2. Metaslang

specware-file-contents consists of a single unit-term. If P.sw is the path for the
Specware file, the unit being defined has as its unit-identifier P. For example, if file
C:/units/Layout/Fixture.sw contains a single unit-term U , the unit-identifier is
/units/Layout/Fixture, and the unit-definition it contributes to the project is

/units/Layout/Fixture = U

(Note that this is not allowed as an infile-unit-definition in a specware-file-contents,
since the unit-identifier is not a fragment-identifier.)

The second possibility is that the Specware file contains one or more
infile-unit-definitions. If I is the fragment-identifier of such an infile-unit-definition,
and P.sw is the path for the Specware file, the unit being defined has as its
unit-identifier P#I. For example, if file C:/units/Layout/Cart.sw contains an
infile-unit-definition Pos = U , the unit-identifier is /units/Layout/Cart#Pos, and
the unit-definition it contributes to the project is

/units/Layout/Cart#Pos = U

2.3.1. Unit Identifiers

unit-identifier ::= swpath-based-path | relative-path

swpath-based-path ::= / relative-path

relative-path ::= { path-element / }* path-element [# fragment-identifier]

path-element ::= path-mark { path-mark }*

path-mark ::=
letter | decimal-digit

| ! | $ | & | ’ | + | -
| = | @ | ^ | ‘ | ~ | .

Unit-identifiers are used to identify unit-terms, by identifying files in a file store that
contain unit-terms or infile-unit-definitions. Which path-marks can actually be used
in forming a path-element may depend on restrictions of the operating system. The
path-elements .. and . have special meanings: "parent folder" and "this folder".
Under than this use, the mark . should not be used as the first or last path-mark of a
path-element.

17

Chapter 2. Metaslang

Typically, only a final part of the full unit-identifier is used. When Specware is started
with environment variable SWPATH set to a semicolon-separated list of pathnames for
directories, the Specware files are searched for relative to these pathnames; for
example, if SWPATH is set to C:/units/Layout;C:/units/Layout/Cart, then
C:/units/Layout/Fixture.sw may be shortened to /Fixture, and
C:/units/Layout/Cart.sw to /Cart. How unit-definitions are processed by
Specware is further dealt with in the Specware User Manual.

Further, unit-identifiers can be relative to the directory containing the Specware file in
which they occur. So, for example, both in file C:/units/Layout/Fixture.sw and
in file C:/units/Layout/Cart.sw, unit-identifier Tools/Pivot refers to the
unit-term contained in file C:/units/Layout/Tools/Pivot.sw, while Props#SDF
refers to the unit-term of infile-unit-definition SDF = ... contained in file
C:/units/Layout/Props.sw. As a special case, a unit-term with the same name as
the file may be referenced without a fragment-identifier. For example, in the current
case, if the file C:/units/Layout/Props.sw contains the unit-term of
infile-unit-definition Props = ..., then this unit-term can be referred to either by
Props#Props or Props.

The unit-identifier must identify a unit-definition as described above; the elaboration
of the unit-identifier is then the result of elaborating the corresponding unit-term,
yielding a spec, morphism, diagram, or other entity.

2.3.2. Specs

spec-term ::=
unit-identifier

| spec-form
| spec-qualification
| spec-translation
| spec-substitution
| diagram-colimit
| obligator

Restriction. When used as a spec-term, the elaboration of a unit-identifier must yield
a spec.

The elaboration of a spec-term, if defined, yields an “expanded” spec-form as defined
in the next subsection.

18

Chapter 2. Metaslang

2.3.2.1. Spec Forms

spec-form ::= spec { declaration }* endspec

Sample spec-forms:

spec import Measures import Valuta endspec

An expanded spec-form is a spec-form containing no import-declarations.

The elaboration of a spec-form yields the Metaslang text which is that spec itself,
after expanding any import-declarations. The meaning of that text is the class of
models of the spec, as described throughout this Chapter.

2.3.2.2. Qualifications

Names of types and ops may be simple or qualified. The difference is that
simple-names are “unqualified”: they do not contain a dot sign “.”, while
qualified-names are prefixed with a “qualifier” followed by a dot. Examples of
simple-names are Date, today and <*>. Examples of qualified-names are
Calendar.Date, Calendar.today and Monoid.<*>.

Qualifiers can be used to disambiguate. For example, there may be reason to use two
different ops called union in the same context: one for set union, and one for bag
(multiset) union. They could then more fully be called Set.union and Bag.union,
respectively. Unlike in earlier versions of Specware, there is no rigid relationship
between qualifiers and the unit-identifiers identifying specs. The author of a
collection of specs may use the qualifier deemed most appropriate for any type-name
or op-name. For example, there could be a single spec dubbed SetsAndBags that
introduces two new ops, one called Set.union and one called Bag.union.
Generally, types and ops that “belong together” should receive the same qualifier. It is
up to the author of the specs to determine what belongs together.

Type-names and op-names are introduced in a declaration or definition, and may
then be employed elsewhere in the same spec. Thus, all occurrences of a type-name
or op-name can be divided into “introductions” and “employs”. The name as
introduced in an introduction is the full name of the type or op. If that name is a
simple-name, the full name is a simple-name. If the name as introduced is a
qualified-name, then so is the full name.

19

Chapter 2. Metaslang

For employs the rules are slightly different. First, if the name employed occurs just
like that in an introduction, then it is the full name. Also, if the name employed is
qualified, it is the full name. Otherwise, the name as employed may be unqualified
shorthand for a qualified full name. For example, given an employ of the unqualified
type-name Date, possible qualified full names for it are Calendar.Date,
DateAndTime.Date, Diary.Date, and so on. But, of course, the full name must be
one that is introduced in the spec. If there is precisely one qualified-name introduced
whose last part is the same as the simple-name employed, then that name is the full
name. Otherwise, type information may be employed to disambiguate (“resolve
overloading”).

Here is an illustration of the various possibilities:

spec
type Apple
type Fruit.Apple
type Fruit.Pear
type Fruit.Date
type Calendar.Date
type Fruit.Basket = Apple * Pear * Date

endspec

In the definition of type Fruit.Basket we have three unqualified employs of
type-names, viz. Apple, Pear and Date. The name Apple is introduced like that, so
the employ Apple already uses the full name; it does not refer to Fruit.Apple. The
name Pear is nowhere introduced just like that, so the employ must be shorthand for
some qualified full name. There is only one applicable introduction, namely
Fruit.Pear. Finally, for Date there are two candidates: Fruit.Date and
Calendar.Date. This is ambiguous, and in fact an error. To correct the error, the
employ of Date should be changed into either Fruit.Date or Calendar.Date,
depending on the intention.

It is possible to give a qualification in one go to all simple-names introduced in a
spec. If Q is a qualifier, and S is a term denoting a spec, then the term Q qualifying

S denotes the same spec as S, except that each introduction of an simple-name N is
replaced by an introduction of the qualified-name Q.N . Employs that before referred
to the unqualified introduction are also accordingly qualified, so that they now refer to
the qualified introduction. For example, the value of

Company qualifying spec
type Apple
type Fruit.Apple
type Fruit.Pear

20

Chapter 2. Metaslang

type Fruit.Basket = Apple * Pear
endspec

is the same as that of

spec
type Company.Apple
type Fruit.Apple
type Fruit.Pear
type Fruit.Basket = Company.Apple * Fruit.Pear

endspec

spec-qualification ::= qualifier qualifying spec-term

qualifier ::= simple-name

name ::= simple-name | qualified-name

qualified-name ::= qualifier . simple-name

Restriction. A spec-qualification is a special kind of translation, allowing for the
renaming of type-names and op-names declared in a spec. Like for
spec-translations, it is not allowed to rename a type-name to become the same
name as a previously existing (and different) type-name, or to rename an op-name to
become the same name as a previously existing (and different) op-name.

Sample names:

Key $
Calendar.Date Monoid.<*>

Sample spec-qualification:

Weight qualifying /Units#Weights

Let R be the result of elaborating spec-term S. Then the elaboration of Q qualifying

S, where Q is a qualifier, is R with each unqualified type-name, op-name or
claim-name N introduced there replaced by the qualified-name Q.N . The same
replacement applies to all employs of N identifying that introduced simple-name. As
always, the result of the replacement is required to be a well-formed spec.

For example, the elaboration of

21

Chapter 2. Metaslang

Buffer qualifying spec
op size : Nat
axiom LargeSize is size >= 1024

endspec

results in:

spec
op Buffer.size : Nat
axiom Buffer.LargeSize is Buffer.size >= 1024

endspec

Because of the restriction on collisions, the following is illegal, as f in the original
spec would be renamed to collide with the pre-existing (and distinct!) X.f.

X qualifying spec
op X.f : Nat
def f = 3

endspec

2.3.2.3. Translations

spec-translation ::= translate spec-term by name-map

name-map ::= { [name-map-item { , name-map-item }*] }

name-map-item ::=
type-name-map-item

| op-name-map-item
| wildcard-map-item

type-name-map-item ::= [type] name +-> name

op-name-map-item ::= [op] annotable-name +-> annotable-name

annotable-name ::= name [type-annotation]

type-annotation ::= : type-descriptor

wildcard-map-item ::= wildcard +-> wildcard

22

Chapter 2. Metaslang

wildcard ::= simple-wildcard | qualified-wildcard

simple-wildcard ::= _

qualified-wildcard ::= qualifier . simple-wildcard

Restriction. The name-map of a spec-translation may not contain more than one
name-map-item pertaining to the same type-name or the same op-name in the spec
resulting from elaborating the spec-term. For example, the following is not a lawful
spec-translation:

translate spec type T by {T +-> A, T +-> B}

Restriction. A spec-translation may not map two different type-names or two
different op-names to the same simple-name. Note that this implies that type-names
and op-names cannot be translated to simple-names defined in the base libraries.

Sample spec-translation:

translate A by {Counter +-> Register, tally +-> incr}

Let R be the result of elaborating spec-term S. In elaborating a spec-translation, first
any wildcard-map-items are expanded as follows. A simple-wildcard matches each
simple-name that is a type-name or op-name of S. A qualified-wildcard Q._
matches each qualified-name having the same qualifier Q that is a type-name or
op-name of S. A wildcard-map-item W0 +-> W1 is expanded into a list of
name-map-items not containing wildcards by taking each name N matched by W0,
and replacing both simple-wildcards occurring in W0 +-> W1 by the simple-name of
N , that is, N with a possible qualification stripped off. After expansion, the elaboration
of translate S by { M

1
+-> N

1
, ... M

n
+-> N

n
} is R with each occurrence of a

name M
i

replaced by N
i
. All other names are mapped to themselves, i.e., they are

unchanged. The presence of a type-annotation in a name-map-item, as in X:E +->

cross, indicates that the name-map-item refers to an op-name; additionally, on the
left-hand side such an annotation may serve to disambiguate between several
synonymous ops, and then there must be an op in R of the type given by the
type-descriptor. If the right-hand side of a name-map-item carries a type annotation,
its type-descriptor must conform to the type of the op-name in the resulting spec.
Without such annotation on either side, if a name to be translated is introduced both as
a type-name and as an op-name in R, it must be preceded by type or op to indicate
which of the two is meant. Otherwise the indication type or op is not required, but
allowed; if present, it must correspond to the kind of simple-name (type-name or
op-name) to be translated.

23

Chapter 2. Metaslang

For example, the elaboration of

translate spec
type E
op i : E

endspec by {
E +-> Counter,
i +-> reset

}

results in:

spec
type Counter
op reset : Counter

endspec

To illustrate the use of wildcards: The elaboration of

translate spec
type M.Length
op M.+ infixl 25 : M.Length * M.Length -> M.Length

endspec by {M._ +-> Measure._}

results in this spec:

spec
type Measure.Length
op Measure.+ infixl 25 :

Measure.Length * Measure.Length -> Measure.Length
endspec

A spec-qualification Q qualifying S is convenient shorthand for the
spec-translation translate S by {_ +-> Q._}.

2.3.2.4. Substitutions

spec-substitution ::= spec-term [morphism-term]

Sample spec-substitution:

Routing#Basis[morphism /Coll/Lattice ->
/Coll/LatticeWithTop {}]

24

Chapter 2. Metaslang

The elaboration of spec-substitution S[M] yields the spec T obtained as follows. Let
spec R be the result of elaborating S, and morphism N that of M . Let specs D and C
be the domain and codomain of N . First, remove from R all declarations of D, and
subject the result to the effect of N , meaning that all name translations of N and all
extensions with declarations are performed. Then add the declarations of C, but
without duplications, i.e., as if C is imported. The result obtained is T.

Restriction. Spec D must be a “sub-spec” of spec R, meaning that each declaration
of D is also a declaration of R.

Informally, T is to R as C is to D.

Except when R introduces, next to the type-names and op-names it has in common
with D, new type-names or op-names that also occur in C, the result spec T is a
categorical colimit of this pushout diagram:

D ---------> R
| |
| |
| |
v v
C ---------> T

Although isomorphic to the result that would be obtained by using a diagram-colimit,
T is more “user-oriented” in two ways: the names in T are names from C, and claims
of D not repeated in C are not repeated here either.

For example, assume we have:

A = spec
type Counter
op reset : Counter
op tally : Counter -> Counter
axiom Effect is
fa (c : Counter) ~(tally c = c)

endspec

B = spec
type Register = Nat
def reset = 0
def incr c = c+1

endspec

M = morphism A -> B {Counter +-> Register, tally +-> incr}

25

Chapter 2. Metaslang

AA = spec
import A
type Interval = {start: Counter, stop: Counter}
op isEmptyInterval? : Interval -> Boolean
def isEmptyInterval? {start = x, stop = y} = (x = y)

endspec

Then the result of AA[M] is the same as that of this spec:

spec
import B
type Interval = {start: Register, stop: Register}
op isEmptyInterval? : Interval -> Boolean
def isEmptyInterval? {start = x, stop = y} = (x = y)

endspec

2.3.2.5. Diagram Colimits

diagram-colimit ::= colimit diagram-term

The result of elaborating a diagram-colimit is the spec which is the apex of the
cocone forming the colimit in the category of specs and spec-morphisms. As
always, the result is required to be well formed. See further the Specware Tutorial.

2.3.2.6. Obligators

obligator ::= obligations unit-term

Restriction. The unit-term of an obligator must either be a spec-term or a
morphism-term.

The result of elaborating an obligator is a spec containing the proof obligations
engendered by the spec or morphism resulting from elaborating its unit-term. These
proof obligations are expressed as conjectures; they can be discharged by proving them,
using proof-terms. See further the Specware User Manual.

26

Chapter 2. Metaslang

2.3.3. Morphisms

morphism-term ::=
unit-identifier

| spec-morphism

spec-morphism ::= morphism spec-term -> spec-term name-map

A morphism is a formal mapping between two expanded spec-forms that describes
exactly how one is translated or extended into the other. It consists of the two specs,
referred to as “domain” and “codomain”, and a mapping of all type-names and
op-names introduced in the domain spec to type-names and op-names of the
codomain spec. To be well-formed, a morphism must obey conditions that express that
it is a proper refinement of the domain spec into the codomain spec.

Restriction. When used as a morphism-term, the elaboration of a unit-identifier must
yield a morphism.

Restriction (“proof obligations”). Given spec-morphism morphism S -> T { M
1
+->

N
1
, ... M

n
+-> N

n
} let R be the result of elaborating S, and let S’ be R with each

occurrence of a name M
i

replaced by N
i
. The same rules apply as for spec-translation

translate S by {...}, and the result S’ must be well formed, with the exception that
the restriction on spec-translations requiring different type-names or op-names to
be mapped to different simple-names does not apply here. Let T’ be the result of
elaborating T. Then, first, each type-name or op-name introduced in S’ must also be
introduced in T’. Further, no type-name or op-name originating from a library spec
may have been subject to translation. Finally, each claim in S’ must be a theorem that
follows from the claims of T’. Collectively, the claims in S’ are known as the proof
obligations engendered by the morphism. They are the formal expression of the
requirement that the step from S’ to T’ is a proper refinement.

For example, in

S = spec endspec
T = spec type Bullion = (Char | isAlpha) endspec
M = morphism S -> T {Boolean -> Bullion}

the type-name Boolean, which originates from a library spec, is subject to translation.
Therefore, M is not a proper morphism. Further, in

S = spec
op f : Nat -> Nat
axiom ff is fa(n:Nat) f(n) ~= f(n+1)

27

Chapter 2. Metaslang

endspec

T = spec
def f(n:Nat) = n*n rem 5

endspec

M = morphism S -> T

axiom ff does not follow from (the axiom implied by) the op-definition for f in spec
T, since f(2) = f(3) = 4. Therefore, M is not a proper morphism here either.

Sample spec-morphism:

morphism A -> B {Counter +-> Register, tally +-> incr}

The elaboration of spec-morphism morphism S -> T {M} results in the morphism
whose domain and codomain are the result of elaborating S and T, respectively, and
whose mapping is given by the list of name-map-items in M , using type-annotations
and indicators type and op as described for spec-translations, and extended to all
domain type-names and op-names not yet covered by having these map to
themselves. (In particular, simple-names from the base-libraries always map to
themselves.)

2.3.4. Diagrams

diagram-term ::=
unit-identifier

| diagram-form

diagram-form ::= diagram { diagram-element { , diagram-element }* }

diagram-element ::=
diagram-node

| diagram-edge

diagram-node ::= simple-name +-> spec-term

diagram-edge ::= simple-name : simple-name -> simple-name +-> morphism-term

28

Chapter 2. Metaslang

Restriction. When used as a diagram-term, the elaboration of a unit-identifier must
yield a diagram.

Restriction. In a diagram-term, the first simple-name of each diagram-node and
diagram-edge must be unique (i.e., not be used more than once in that
diagram-term). Further, for each diagram-edge E : ND -> NC +-> M , there must be
diagram-nodes ND +-> D and NC +-> C of the diagram-term such that, after
elaboration, M is a morphism from D to C.

Sample diagram-term:

diagram {
A +-> /Coll/Lattice,
B +-> /Coll/LatticeWithTop,
m : A -> B +-> /Coll/AddTop,
C +-> Routing#Basis,
i : A -> C +-> morphism /Coll/Lattice ->

Routing#Basis {}
}

The result of elaborating a diagram-form is the categorical diagram whose nodes are
labeled with the specs and whose edges are labeled with the morphisms that result
from elaborating the corresponding spec-terms and morphism-terms.

2.3.5. Target Code Terms

target-code-term ::=
generate target-language-name spec-term [generate-option]

generate-option ::=
in string-literal | with unit-identifier

target-language-name ::= c | java | lisp

Sample target-code-term:

generate lisp /Vessel#Contour
in "C:/Projects/Vessel/Contour.lisp"

29

Chapter 2. Metaslang

The elaboration of a target-code-term for a well-formed spec-term generates code in
the language suggested by the target-language-name (currently only C, Java, and
Common Lisp); see further the Specware User Manual.

2.3.6. Proof Terms

proof-term ::=
prove claim-name in spec-term

[with prover-name]
[using claim-list]
[options prover-options]

prover-name ::= snark

claim-list ::= claim-name { , claim-name }*

prover-options ::= string-literal

Restriction. The claim-names must occur as claim-names in the spec that results
from elaborating the spec-term.

Sample proof-term:

prove Effect in obligations M
options "(use-paramodulation t)"

The elaboration of a proof-term invokes the prover suggested by the prover-name
(currently only SNARK). The property to be proved is the claim of the first
claim-name; the claim-list lists the hypotheses (assumptions) that may be used in the
proof. The prover-options are prover-specific and are not further described here. For
details, see the Specware User Manual.

2.4. Declarations

declaration ::=

30

Chapter 2. Metaslang

import-declaration
| type-declaration
| op-declaration
| claim-declaration
| definition

definition ::=
type-definition

| op-definition

equals ::= is | =

Sample declarations:

import Lookup
type Key
def type Key = String
op present : Database * Key -> Boolean
def present(db, k) = embed? Some (lookup (db, k))
axiom norm_idempotent is fa(x) norm (norm x) = norm x

2.4.1. Import-declarations
A spec may contain one or more import-declarations. On elaboration, these are
“expanded”. The effect is as if the bodies of these imported specs (themselves in
elaborated form, which means that all import-declarations have been expanded, all
translations performed and all shorthand employs of names have been resolved to full
names, after which only declarations or definitions of types, ops and claims are left)
is inserted in place in the receiving spec.

For example, the result of

spec
import spec

type A.Z
op b : Nat -> Z

end
def A.Z = String
def b = toString

endspec

31

Chapter 2. Metaslang

is this “expanded” spec:

spec
type A.Z
op b : Nat -> A.Z
def A.Z = String
def b = toString

endspec

For this to be well formed, the imported specs must be well formed by themselves; in
addition, the result of expanding them in place must result in a well-formed spec.

There are a few restrictions, which are meant to catch unintentional naming mistakes.
First, if two different imported specs each introduce a type or op with the same (full)
name, the introductions must be identical declarations or definitions, or one may be a
declaration and the other a “compatible” definition. For example, given

S1 = spec op e : Integer end
S2 = spec op e : Char end
S3 = spec def e = 0 end

the specs S1 and S3 can be imported together, but all other combinations of two or
more co-imported specs result in an ill-formed spec. This restriction is in fact a
special case of the general requirement that import expansion must result in a
well-formed spec. Secondly, a type-name introduced in any of the imported specs
cannot be re-introduced in the receiving spec except for the case of an “imported”
declaration together with a definition in the receiving spec. Similarly for op-names,
with the addition that an op-definition in the receiving spec must be compatible with
an op-declaration for the same name in an imported spec. The latter is again a
special case of the general requirement that import expansion must result in a
well-formed spec.

What is specifically excluded by the above, is giving a definition of a type or op in
some spec, import it, and then redefining or declaring that type or op with the same
full name in the receiving spec.

import-declaration ::= import spec-term { , spec-term }*

Sample import-declaration:

import Lookup

32

Chapter 2. Metaslang

An import-declaration of the form import S
1
, ..., S

n
, where n > 1, is equivalent to

the sequence of import-declarations

import S
1

...
import S

n

An import-declaration is contained in some spec-form, and to elaborate that
spec-form the spec-terms of its import-declarations are elaborated first, giving a
sequence of specs. The import-declaration has then the effect as if the declarations
of the imported specs as elaborated are expanded in place, replacing the
import-declaration. This cascades: if spec A imports B, and spec B imports C, then
effectively spec A also imports C. An important difference with earlier versions of
Specware than version 4 is that multiple imports of the same spec have the same effect
as a single import.

If spec A is imported by B, each model of B is necessarily a model of A (after
“forgetting” any simple-names newly introduced by B). So A is then refined by B, and
the morphism from A to B is known as the “import morphism”. As it does not involve
translation of type-names or op-names, it can be denoted by morphism A -> B {}.

2.4.2. Type-declarations

type-declaration ::=
type type-name [formal-type-parameters] [equals old-or-new-type-descriptor]

formal-type-parameters ::= local-type-variable | (local-type-variable-list)

local-type-variable ::= simple-name

local-type-variable-list ::= local-type-variable { , local-type-variable }*

old-or-new-type-descriptor ::= type-descriptor | new-type-descriptor

Restriction. Each local-type-variable of the formal-type-parameters must be a
different simple-name.

Sample type-declarations:

33

Chapter 2. Metaslang

type Date
type Array a
type Array a = List a
type Map(a, b)

A type-declaration of the form type T = D is equivalent to the type-declaration
type T followed by the type-definition def type T = D.

Every type-name used in a spec must be declared (in the same spec or in an imported
spec, included the “base-library” specs that are always implicitly imported) in a
type-declaration or type-definition. A type-name may have type parameters. Given
the example type-declarations above, some valid type-descriptors that can be used
in this context are Array Date, Array (Array Date) and Map (Nat, Boolean).

Restriction. Except for the exception provided in the next paragraph, type-names may
not be redeclared and/or redefined, whether in the same spec or after having been
defined in an imported spec, not even when both declarations or definitions are
identical.

In Specware 4.2, a type may be declared in a type-declaration not containing a
defining part (introduced by an equals), and in the same context also be defined in a
type-declaration containing a defining part. This is now a deprecated feature that may
not persist in future releases. Users are advised to either use a type-declaration not
containing a defining part followed by a type-definition, or to combine the two in one
type-declaration containing a defining part.

In a model of the spec, a type is assigned to each unparameterized type-name, while
an infinite family of types is assigned to parameterized type-names “indexed” by
tuples of types, that is, there is one family member, a type, for each possible assignment
of types to the local-type-variables. So for the above example type-declaration of
Array one type must be assigned to Array Nat, one to Array Boolean, one to
Array (Array Date), and so on. These assigned types could all be the same type, or
perhaps all different, as long as the model respects typing.

2.4.3. Type-definitions

type-definition ::=
type-abbreviation

| new-type-definition

34

Chapter 2. Metaslang

type-abbreviation ::=
def [type] type-name [formal-type-parameters] equals type-descriptor

new-type-definition ::=
def [type] type-name [formal-type-parameters] equals new-type-descriptor

Sample type-abbreviations:

def type Date = {year : Nat, month : Nat, day : Nat}
def Array a = List a
def Map(a, b) = (Array (a * b) | key_uniq?)

Sample new-type-definitions:

def Tree a = | Leaf a | Fork (Tree a * Tree a)
def {Bush,Shrub} a = | Leaf a | Fork (Tree a * Tree a)
def type Z3 = Nat / (fn (m, n) -> m rem 3 = n rem 3)

The keyword type may be omitted after def unless the name following the keyword
type is declared or defined in the context as an op-name.

Restriction. The type-name of a type-definition must have been previously declared
in a type-declaration, and either the declaration and definition both must contain no
formal-type-parameters, or agree in the number of local-type-variables in their
formal-type-parameters.

In each model, the type assigned to the type-name of a type-abbreviation must be the
same as the right-hand-side type-descriptor, while that assigned to the type-name of
a new-type-definition must be isomorphic to the type of the new-type-descriptor.
Thus, while Array Nat and List Nat from the examples denote the same type, the
types assigned to Tree Nat and Bush Nat are equivalent but not necessarily equal, and
commingling them in a spec results in a type error. On the other hand, Bush Nat and
Shrub Nat are truly synonymous.

For parameterized types, this extends to all possible assignments of types to the
local-type-variables, taking the right-hand type-descriptors and
new-type-descriptors as interpreted under each of these assignments. So, for the
example, Map(Nat, Char) is the same type as (Array (Nat * Char) |
key_uniq?), and so on.

With recursive type-definitions, there are additional requirements. Consider

def type Stack a =
| Empty
| Push {top : a, pop : Stack a}

35

Chapter 2. Metaslang

This means that for each type a there is a value Empty of type Stack a, and further a
function Push that maps values of type {top : a, pop : Stack a} to Stack a.
Furthermore, the type assigned to Stack a must be such that all its inhabitants can be
constructed exclusively and uniquely in this way: there is one inhabitant Empty, and all
others are the result of a Push. Finally -- this is the point -- the type in the model must
be such that its inhabitants can be constructed this way in a finite number of steps. So
there can be no “bottom-less” stacks: deconstructing a stack using

def [a] hasBottom? (s : Stack a) : Boolean =
case s of

| Empty -> true
| Push {top, pop = rest} -> hasBottom? rest

is a procedure that is guaranteed to terminate, always resulting in true.

In general, type-definitions generate implicit axioms, which for recursive definitions
imply that the type is not “larger” than necessary. In technical terms, in each model the
type is the least fixpoint of a recursive domain equation.

2.4.4. Op-declarations

op-declaration ::=
op [type-variable-binder] formal-expression [fixity] type-annotation
[equals expression]

| op formal-expression [fixity] polytype-annotation
[equals expression]

polytype-annotation ::= : type-variable-binder type-descriptor

type-variable-binder ::= [local-type-variable-list]

formal-expression ::= op-name | formal-application

formal-application ::= formal-application-head formal-parameter

formal-application-head ::= op-name | formal-application

formal-parameter ::= closed-pattern | (pattern | expression)

fixity ::= associativity priority

associativity ::= infixl | infixr

36

Chapter 2. Metaslang

priority ::= nat-literal

Note that the formal-expression of an op-declaration always uses prefix notation,
even for infix-operators.

Sample op-declarations:

op usage : String

op usage : String = "Usage: Lookup key [database]"

op [a,b,c] o infixl 24 : (b -> c) * (a -> b) -> a -> c
op o infixl 24 : [a,b,c] (b -> c) * (a -> b) -> a -> c

op f (s : String) ((i, j) : Nat * Nat | i < j) (c : Char) : String =
substring (s, i, j) ^ toString c

The placement of a type-variable-binder, if present, is of no significance; the two
declarations given above for op o are completely equivalent. Note that the presence of
a type-annotation or polytype-annotation is mandatory even if the type can be
determined from a defining expression, as in the second example for op usage above.

The meaning of a formal-parameter (P|E) is the same as that of the
formal-parameter ((P):{(P):T|E}), in which T is a type-descriptor such that in
the context the annotated-pattern (P):T is type-correct. If no such type-descriptor
exists, or its type cannot be unambiguously be determined, the formal-parameter is
type-incorrect. For example, in the declaration for f above, the formal-parameter
((i, j) : Nat * Nat | i < j) is a shorthand notation for (((i, j) : Nat * Nat) :
{(((i, j) : Nat * Nat) : Nat * Nat | i < j)}), which can be simplified to ((i,

j) : {((i, j) : Nat * Nat | i < j)}).

Restriction. The restricting expression following a vertical bar in a formal-parameter
must not refer to local variables introduced by preceding formal-parameters. (To do
so would effectively create dependent types, which are currently not supported.)

An op-declaration of the form op B F X A = E, in which B is an optional
type-variable-binder, F is a formal-expression, X is an optional fixity, A is a
type-annotation and E is an expression, is equivalent to the op-declaration op

B F X A followed by the op-definition def op B F = E.

In an op-declaration of the form op N : T, in which N is an op-name, N is declared
to have type T. An op-declaration of the form op H (P:S) : T, in which P is a
pattern whose type is given by type-descriptor T, is equivalent to op H : S -> T. So
the simple-names used as local-variables in each formal-parameter are only bound

37

Chapter 2. Metaslang

to that formal-parameter, and are further irrelevant for its type. For example, the
op-declaration of f above is equivalent to the following:

op f : String -> {(i, j) : Nat * Nat | i < j} -> Char -> String
def f s (i, j) c = substring (s, i, j) ^ toString c

in which the type-annotations in the op-definition have been omitted as being
redundant.

Restriction. User-defined ops may not be “overloaded”, or otherwise be redeclared
and/or redefined, whether in the same spec or after having been defined in an imported
spec, not even when both declarations or definitions are identical.

However, one can get the effect of overloading by declaring distinct ops with different
qualifiers for the same unqualified name, e.g.

op Table.length : Table -> Nat
op Vector.length : Vector -> Nat

Here, subsequent references of the form length may be resolved to refer to
Table.length or Vector.length as appropriate, provided exactly one is
type-consistent in the context of the reference.

An op-declaration introduces an op with an associated type. The type can be
“monomorphic”, like String, or “polymorphic” (indicated by a
type-variable-binder). In the latter case, an indexed family of values is assigned to
parameterized type-names “indexed” by tuples of types, that is, there is one family
member, a typed value, for each possible assignment of types to the
local-type-variables of the type-variable-binder, and the type of that value is the
result of the corresponding substitution of types for local-type-variables on the
polymorphic type of the op. In the examples above, the two forms given for the
declaration of polymorphic o are entirely equivalent; they can be thought of as
introducing a family of (fictitious) ops, one for each possible assignment to the
local-type-variables a, b and c:

o
Nat,String,Char

: (String -> Char) * (Nat -> String) -> Nat -> Char

o
Nat,Nat,Boolean

: (Nat -> Boolean) * (Nat -> Nat) -> Nat -> Boolean

o
Char,Boolean,Nat

: (Boolean -> Nat) * (Char -> Boolean) -> Char -> Nat

and so on. Any op-definition for o must be likewise accommodating.

Only binary ops (those having some type S * T -> U) may be declared with a fixity.
When declared with a fixity, the op may be used in infix notation, and then it is called

38

Chapter 2. Metaslang

an infix-operator. For o above, this means that o(f, g) and f o g may be used,
interchangeably, with no difference in meaning. If the associativity is infixl, the
infix-operator is called left-associative; otherwise, if the associativity is infixr, it is
called right-associative. If the priority is priority N , the operator is said to have
priority N . The nat-literal N stands for a natural number; if infix-operator O1 has
priority N1, and O2 has priority N2, with N1 < N2, we say that O1 has lower priority
than O2, and that O2 has higher priority than (or takes priority over) O1. For the role of
the associativity and priority, see further at Infix-applications.

2.4.5. Op-definitions

op-definition ::=
def [op] [type-variable-binder] formal-expression [type-annotation]

equals expression
| def [op] formal-expression polytype-annotation

equals expression

Sample op-definitions:

def op usage = "Usage: Lookup key [database]"

def [a,b,c] o(f : b -> c, g: a -> b) : a -> c =
fn (x : a) -> f(g x)

def o : [a,b,c] (b -> c) * (a -> b) -> a -> c =
fn (f, g) -> fn (x) -> f(g x)

def o (f, g) x = f(g x)

The keyword op may be omitted after def unless the part between the keyword def

and the equals has the syntactic form of a name N followed by an optional
formal-type-parameters, where the name N is declared or defined in the context as a
type-name. As for op-declarations, the placement of any type-variable-binder is of
no significance.

Restriction. See the restriction under Op-declarations on redeclaring/redefining ops.

Note that a formal-expression always contains precisely one op-name, which is the
op being defined by the op-definition. Note further that the formal-expression of an
op-definition always uses prefix notation, even for infix-operators.

39

Chapter 2. Metaslang

Restriction. The type information, if any, presented in an op-definition must be
consistent with the type specified by the preceding op-declaration. For example, the
presence of a type-variable-binder signals that the op being defined is polymorphic,
but then the op-declaration must contain an identical type-variable-binder. (A
type-variable-binder may be needed to introduce local-type-variables for employ in
type-annotations within the defining expression, as exemplified in the first definition
for o.)

In Specware 4.2, an op still may be defined without having been previously declared,
but this is now a deprecated feature. When an op is defined without having been
declared, the op-definition generates an implicit op-declaration for the op, provided a
monomorphic type for the op can be unambiguously determined from the op-definition
together with the uses of the op in applications and other contexts, so that all
expressions can be assigned a type in the context in which they occur. This feature
may not persist in future releases, so users are advised to provide an op-declaration
somewhere before each op-definition, either in the same spec or (more typically) in an
imported spec. Alternatively, the newly expanded syntax for op-definitions makes it
simple to both give a unique type to and define an op within one declaration.

In a model of the spec, an indexed family of typed values is assigned to a polymorphic
op, with one family member for each possible assignment of types to the
local-type-variables of the type-variable-binder, and the type of that value is the
result of the corresponding type-instantiation for the polymorphic type of the op.
Thus, we can reduce the meaning of a polymorphic op-definition to a family of
(fictitious) monomorphic op-definitions.

An op-definition with formal-application

def op H P = E

in which H is a formal-application-head, P is a formal-parameter and E an
expression, is equivalent to the op-definition

def op H = fn P -> E

For example,

def o (f, g) x = f(g x)

is equivalent to

def o (f, g) = fn x -> f(g x)

which in turn is equivalent to

40

Chapter 2. Metaslang

def o = fn (f, g) -> fn x -> f(g x)

By this deparameterizing transformation for each formal-parameter, an equivalent
unparameterized op-definition is reached. The semantics is described in terms of such
op-definitions.

In each model, the typed value assigned to the op being defined must be the same as
the value of the right-hand-side expression. For polymorphic op-definitions, this
extends to all possible assignments of types to the local-type-variables.

An op-definition can be thought of as a special notation for an axiom. For example,

op double : [a] a -> a * a
def double x = (x, x)

can be thought of as standing for:

op double : [a] a -> a * a

axiom double_def is
[a] fa(x : a) double x = (x, x)

In fact, Specware generates such axioms for use by provers. But in the case of recursive
definitions, this form of axiomatization does not adequately capture the meaning. For
example,

def f (n : Nat) : Nat = 0 * f n

is an improper definition, while

axiom f_def is
fa(n : Nat) f n = 0 * f n

characterizes the function that maps every natural number to 0. The issue is the
following. Values in models can not be undefined and functions assigned to ops
must be total. But in assigning a meaning to a recursive op-definition, we --
temporarily -- allow undefined and partial functions (functions that are not
everywhere defined on their domain type) to be assigned to recursively defined ops. In
the thus extended class of models, the recursive ops must be the least-defined solution
to the “axiomatic” equation (the least fixpoint as in domain theory), given the
assignment to the other ops. For the example of f above this results in the everywhere
undefined function, since 0 times undefined is undefined. If the solution results
in an undefined value or a function that is not total (or for higher-order functions,
functions that may return non-total functions, and so on), the op-definition is improper.

41

Chapter 2. Metaslang

Although Specware 4.2 does attempt to generate proof obligations for this condition, it
currently covers only “simple” recursion, and not mutual recursion or recursion
introduced by means of higher-order functions.

Functions that are determined to be the value of an expression, but that are not
assigned to ops, need not be total, but the context must enforce that the function can
not be applied to values for which it is undefined. Otherwise, the spec is ill formed.

2.4.6. Claim-declarations

claim-declaration ::= claim-kind claim-name is claim [proof-script]

claim-kind ::= axiom | theorem | conjecture

claim-name ::= name

claim ::= [type-variable-binder] expression

Sample claim-declarations:

axiom norm_idempotent is
norm o norm = norm

theorem o_assoc is
[a,b,c,d] fa(f : c -> d, g : b -> c, h : a -> b)
f o (g o h) = (f o g) o h

conjecture pivot_hold is
let p = pivot hold in
fa (n : {n : Nat | n < p}) ~(hold n = hold p)

Proof-scripts are currently only available for use with Isabelle, and are not described
here. For further details, see the Specware to Isabelle Translator Manual.

Restriction. The type of the claim must be Boolean.

Restriction. A claim must not be an expression whose first symbol is [. In order to
use such an expression as a claim, it can be parenthesized, as in

axiom nil_fits_nil is ([] fits [])

This restriction prevents ambiguities between claims with and without
type-variable-binders.

42

Chapter 2. Metaslang

When a type-variable-binder is present, the claim is polymorphic. A polymorphic
claim may be thought of as standing for an infinite family of monomorphic claims, one
for each possible assignment of types to the local-type-variables.

The claim-kind theorem should only be used for claims that have actually been
proved to follow from the (explicit or implicit) axioms. In other words, giving them
axiom status should not change the class of models. Theorems can be used by provers.

Conjectures are meant to represent proof obligations that should eventually attain
theoremhood. Like theorems, they can be used by provers. This is only sound if
circularities (vicious circles) are avoided. This kind of claim is usually created
automatically by the elaboration of an obligator, but can also be created manually.

The Specware system passes on the claim-name of the claim-declaration with the
claim for purposes of identification. Both may be transformed to fit the requirements of
the prover, and appear differently there. Not all claims can be faithfully represented in
all provers, and even when they can, the logic of the prover may not be up to dealing
with them.

Remark. It is a common mistake to omit the part “claim-name is” from a
claim-declaration. A defensive style against this mistake is to have the claim always
start on a new text line. This is additionally recommended because it may become
required in future revisions of Metaslang.

2.5. Type-descriptors

type-descriptor ::=
type-arrow

| slack-type-descriptor

new-type-descriptor ::=
type-sum

| type-quotient

slack-type-descriptor ::=
type-product

| tight-type-descriptor

tight-type-descriptor ::=
type-instantiation

| closed-type-descriptor

43

Chapter 2. Metaslang

closed-type-descriptor ::=
type-name

| Boolean
| local-type-variable
| type-record
| type-restriction
| type-comprehension
| (type-descriptor)

Note that in Specware 4.2, new-type-descriptors now may appear only as the
right-hand-side of a type-definition. In other words, sum and quotient types no longer
may appear anonymously. For example, they may not be used in an annotated-pattern
or an annotated-expression. Thus the following spec is no longer legal:

spec
type T
op f : T -> Nat
op q : T * T -> Boolean
op q_f (x : T / q) : Nat = let quotient[T / q] y = x in f y

endspec

but can be expressed legally as follows:

spec
type T
op f : T -> Nat
op q : T * T -> Boolean
type Q = T / q
op q_f (x : Q) : Nat = let quotient[Q] y = x in f y

endspec

(The distinctions “slack-”, “tight-” and “closed-” before “type-descriptor” have no
semantic significance. The distinction merely serves the purpose of diminishing the
need for parenthesizing in order to avoid grammatical ambiguities.)

Sample type-descriptors:

List String * Nat -> Option String
a * Order a * a
PartialFunction (Key, Value)
Key

44

Chapter 2. Metaslang

Boolean
a
{center : XYpos, radius : Length}
(Nat | even)
{k : Key | present (db, k)}
(Nat * Nat)

Sample new-type-descriptors:

| Point XYpos | Line XYpos * XYpos
Nat / (fn (m, n) -> m rem 3 = n rem 3)

The meaning of the type-descriptor Boolean is the “inbuilt” type inhabited by the
two logical (truth) values true and false. The meaning of a parenthesized
type-descriptor (T) is the same as that of the enclosed type-descriptor T.

The various other kinds of type-descriptors and new-type-descriptors not defined
here are described each in their following respective sections, with the exception of
local-type-variable, whose (lack of) meaning as a type-descriptor is described below.

Restriction. A local-type-variable may only be used as a type-descriptor if it occurs
in the scope of a formal-type-parameters or type-variable-binder in which it is
introduced.

Disambiguation. A single simple-name used as a type-descriptor is a
local-type-variable when it occurs in the scope of a formal-type-parameters or
type-variable-binder in which it is introduced, and then it identifies the textually most
recent introduction. Otherwise, the simple-name is a type-name.

A local-type-variable used as a type-descriptor has no meaning by itself, and where
relevant to the semantics is either “indexed away” (for parameterized types) or
“instantiated away” (when introduced in a formal-type-parameters or
type-variable-binder) before a meaning is ascribed to the construct in which it occurs.
Textually, it has a scope just like a plain local-variable.

2.5.1. Type-sums

type-sum ::= type-summand { type-summand }*

type-summand ::= | constructor [slack-type-descriptor]

constructor ::= simple-name

45

Chapter 2. Metaslang

Sample type-sum:

| Point XYpos | Line XYpos * XYpos

Restriction. The constructors of a type-sum must all be different simple-names.

Also, note that since a type-sum is a new-type-descriptor, it may appear only on the
right hand side of a new-type-definition.

The ordering of the type-summands has no significance: | Zero | Succ Peano
denotes the same “sum type” as | Succ Peano | Zero.

A type-sum denotes a sum type, which is a type that is inhabited by “tagged values”. A
tagged value is a pair (C, v), in which C is a constructor and v is a typed value.

A type-sum introduces a number of embedders, one for each type-summand. In the
discussion, we omit the optional embed keyword of the embedders. The embedders
are similar to ops, and are explained as if they were ops, but note the Restriction
specified under Structors.

For a type-sum T with type-summand C S, in which C is a constructor and S a
type-descriptor, the corresponding pseudo-op introduced is typed as follows:

op C : S -> T

It maps a value v of type S to the tagged value (C, v). If the type-summand is a
single parameter-less constructor (the slack-type-descriptor is missing), the
pseudo-op introduced is typed as follows:

op C : T

It denotes the tagged value (C, ()), in which () is the inhabitant of the unit type (see
under Type-records).

The sum type denoted by the type-sum then consists of the union of the ranges (for
parameter-less constructors the values) of the pseudo-ops for all constructors.

The embedders are individually, jointly and severally injective, and jointly surjective.

This means, first, that for any pair of constructors C1 and C2 of any type-sum, and
for any pair of values v1 and v2 of the appropriate type (to be omitted for
parameter-less constructors), the value of C1 v1 is only equal to C2 v2 when C1 and
C2 are the same constructor of the same sum type, and v1 and v2 (which then are
either both absent, or else must have the same type) are both absent or are the same
value. In other words, whenever the constructors are different, or are from different
type-sums, or the values are different, the results are different. (The fact that

46

Chapter 2. Metaslang

synonymous constructors of different types yield different values already follows
from the fact that values in the models are typed.)

Secondly, for any value u of any sum type, there is a constructor C of that sum type
and a value v of the appropriate type (to be omitted for parameter-less constructors),
such that the value of C v is u. In other words, all values of a sum type can be
constructed with an embedder.

For example, consider

type Peano =
| Zero
| Succ Peano

type Unique =
| Zero

This means that there is a value Zero of type Peano, and further a function Succ that
maps values of type Peano to type Peano. Then Zero and Succ n are guaranteed to be
different, and each value of type Peano is either Zero : Peano, or expressible in the
form Succ (n : Peano) for a suitable expression n of type Peano. The expressions
Zero : Peano and Zero : Unique denote different, entirely unrelated, values. (Note
that Unique is not a subtype of Peano. Subtypes of a type can only be made with a
type-restriction, for instance as in (Peano | embed? Zero).) For recursively defined
type-sums, see also the discussion under Type-definitions.

2.5.2. Type-arrows

type-arrow ::= arrow-source -> type-descriptor

arrow-source ::= type-sum | slack-type-descriptor

Sample type-arrow:

(a -> b) * b -> List a -> List b

In this example, the arrow-source is (a -> b) * b, and the (target) type-descriptor
List a -> List b.

The function type S -> T is inhabited by precisely all partial or total functions from S
to T. That is, function f has type S -> T if, and only if, for each value x of type S such

47

Chapter 2. Metaslang

that the value of f x is defined, that value has type T. Functions can be constructed
with lambda-forms, and be used in applications.

In considering whether two functions (of the same type) are equal, only the meaning on
the domain type is relevant. Whether a function is undefined outside its domain type, or
might return some value of some type, is immaterial to the semantics of Metaslang.
(For a type-correct spec, the difference is unobservable.)

2.5.3. Type-products

type-product ::= tight-type-descriptor * tight-type-descriptor { * tight-type-descriptor }*

Sample type-product:

(a -> b) * b * List a

Note that a type-product contains at least two constituent tight-type-descriptors.

A type-product denotes a product type that has at least two “component types”,
represented by its tight-type-descriptors. The ordering of the component types is
significant: unless S and T are the same type, the product type S * T is different from
the type T * S. Further, the three types (S * T) * U , S * (T * U) and S * T * U are
all different; the first two have two component types, while the last one has three. The
inhabitants of the product type T

1 * T2 * ... * Tn are precisely all n-tuples (v
1
, v

2
, ... ,

v
n
), where each v

i
has type T

i
, for i = 1, 2, ... , n. Values of a product type can be

constructed with tuple-displays, and component values can be extracted with
tuple-patterns as well as with projectors.

2.5.4. Type-instantiations

type-instantiation ::= type-name actual-type-parameters

actual-type-parameters ::= closed-type-descriptor | (proper-type-list)

proper-type-list ::= type-descriptor , type-descriptor { , type-descriptor }*

Sample type-instantiation:

Map (Nat, Boolean)

48

Chapter 2. Metaslang

Restriction. The type-name must have been declared or defined as a parameterized
type (see Type-declarations), and the number of type-descriptors in the
actual-type-parameters must match the number of local-type-variables in the
formal-type-parameters of the type-declaration and/or type-definition.

The type-descriptor represented by a type-instantiation is the type assigned for the
combination of types of the actual-type-parameters in the indexed family of types for
the type-name of the type-instantiation.

2.5.5. Type-names

type-name ::= name

Sample type-names:

Key
Calendar.Date

Restriction. A type-name may only be used if there is a type-declaration and/or
type-definition for it in the current spec or in some spec that is imported (directly or
indirectly) in the current spec. If there is a unique qualified-name for a given
unqualified ending, the qualification may be omitted for a type-name used as a
type-descriptor.

The type of a type-name is the type assigned to it in the model. (In this case, the
context can not have superseded the original assignment.)

2.5.6. Type-records

type-record ::= { [field-typer-list] } | ()

field-typer-list ::= field-typer { , field-typer }*

field-typer ::= field-name type-annotation

field-name ::= simple-name

Sample type-record:

{center : XYpos, radius : Length}

49

Chapter 2. Metaslang

Restriction. The field-names of a type-record must all be different.

Note that a type-record contains either no constituent field-typers, or else at least two.

A type-record is like a type-product, except that the components, called “fields”, are
identified by name instead of by position. The ordering of the field-typers has no
significance: {center : XYpos, radius : Length} denotes the same record type as
{radius : Length, center : XYpos}. Therefore we assume in the following,
without loss of generality, that the fields are ordered lexicographically according to
their field-names (as in a dictionary: a comes before ab comes before b) using some
fixed collating order for all marks that may comprise a name. Then each field of a
record type with n fields has a position in the range 1 to n. The inhabitants of the
record type {F

1
: T

1
, F

2
: T

2
, ... , F

n
: T

n
} are precisely all n-tuples (v

1
, v

2
, ... , v

n
),

where each v
i

has type T
i
, for i = 1, 2, ... , n. The field-names of that record type are

the field-names F
1
, ... , F

n
, and, given the lexicographic ordering, field-name F

i

selects positioni, for i = 1, 2, ... , n. Values of a record type can be constructed with
record-displays, and field values can be extracted with record-patterns and (as for
product types) with projectors.

For the type-record {}, which may be equivalently written as (), the record type it
denotes has zero components, and therefore no field-names. This zero-component
type has precisely one inhabitant, and is called the unit type. The unit type may equally
well be considered a product type, and is the only type that is both a product and a
record type.

2.5.7. Type-restrictions

type-restriction ::= (slack-type-descriptor | expression)

Sample type-restriction:

(Nat | even)

Restriction. In a type-restriction (T | P), the expression P must be a predicate on
the type T, that is, P must be a function of type T -> Boolean.

Note that the parentheses in (T | P) are mandatory.

The inhabitants of type (T | P) are precisely the inhabitants of type T that satisfy the
predicate P, that is, they are those values v for which the value of P v is true.

If P1 and P2 are the same function, then (T | P1) and (T | P2) are equivalent, that
is, they denote the same type. Furthermore, (T | fn _ -> true) is equivalent to T.

50

Chapter 2. Metaslang

The type (T | P) is called a subtype of supertype T. Values can be shuttled between a
subtype and its supertype and vice versa, in the direction from supertype to subtype
only if the value satisfies predicate P. For example, in the expression -1 the
nat-literal 1 of type Nat is implicitly “coerced” to type Integer to accommodate the
unary negation operator -, which has type Integer -> Integer.

Likewise, in the expression 7 div 2 the nat-literal 2 of type Nat is implicitly
“coerced” to type PosNat, a subtype of Nat, to accommodate the division operator
div, whose second argument has type PosNat. But note that this engenders the proof
obligation that the value satisfies the predicate of the subtype.

These coercions extend to composed types. For example, an expression of type List
PosNat may be used where a value of type List Nat is required. Conversely, an
expression of type List Nat may be used in a context requiring List PosNat if the
corresponding proof obligation can be discharged, namely that the value of the
expression, in its context, satisfies the predicate all posNat? testing whether all
elements of a list of naturals are positive.

2.5.8. Type-comprehensions

type-comprehension ::= { annotated-pattern | expression }

Sample type-comprehension:

{n : Nat | even n}

Restriction. In a type-comprehension {P : T | E}, the expression E must have type
Boolean.

Type-comprehensions provide an alternative notation for type-restrictions that is
akin to the common mathematical notation for set comprehensions. The meaning of
type-comprehension {P : T | E} is the same as that of the type-restriction (T | fn

P -> E). So the meaning of the example type-comprehension above is (Nat | fn n
-> even n).

2.5.9. Type-quotients

type-quotient ::= closed-type-descriptor / closed-expression

51

Chapter 2. Metaslang

Sample type-quotient:

Nat / (fn (m, n) -> m rem 3 = n rem 3)

Restriction. In a type-quotient T / q , the expression q must be a (binary) predicate
on the type T * T that is an equivalence relation, as explained below.

Also, note that since a type-quotient is a new-type-descriptor, it may appear only as
the right-hand side of a new-type-definition.

Equivalence relation. Call two values x and y of type T “q-related” if (x, y) satisfies
q . Then q is an equivalence relation if, for all values x, y and z of type T, x is
q-related to itself, y is q-related to x whenever x is q-related to y , and x is q-related
to z whenever x is q-related to y and y is q-related to z. The equivalence relation q
then partitions the inhabitants of T into equivalence classes, being the maximal subsets
of T containing mutually q-related members. These equivalence classes will be called
“q-equivalence classes”.

The inhabitants of the quotient type T / q are precisely the q-equivalence classes into
which the inhabitants of T are partitioned by q . For the example above, there are three
equivalence classes of natural numbers leaving the same remainder on division by 3:
the sets {0, 3, 6, ...}, {1, 4, 7, ...} and {2, 5, 8, ...}, and so the quotient type has three
inhabitants.

2.6. Expressions

expression ::=
lambda-form

| case-expression
| let-expression
| if-expression
| quantification
| unique-solution
| annotated-expression
| tight-expression

tight-expression ::=
application

| closed-expression

52

Chapter 2. Metaslang

closed-expression ::=
op-name

| local-variable
| literal
| field-selection
| tuple-display
| record-display
| sequential-expression
| list-display
| monadic-expression
| structor
| (expression)
| (inbuilt-op)

inbuilt-op ::= inbuilt-prefix-op | inbuilt-infix-op

inbuilt-prefix-op ::= ~

inbuilt-infix-op ::= <=> | => | || | && | = | ~= | <<

(The distinctions tight- and closed- for expressions lack semantic significance, and
merely serve the purpose of avoiding grammatical ambiguities.)

Sample expressions:

fn (s : String) -> s ^ "."
case z of {re = x, im = y} -> {re = x, im = -y}
let x = x + 1 in f(x, x)
if x <= y then x else y
fa(x,y) (x <= y) <=> ((x < y) or (x = y))
f(x, x)
[] : List Arg
abs(x-y)
++
x
3260
z.re
("George", Poodle : Dog, 10)
{name = "George", kind = Poodle : Dog, age = 10}
(writeLine "key not found"; embed Missing)
["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
project 2
(n + 1)
(||)

53

Chapter 2. Metaslang

Restriction. Like all polymorphic or type-ambiguous constructs, an expression can
only be used in a context if its type can be inferred uniquely, given the expression and
the context. This restriction will not be repeated for the various kinds of expressions
defined in the following subsections.

The meaning of a parenthesized expression (E) is the same as that of the enclosed
expression E. The meaning of the parenthesized inbuilt-prefix-op (P) is the same as
that of the lambda-form fn x -> P x. The meaning of a parenthesized inbuilt-infix-op
(I) is the same as that of the lambda-form fn (x,y) -> x I y. Note that this function
is strict in both arguments, unlike I itself.

The various other kinds of expressions not defined here are described each in their
following respective sections, with the exception of local-variable, whose meaning as
an expression is described below.

Restriction. A local-variable may only be used as an expression if it occurs in the
scope of the local-variable-list of a quantification or of a variable-pattern in which it
is introduced.

Disambiguation. A single simple-name used as an expression is a local-variable
when it occurs in the scope of a local-variable-list or variable-pattern in which a
synonymous local-variable is introduced, and then it identifies the textually most
recent introduction. Otherwise, the simple-name is an op-name or an embedder; for
the disambiguation between the latter two, see Embedders.

A local-variable used as an expression has the typed value assigned to it in the
environment.

2.6.1. Lambda-forms

lambda-form ::= fn match

Sample lambda-forms:

fn (s : String) -> s ^ "."

fn | Point _ -> 0
| Line(z0, z1) -> dist(z0, z1)

The value of a lambda-form is a partial or total function. If the value determined for a
lambda-form as described below is not a total function, the context must enforce that
the function can not be applied to values for which it is undefined. Otherwise, the spec

54

Chapter 2. Metaslang

is ill formed. Specware 4.2 does not attempt to generate proof obligations for
establishing this.

The type of a lambda-form is that of its match. The meaning of a given lambda-form
of type S -> T is the function f mapping each inhabitant x of S to a value y of type T,
where y is the return value of x for the match of the lambda-form. If the match
accepts each x of type S (for acceptance and return value, see the section on Matches)
function f is total; otherwise it is partial, and undefined for those values x rejected.

In case of a recursive definition, the above procedure may fail to determine a value for
y , in which case function f is not total, but undefined for x.

2.6.2. Case-expressions

case-expression ::= case expression of match

Sample case-expressions:

case z of {re = x, im = y} -> {re = x, im = -y}

case s of
| Empty -> true
| Push {top = _, pop = rest} -> hasBottom? rest

The value of a case-expression case E of M is the same as that of the application
(fn M) (E).

2.6.3. Let-expressions

let-expression ::= let let-bindings in expression

let-bindings ::= recless-let-binding | rec-let-binding-sequence

recless-let-binding ::= pattern equals expression

rec-let-binding-sequence ::= rec-let-binding { rec-let-binding }*

rec-let-binding ::=
def simple-name formal-parameter-sequence [type-annotation] equals expres-

sion

55

Chapter 2. Metaslang

formal-parameter-sequence ::= formal-parameter { formal-parameter }*

Sample let-expressions:

let x = x + e in f(x, x)
let def f x = x + e in f (f x)

In the case of a recless-let-binding (recless = recursion-less), the value of the
let-expression let P = A in E is the same as that of the application (fn P -> E)
(A). For the first example above, this amounts to f(x + e, x + e). Note that x = x + e
is not interpreted as a recursive definition.

In case of a rec-let-binding-sequence (rec = recursive), the rec-let-bindings have the
role of “local” op-definitions; that is, they are treated exactly like op-definitions
except that they are interpreted in the local environment instead of the global model.
For the second example above, this amounts to (x + e) + e. (If e is a local-variable in
this scope, the definition of f can not be “promoted” to an op-definition, which would
be outside the scope binding e.) A spec with rec-let-bindings can be transformed into
one without such by creating op-definitions for each rec-let-binding that take
additional arguments, one for each of the local-variables referenced. For the example,
in which f references local-variable e, the op-definition for the “extended” op f+

would be def f+ e x = x + e, and the let-expression would become f+ e (f+ e x). The
only difference in meaning is that the models of the transformed spec assign a value to
the newly introduced op f+.

Note that the first occurrence of x in the above example of a rec-let-binding is a
variable-pattern and the second-occurrence is in its scope; the third and last
occurrence of x, however, is outside the scope of the first x and identifies an op or
local-variable x introduced elsewhere. So, without change in meaning, the
rec-let-binding can be changed to:

let def f xena = xena + e in f (f x)

2.6.4. If-expressions

if-expression ::= if expression then expression else expression

Sample if-expression:

56

Chapter 2. Metaslang

if x <= y then x else y

The value of an if-expression if B then T else F is the same as that of the
case-expression case B of true -> (T) | false -> (F).

2.6.5. Quantifications

quantification ::= quantifier (local-variable-list) expression

quantifier ::= fa | ex | ex1

local-variable-list ::= annotable-variable { , annotable-variable }*

annotable-variable ::= local-variable [type-annotation]

local-variable ::= simple-name

Sample quantifications:

fa(x) norm (norm x) = norm x
ex(e : M) fa(x : M) x <*> e = x & e <*> x = x

Restriction. Each local-variable of the local-variable-list must be a different
simple-name.

Quantifications are non-constructive, even when the domain type is finitely
enumerable. The main uses are in type-restrictions and type-comprehensions, and
claims. The type of a quantification is Boolean. There are three kinds of quantifiers:
fa, for “universal quantifications” (fa = for all); ex, for “existential quantifications” (ex
= there exists); and ex1, for “uniquely existential quantifications” (ex1 = there exists
one).

The value of a quantification fa (V) E, in which V is a local-variable-list and E is an
expression, is determined as follows. Let M be the match (V) -> E. If M has return
value true for each value x in its domain, the value of the quantification is true;
otherwise it is false.

The value of a quantification ex (V) E in which V is a local-variable-list and E is an
expression, is determined as follows. Let M be the match (V) -> E. If M has return
value true for at least one value x in its domain, the value of the quantification is
true; otherwise it is false.

57

Chapter 2. Metaslang

The value of a quantification ex1 (V) E in which V is a local-variable-list and E is
an expression, is determined as follows. Let M be the match (V) -> E. If M has
return value true for precisely one value x in its domain, the value of the
quantification is true; otherwise it is false.

Note that a quantifier must be followed by an opening parenthesis (. So fa x (x = x),
for example, is ungrammatical.

2.6.6. Unique-solutions

unique-solution ::= the (local-variable-list) expression

Sample unique-solution:

the(x : S) f(x) = y

Restriction, Each local-variable of the local-variable-list must be a different
simple-name.

Restriction. The type of the expression must be Boolean.

Restriction. A unique-solution the (V) E may only be used in a context where the
value of ex1 (V) E is true.

Unique-solutions are non-constructive, even when the domain type is finitely
enumerable. The type of a unique-solution is the type of its local-variable-list.

The value of a unique-solution the (V) E, in which V is a local-variable-list and E
is an expression, is determined as follows. Let M be the match (V) -> E. The value
of the unique-solution is then the unique value x in the domain of M such that the
match (V) -> E has return value true for x.

2.6.7. Annotated-expressions

annotated-expression ::= tight-expression type-annotation

Restriction. In an annotated-expression E : T, the expression E must have type T.

Sample annotated-expression:

[] : List Arg
Positive : Sign

58

Chapter 2. Metaslang

The value of an annotated-expression E : T is the value of E.

The type of some expressions is polymorphic. For example, for any type T, []
denotes the empty list of type List T. Likewise, constructors of parameterized sum
types can be polymorphic, as the constructor None of

type Option a = | Some a | None

Further, overloaded constructors have an ambiguous type. By annotating such
polymorphic or type-ambiguous expressions with a type-descriptor, their type can be
disambiguated, which is required unless an unambiguous type can already be inferred
from the context. Annotation, even when redundant, can further help to increase clarity.

2.6.8. Applications

application ::= prefix-application | infix-application

prefix-application ::= application-head actual-parameter

application-head ::=
closed-expression

| inbuilt-prefix-op
| prefix-application

actual-parameter ::= closed-expression

infix-application ::= operand infix-operator operand

operand ::= tight-expression

infix-operator ::= op-name | inbuilt-infix-op

Sample applications:

f (x, x)
f x (g y)
x + 1

Restriction. An infix-operator, whether qualified or unqualified, can not be used
without more as an actual-parameter or operand (and in the case of an inbuilt-op, it
can not be used without more as any other kind of expression either). To use an
infix-operator in such cases, it must be enclosed in parentheses, as for example in the

59

Chapter 2. Metaslang

prefix-applications foldl (+) 0 and foldl (*) 1 or the infix-application (<) o

ival. Note the space between “(” and “*”, since without space “(*” signals the start
of a comment.

Restriction. An op-name can be used as an infix-operator only if it has been declared
as such in an op-declaration (see under Op-declarations).

Disambiguation. An infix-application P M Q N R, in which P, Q and R are
operands and M and N are infix-operators, is interpreted as either (P M Q) N R or
P M (Q N R). The choice is made as follows. If M has higher priority than N , or the
priorities are the same but M is left-associative, the interpretation is (P M Q) N R. In
all other cases the interpretation is P M (Q N R). For example, given

op @ infixl 10: Nat * Nat -> Nat
op $ infixr 20: Nat * Nat -> Nat

the following interpretations hold:

1 $ 2 @ 3 = (1 $ 2) @ 3
1 @ 2 @ 3 = (1 @ 2) @ 3
1 @ 2 $ 3 = 1 @ (2 $ 3)
1 $ 2 $ 3 = 1 $ (2 $ 3)

Note that no type information is used in the disambiguation. If (1 @ 2) $ 3 is
type-correct but 1 @ (2 $ 3) is not, the expression 1 @ 2 $ 3 is type-incorrect, since its
interpretation is.

For the application of this disambiguation rule, the inbuilt-ops have fixity as suggested
by the following pseudo-op-declarations:

op <=> infixr 12 : Boolean * Boolean -> Boolean
op => infixr 13 : Boolean * Boolean -> Boolean
op || infixr 14 : Boolean * Boolean -> Boolean
op && infixr 15 : Boolean * Boolean -> Boolean
op = infixr 20 : [a] a * a -> Boolean
op ~= infixr 20 : [a] a * a -> Boolean
op << infixl 25 : {x:A, ... , y:B, ...} * {x:A, ... , z:C, ...}

-> {x:A, ... , y:B, ... , z:C, ...}

Restriction. In an application H P, in which H is an application-head and P an
actual-parameter, the type of (H) must be some function type S -> T, and then P
must have the domain type S. The type of the whole application is then T. In
particular, in an application ~P the type of both P and the application is Boolean.

60

Chapter 2. Metaslang

The meaning of prefix-application ~P is the same as that of the if-expression if

P then false else true.

The value of prefix-application H P, in which application-head H is a
closed-expression or another prefix-application, is the value returned by function
(H) for the argument value P.

The meaning of infix-application P N Q, in which P and Q are operands and N is an
op-name, is the same as that of the prefix-application N(P, Q).

The meaning of infix-application P => Q, in which P and Q are operands, is the same
as that of the if-expression if P then Q else true.

The meaning of infix-application P || Q, in which P and Q are operands, is the same
as that of the if-expression if P then true else Q.

The meaning of infix-application P && Q, in which P and Q are operands, is the same
as that of the if-expression if P then Q else false.

The value of infix-application P = Q, in which P and Q are operands, is true if P and
Q have the same value, and false otherwise. P and Q must have the same type, or else
have types that are subtypes of the same supertype. In the latter case, the comparison is
the same as for the values of the operands coerced to the supertype, so, for example,
the value of (1:Nat)=(1:PosNat) is true.

The meaning of infix-application P ~= Q, in which P and Q are operands, is the same
as that of the prefix-application ~(P = Q).

An infix-application P << Q is also called a “record update”. In a record update P <<

Q, in which P and Q are operands, P and Q must have record types, referred to as S
and T, respectively. Moreover, for each field-name F these types S and T have in
common, the field types for F in S and T must be the same, or be subtypes of the same
supertype. The type of P << Q is then the record type R whose field-names are formed
by the union of the field-names of S and T, where for each field-name F in that
union, the type of field F in R is that of field F in T if F is a field of T, and otherwise
the type of field F in S. Likewise, the value of P << Q is the record value of type R
whose field value of each field F is that of field F in Q if F is a field of T, and otherwise
the field value of field F in P. So, for example, the value of {a=1, b=#z} << {a=2,
c=true} is {a=2, b=#z, c=true}: fields of the right-hand side operand take
precedence over the left-hand side when present in both.

61

Chapter 2. Metaslang

2.6.9. Op-names

op-name ::= name

Sample op-names:

length
>=
DB_LOOKUP.Lookup

Restriction. An op-name may only be used if there is an op-declaration and/or
op-definition for it in the current spec or in some spec that is imported (directly or
indirectly) in the current spec. If there is a unique qualified-name for a given
unqualified ending that is type-correct in the context, the qualification may be omitted
for an op-name used as an expression. So overloaded ops may only be used as such
when their type can be disambiguated in the context.

The value of an op-name is the value assigned to it in the model. (In this case, the
context can not have superseded the original assignment.)

2.6.10. Literals

literal ::=
boolean-literal

| nat-literal
| char-literal
| string-literal

Sample literals:

true
3260
#z
"On/Off switch"

Restriction: No whitespace is allowed anywhere inside any kind of literal, except for
“significant” whitespace in string-literals, as explained there.

Literals provide denotations for the inhabitants of the inbuilt and “base-library” types
Boolean, Nat, Char and String. The value of a literal is independent of the
environment.

62

Chapter 2. Metaslang

(There are no literals for the base-library type Integer. For nonnegative integers, a
nat-literal can be used. For negative integers, apply the unary base-library op -, which
negates an integer: -1 denote the negative integer -1.)

2.6.10.1. Boolean-literals

boolean-literal ::= true | false

Sample boolean-literals:

true
false

The type Boolean has precisely two inhabitants, the values of true and false.

Note that true and false are not constructors. So embed true is ungrammatical.

2.6.10.2. Nat-literals

nat-literal ::=
decimal-digit { decimal-digit }*

| 0 X hexadecimal-digit { hexadecimal-digit }*
| 0 x hexadecimal-digit { hexadecimal-digit }*
| 0 O octal-digit { octal-digit }*
| 0 o octal-digit { octal-digit }*
| 0 B binary-digit { binary-digit }*
| 0 b binary-digit { binary-digit }*

hexadecimal-digit ::=
decimal-digit

| a | b | c | d | e | f
| A | B | C | D | E | F

octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

binary-digit ::= 0 | 1

Sample nat-literals:

63

Chapter 2. Metaslang

3260
007
0Xdeadbeef
0O777
0b111001111

The type-descriptor Nat is, by definition, the subtype of Integer restricted to the
nonnegative integers 0, 1, 2, ... , which we identify with the natural numbers. The value
of a nat-literal composed entirely of decimal-digits is the natural number of which it
is a decimal representation; for example, the nat-literal 3260 denotes the natural
number 3260. If the nat-literal starts with 0X or 0x, its value is the natural number of
which the following sequence of hexadecimal-digits is a hexadecimal representation.
For example, 0x17B denotes the value 1×162+7×16+11 = 379. Likewise, 0O or 0o (a
digit 0 followed by an uppercase letter O or a lower case letter o) introduces an octal
representation, and 0B or 0b a binary representation. Leading digits 0 have no
significance: both 007 and 7 denote the number 7.

Note that hexadecimal, octal, and binary literals are converted to an internal
representation that does not retain their base. For example, given

Ned = spec
op N : Nat = 0x17B

endspec

the Specware Shell command show Ned will print as

spec
op N : Nat = 379

endspec

2.6.10.3. Char-literals

char-literal ::= #char-literal-glyph

char-literal-glyph ::= char-glyph | "

char-glyph ::=
letter

| decimal-digit
| other-char-glyph

64

Chapter 2. Metaslang

other-char-glyph ::=
! | : | @ | # | $ | % | ^ | & | * | (|) | _ | - | + | =

| | | ~ | ‘ | . | , | < | > | ? | / | ; | ’ | [|] | { | }
| \\ | \"
| \a | \b | \t | \n | \v | \f | \r | \s
| \x hexadecimal-digit hexadecimal-digit

Sample char-literals:

#z
#\x7a

The type Char is inhabited by the 256 8-bit characters occupying decimal positions 0
through 255 (hexadecimal positions 00 through FF) in the ISO 8859-1 code table. The
first 128 characters of that code table are the traditional ASCII characters (ISO 646).
(Depending on the operating environment, in particular the second set of 128 characters
-- those with “the high bit set” -- may print or otherwise be visually presented
differently than intended by the ISO 8859-1 code.) The value of a char-literal is a
character of type Char.

The value of a char-literal #G, where G is a char-glyph, is the character denoted by G.
For example, #z is the character that prints as z. The two-mark char-literal #" provides
a variant notation of the three-mark char-literal #\" and yields the character "
(decimal position 34).

Each one-mark char-glyph C denotes the character that “prints” as C. The two-mark
char-glyph \\ denotes the character \ (decimal position 92), and the two-mark
char-glyph \" denotes the character " (decimal position 34).

Notations are provided for denoting eight “non-printing” characters, which, with the
exception of the first, are meant to regulate lay-out in printing; the actual effect may
depend on the operating environment:

glyph decimal name

\a 7 bell
\b 8 backspace
\t 9 horizontal tab
\n 10 newline
\v 11 vertical tab

65

Chapter 2. Metaslang

\f 12 form feed
\r 13 return
\s 32 space

Finally, every character can be obtained using the hexadecimal representation of its
position. The four-mark char-glyph \xH

1
H

0
denotes the character with hexadecimal

position H
1
H

0
, which is decimal position 16 times the decimal value of

hexadecimal-digit H
1

plus the decimal value of hexadecimal-digit H
0
, where the

decimal value of the digits 0 through 9 is conventional, while the six extra digits A
through F correspond to 10 through 15. The case (lower or upper) of the six extra digits
is not significant. For example, \x7A or equivalently \x7a has decimal position 16
times 7 plus 10 = 122, and either version denotes the character z. The “null” character
can be obtained by using \x00.

2.6.10.4. String-literals

string-literal ::= " string-body "

string-body ::= { string-literal-glyph }*

string-literal-glyph ::= char-glyph | significant-whitespace

significant-whitespace ::= space | tab | newline

The presentation of a significant-whitespace is the whitespace suggested by the
name (space, tab or newline).

Sample string-literals:

""
"see page"
"see\spage"
"the symbol ’ is a single quote"
"the symbol \" is a double quote"

The type String is inhabited by the strings, which are (possibly empty) sequences of
characters. The type String is primitive; it is a different type than the isomorphic type
List Char, and the list operations can not be directly applied to strings.

The value of a string-literal is the sequence of characters denoted by the
string-literal-glyphs comprising its string-body, where the value of a

66

Chapter 2. Metaslang

significant-whitespace is the whitespace character suggested by the name (space,
horizontal tab or newline). For example, the string-literal "seepage" is different from
"see page"; the latter denotes an eight-character string of which the fourth character
is a space. The space can be made explicit by using the char-glyph \s.

When a double-quote character " is needed in a string, it must be escaped, as in
"[6’2\"]", which would print like this: [6’2"].

2.6.11. Field-selections

field-selection ::= closed-expression . field-selector

field-selector ::= nat-literal | field-name

Disambiguation. A closed-expression of the form M.N , in which M and N are
simple-names, is interpreted as an op if M.N occurs as the op-name of an
op-declaration or op-definition in the spec in which it occurs or in the set of
simple-names imported from another spec through an import-declaration.
Otherwise, M.N is interpreted as a field-selection. (The effect of a field-selection can
always be obtained with a projector.)

Sample field-selections:

triple.2
z.re

A field-selection E.F is a convenient notation for the equivalent expression
(project F E). (See under Projectors.)

2.6.12. Tuple-displays

tuple-display ::= (tuple-display-body)

tuple-display-body ::= [expression , expression { , expression }*]

Sample tuple-display:

("George", Poodle : Dog, 10)

67

Chapter 2. Metaslang

Note that a tuple-display-body contains either no expressions, or else at least two.

The value of a tuple-display whose tuple-display-body is not empty, is the tuple
whose components are the respective values of the expressions of the
tuple-display-body, taken in textual order. The type of that tuple is the “product” of
the corresponding types of the components. The value of () is the empty tuple, which
is the sole inhabitant of the unit type (). (The fact that the notation () does double
duty, for a type-descriptor and as an expression, creates no ambiguity. Note also that
-- unlike the empty list-display [] -- the expression () is monomorphic, so there is
no need to ever annotate it with a type-descriptor.)

2.6.13. Record-displays

record-display ::= { record-display-body }

record-display-body ::= [field-filler { , field-filler }*]

field-filler ::= field-name equals expression

Sample record-display:

{name = "George", kind = Poodle : Dog, age = 10}

The value of a record-display is the record whose components are the respective
values of the expressions of the record-display-body, taken in the lexicographic
order of the field-names, as discussed under Type-records. The type of that record is
the record type with the same set of field-names, where the type for each field-name
F is the type of the corresponding type of the component selected by F in the record.
The value of {} is the empty tuple, which is the sole inhabitant of the unit type (). (For
expressions as well as for type-descriptors, the notations {} and () are fully
interchangeable.)

2.6.14. Sequential-expressions

sequential-expression ::= (open-sequential-expression)

open-sequential-expression ::= void-expression ; sequential-tail

void-expression ::= expression

68

Chapter 2. Metaslang

sequential-tail ::= expression | open-sequential-expression

Sample sequential-expression:

(writeLine "key not found"; embed Missing)

A sequential-expression (V; T) is equivalent to the let-expression let _ = V in

(T). So the value of a sequential-expression (V
1
; ... ; V

n
; E) is the value of its last

constituent expression E.

Sequential-expressions can be used to achieve non-functional “side effects”,
effectuated by the elaboration of the void-expressions, in particular the output of a
message. This is useful for tracing the execution of generated code. The equivalent
effect of the example above can be achieved by a let-binding:

let _ = writeLine "key not found" in
embed Missing

(If the intent is to temporarily add, and later remove or disable the tracing output, this is
probably a more convenient style, as the modifications needed concern a single full text
line.) Any values resulting from elaborating the void-expressions are discarded.

2.6.15. List-displays

list-display ::= [list-display-body]

list-display-body ::= [expression { , expression }*]

Sample list-display:

["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]

Restriction. All expressions of the list-display-body must have the same type.

Note that a list-display [] with empty list-display-body is polymorphic, and may need
to be type-disambiguated, for example with a type-annotation. In a case like [[],
[1]], there is no need to disambiguate [], since the above restriction already implies
that [] here has the same type as [1], which has type List Nat.

The parameterized type List, although a base-library type, is actually not primitive,
but defined by:

69

Chapter 2. Metaslang

type List a =
| Nil
| Cons a * List a

The empty list-display [] denotes the same list as the expression Nil, a singleton
list-display [E] denotes the same list as the expression Cons (E, Nil), and a
multi-element list-display [E

1
, E

2
, ... , E

n
] denotes the same list as the expression

Cons (E
1
, [E

2
, ... , E

n
]).

2.6.16. Monadic-expressions

monadic-expression ::= { open-monadic-expression }

open-monadic-expression ::= monadic-statement ; monadic-tail

monadic-statement ::= expression | monadic-binding

monadic-binding ::= pattern <- expression

monadic-tail ::= expression | open-monadic-expression

Sample monadic-expression:

{x <- a; y <- b; f(x, y)}

Restriction. Monadic-expressions can only be used in a context containing the
following spec, or a refinement thereof, possibly qualified, as a sub-spec (see under
Substitutions):

spec
type Monad a

op monadBind : [a,b] (Monad a) * (a -> Monad b) -> Monad b
op monadSeq : [a,b] (Monad a) * (Monad b) -> Monad b
op return : [a] a -> Monad a

axiom left_unit is
[a,b] fa (f : a -> Monad b, x : a)
monadBind (return x, f) = f x

axiom right_unit is
[a] fa (m : Monad a)

70

Chapter 2. Metaslang

monadBind (m, return) = m

axiom associativity is
[a,b,c] fa (m : Monad a, f : a -> Monad b, h : b->Monad c)
monadBind (m, (fn x -> monadBind (f x, h))) =
monadBind (monadBind (m, f), h)

axiom non_binding_sequence is
[a] fa (f : Monad a, g : Monad a)
monadSeq (f, g) = monadBind (f, fn _ -> g)

endspec

(This spec can be found, qualified with Monad, in the library spec
/Library/General/Monad.) A monadic-expression may further only be used
when the non-monadic expression it is equivalent to (see below) is itself a valid
expression.

A monadic-expression {M} is equivalent to the open-monadic-expression M .

A monadic-tail E, where E is an expression, is equivalent to the expression E.

A monadic-tail M , where M is an open-monadic-expression, is equivalent to the
open-monadic-expression M .

An open-monadic-expression E; T, where E is an expression, is equivalent to the
application monadSeq (E, T’), where T’ is an expression that is equivalent to the
monadic-tail T.

An open-monadic-expression P <- E; T is equivalent to the application
monadBind (E, fn P -> T’), where T’ is an expression that is equivalent to the
monadic-tail T.

2.6.17. Structors

structor ::=
projector

| quotienter
| chooser
| embedder
| embedding-test

71

Chapter 2. Metaslang

The structors are a medley of constructs, all having polymorphic or type-ambiguous
function types and denoting special functions that go between structurally related types,
such as the constructors of sum types and the destructors of product types.

Restriction. Like all polymorphic or type-ambiguous constructs, a structor can only be
used in a context where its type can be inferred uniquely. This restriction will not be
repeated for the various kinds of structors described in the following subsections.

For example, the following well-formed spec becomes ill formed when any of the
type-annotations is omitted:

spec
def [a] p2 = project 2 : String * a -> a
def q2 = project 2 : String * Nat -> Nat

endspec

2.6.17.1. Projectors

projector ::= project field-selector

Sample projectors:

project 2
project re

When the field-selector is some nat-literal with value i, it is required that i be at least
1. The type of the projector is a function type (whose domain type is a product type) of
the form T

1 * T2 * ... * Tn -> Ti, where n is at least i, and the value of the projector is
the function that maps each n-tuple (v

1
, v

2
, ... , v

n
) inhabiting the domain type to its

ith component v
i
.

When the field-selector is some field-name F, the type of the projector is a function
type (whose domain type is a record type) of the form {F

1
: T

1
, F

2
: T

2
, ... , F

n
: T

n
}

-> T
i
, where F is the same field-name as F

i
for some natural number i in the range 1

through n. Assuming that the fields are lexicographically ordered by field-name (see
under Type-records), the value of the projector is the function that maps each n-tuple
(v

1
, v

2
, ... , v

n
) inhabiting the domain type to its ith component v

i
.

72

Chapter 2. Metaslang

2.6.17.2. Quotienters

quotienter ::= quotient [type-name]

Sample quotienter:

quotient[Q]

Restriction. In a quotienter quotient[Q], Q must be defined as a quotient type.

The type of quotienter quotient[Q], where Q is defined by type Q = T / q , is the
function type T -> Q, that is, it goes from the base type to the quotient type. The value
of the quotienter is the function that maps each inhabitant of type T to the
q-equivalence class inhabiting Q of which it is a member.

For example, given

op congMod3 : Nat * Nat -> Boolean =
(fn (m, n) -> m rem 3 = n rem 3)

op type Z3 = Nat / congMod3

we have the typing

quotient[Z3] : Nat -> Z3

and the function maps, for example, the number 5 to the equivalence class {2, 5, 8, ...},
which is one of the three inhabitants of Z3.

2.6.17.3. Choosers

chooser ::= choose [type-name]

Sample chooser:

choose[Q]

Restriction. In a chooser choose[Q], Q must be defined as a quotient type.

The type of chooser choose[Q], where Q = T / q , is a function type of the form
F -> (Q -> R), where F is the subtype of T -> R consisting of the q-constant
(explained below) functions. Expressed more formally, F is the type {f : T -> R |

fa((x,y) : T * T) q(x,y) => f x = f y}, where the simple-names f, x and y must

73

Chapter 2. Metaslang

be replaced by “fresh” simple-names not clashing with simple-names already in use
in T, R or q .

The value of the chooser is the function mapping each q-constant (explained below)
function f inhabiting type T -> R to the function of type Q -> R that maps each
inhabitant C of Q to f x, where x is any member of C. Expressed symbolically, using a
pseudo-function any that arbitrarily picks any member from a nonempty set, this is the
function

fn f -> fn C -> f (any C)

The requirement of q-constancy on f is precisely what is needed to make this function
insensitive to the choice made by any.

Function f is q-constant if, for each q-equivalence class C inhabiting Q, f x equals f
y for any two values x and y that are members of C, or f is undefined on all members
of C. (Since the result of f is constant across each equivalence class, it does not matter
which of its elements is selected by any.) For example -- continuing the example of the
previous section -- function fn n -> n*n rem 3 is congMod3-constant; for the
equivalence class {2, 5, 8, ...}, for example, it maps each member to the same value 1.
So choose[Z3] (fn n -> n*n rem 3) maps the inhabitant {2, 5, 8, ...} of type Z3 to
the natural number 1.

The meaning of choose[Q] (fn x -> E) A is the same as that of the let-expression
let quotient[Q] x = A in E. Indeed, often a quotient-pattern offers a more
convenient way of expressing the intention of a chooser. Note, however, the remarks
on the proof obligations for quotient-patterns.

2.6.17.4. Embedders

embedder ::= [embed] constructor

Sample embedders:

Nil
embed Nil
Cons
embed Cons

Disambiguation. If an expression consists of a single simple-name, which, in the
context, is both the simple-name of a constructor and the simple-name of an op or a

74

Chapter 2. Metaslang

local-variable in scope, then it is interpreted as the latter of the various possibilities.
For example, in the context of

type Answer = | yes | no

op yes : Answer = no

op which (a : Answer) : String = case a of
| yes -> "Yes!"
| no -> "Oh, no!"

the value of which yes is "Oh, no!", since yes here is disambiguated as identifying
the op yes, which has value no. The interpretation as embedder is forced by using the
embed keyword: the value of which embed yes is "Yes!". By using simple-names
that begin with a capital letter for constructors, and simple-names that do not begin
with a capital letter for ops and local-variables, the risk of an accidental wrong
interpretation can be avoided.

The semantics of embedders is described in the section on Type-sums. The presence
or absence of the keyword embed is not significant for the meaning of the construct
(although it may be required for grammatical disambiguation, as described above).

2.6.17.5. Embedding-tests

embedding-test ::= embed? constructor

Sample embedding-test:

embed? Cons

Restriction. The type of an embedding-test embed? C must be of the form T ->

Boolean, where T is a sum type that has a constructor C.

The value of embedding-test embed? C is the predicate that returns true if the
argument value -- which, as inhabitant of a sum type, is tagged -- has tag C, and
otherwise false. The embedding-test can be equivalently rewritten as

fn
| C _ -> true
| _ -> false

where the wildcard _ in the first branch is omitted when C is parameter-less.

75

Chapter 2. Metaslang

In plain words, embed? C tests whether its sum-typed argument has been constructed
with the constructor C. It is an error when C is not a constructor of the sum type.

2.7. Matches and Patterns

2.7.1. Matches

match ::= [|] branch { | branch }*

branch ::= pattern [guard] -> expression

guard ::= | expression

Sample matches:

{re = x, im = y} -> {re = x, im = -y}

Empty -> true
| Push {top = _, pop = rest} -> hasBottom? rest

| Empty -> true
| Push {top = _, pop = rest} -> hasBottom? rest

| Line(z0, z1) | z0 ~= z1 -> dist(z0, z1)

Restriction. In a match, given the environment, there must be a unique type S to which
the pattern of each branch conforms, and a unique type T to which the expression of
each branch conforms, and then the match has type S -> T. The pattern of each
branch then has type S.

Restriction. The type of the expression of a guard must be Boolean

Disambiguation. If a branch could belong to several open matches, it is interpreted as
being a branch of the textually most recently introduced match. For example,

case x of
| A -> a
| B -> case y of

| C -> c

76

Chapter 2. Metaslang

| D -> d

is not interpreted as suggested by the indentation, but as

case x of
| A -> a
| B -> (case y of

| C -> c
| D -> d)

If the other interpretation is intended, the expression introducing the inner match
needs to be parenthesized:

case x of
| A -> a
| B -> (case y of

| C -> c)
| D -> d

Acceptance and return value y , if any, of a value x for a given match are determined
as follows. If each branch of the match rejects x (see below), the whole match rejects
x, and does not return a value. Otherwise, let B stand for the textually first branch
accepting x. Then y is the return value of x for B.

The meaning of a “guardless” branch P -> R, where P is a pattern and R an
expression, is the same as that of the branch P | true -> R with a guard that always
succeeds.

Acceptance and return value y , if any, of a value x for a branch P | G -> R in an
environment C are determined as follows. If pattern P rejects x, the branch rejects x,
and does not return a value. (For acceptance by a pattern, see under Patterns.)
Otherwise, let C’ be environment C extended with the acceptance binding of pattern P
for x. If pattern P accepts x, but the value of expression G in the environment C’ is
false, the branch also rejects x, and does not return a value. Otherwise, when the
pattern accepts x and the guard succeeds, the branch accepts x and the return value
y is the value of expression R in the environment C’.

For example, in

case z of
| (x, true) -> Some x
| (_, false) -> None

77

Chapter 2. Metaslang

if z has value (3, true), the first branch accepts this value with acceptance binding x

= 3. The value of Some x in the extended environment is then Some 3. If z has value
(3, false), the second branch accepts this value with empty acceptance binding
(empty since there are no “accepting” local-variables in pattern (_, false)), and
the return value is None (interpreted in the original environment).

Here is a way of achieving the same result using a guard:

case z of
| (x, b) | b -> Some x
| _ -> None

2.7.2. Patterns

pattern ::=
annotated-pattern

| tight-pattern

tight-pattern ::=
aliased-pattern

| cons-pattern
| embed-pattern
| quotient-pattern
| closed-pattern

closed-pattern ::=
variable-pattern

| wildcard-pattern
| literal-pattern
| list-pattern
| tuple-pattern
| record-pattern
| (pattern)

(As for expressions, the distinctions tight- and closed- for patterns have no semantic
significance, but merely serve to avoid grammatical ambiguities.)

annotated-pattern ::= pattern type-annotation

aliased-pattern ::= variable-pattern as tight-pattern

78

Chapter 2. Metaslang

cons-pattern ::= closed-pattern :: tight-pattern

embed-pattern ::= constructor [closed-pattern]

quotient-pattern ::= quotient [type-name]

variable-pattern ::= local-variable

wildcard-pattern ::= _

literal-pattern ::= literal

list-pattern ::= [list-pattern-body]

list-pattern-body ::= [pattern { , pattern }*]

tuple-pattern ::= (tuple-pattern-body)

tuple-pattern-body ::= [pattern , pattern { , pattern }*]

record-pattern ::= { record-pattern-body }

record-pattern-body ::= [field-patterner { , field-patterner }*]

field-patterner ::= field-name [equals pattern]

Sample patterns:

(i, p) : Integer * Boolean
z as {re = x, im = y}
hd :: tail
Push {top, pop = rest}
embed Empty
x
_
#z
[0, x]
(c1 as (0, _), x)
{top, pop = rest}

Restriction. Like all polymorphic or type-ambiguous constructs, a pattern may only be
used in a context where its type can be uniquely inferred.

79

Chapter 2. Metaslang

Disambiguation. A single simple-name used as a pattern is an embed-pattern if it is
a constructor of the type of the pattern. Otherwise, the simple-name is a
variable-pattern.

Restriction. Each local-variable in a pattern must be a different simple-name,
disregarding any local-variables introduced in expressions or type-descriptors
contained in the pattern. (For example, Line (z, z) is not a lawful pattern, since z is
repeated; but n : {n : Nat | n < p} is lawful: the second n is “shielded” by the
type-comprehension in which it occurs.)

To define acceptance and acceptance binding (if any) for a value and a pattern, we
introduce a number of auxiliary definitions.

The accepting local-variables of a pattern P are the collection of local-variables
occurring in P, disregarding any local-variables introduced in expressions or
type-descriptors contained in the P. For example, in pattern u : {v : S | p v}, u is
an accepting local-variable, but v is not. (The latter is an accepting local-variable of
pattern v : S, but not of the larger pattern.)

The expressive descendants of a pattern are a finite set of expressions having the
syntactic form of patterns, as determined in the following three steps (of which the
order of steps 1 and 2 is actually immaterial).

Step 1. From pattern P, form some tame variant P
t

by replacing each field-patterner
consisting of a single field-name F by the field-patterner F = F and replacing each
wildcard-pattern _ in P by a unique fresh simple-name, that is, any simple-name
that does not already occur in the spec, directly or indirectly through an import. For
example, assuming that the simple-name v7944 is fresh, a tame variant of

s0 as _ :: s1 as (Push {top, pop = rest}) :: ss

is

s0 as v7944 :: s1 as (Push {top = top, pop = rest}) :: ss

Step 2. Next, from P
t
, form a (tamed) construed version P

tc
by replacing each

constituent cons-pattern H :: T by the embed-pattern Cons (H, T), where Cons
denotes the constructor of the parameterized type List. For the example, the
construed version is:

s0 as Cons (v7944,
s1 as Cons (Push {top = top, pop = rest}, ss))

80

Chapter 2. Metaslang

Step 3. Finally, from P
tc

, form the set ED
P

of expressive descendants of P, where
expression E is an expressive descendant if E can be obtained by repeatedly replacing
some constituent aliased-pattern L as R of P

tc
by one of the two patterns L and R

until no aliased-patterns remain, and then interpreting the result as an expression.
For the example, the expressive descendants are the three expressions:

s0
Cons (v7944, s1)
Cons (v7944, Cons (Push {top = top, pop = rest}, ss))

An accepting binding of a pattern P for a value x in an environment C is some binding
B of typed values to the accepting local-variables of the tame variant P

t
, such that the

value of each expressive descendant E in ED
P

in the environment C extended with
binding B, is the same typed value as x.

Acceptance and acceptance binding, if any, for a value x and a pattern P are then
determined as follows. If there is no accepting binding of P for x, x is rejected. If an
accepting binding exists, the value x is accepted by pattern P. There is a unique
binding B among the accepting bindings in which the type of each assigned value is as
“restricted” as possible in the subtype-supertype hierarchy without violating
well-typedness constraints (in other words, there are no avoidable implicit coercions).
The acceptance binding is then the binding B projected on the accepting
local-variables of P.

For the example, the accepting local-variables of P
t

are the six local-variables s0,
s1, ss, rest and v7944. In general, they are the accepting local-variables of the
original pattern together with any fresh simple-names used for taming. Let the value
x being matched against the pattern be

Cons (Empty, Cons (Push {top = 200, pop = Empty}, Nil))

Under the accepting binding

s0 = Cons (Empty, Cons (Push {top = 200, pop = Empty}, Nil))
s1 = Cons (Push {top = 200, pop = Empty}, Nil)
ss = Nil
top = 200
rest = Empty
v7944 = Empty

81

Chapter 2. Metaslang

the value of each E in ED
P

amounts to the value x. Therefore, x is accepted by the
original pattern, with acceptance binding

s0 = Cons (Empty, Cons (Push {top = 200, pop = Empty}, Nil))
s1 = Cons (Push {top = 200, pop = Empty}, Nil)
ss = Nil
top = 200
rest = Empty

obtained by “forgetting” the fresh simple-name v7944.

82

Appendix A. Metaslang Grammar
This appendix lists the grammar rules of the Metaslang specification language. These
rules are identical to those of the Chapter on Metaslang. They are brought together
here, without additional text, for easy reference.

The Grammar Description Formalism.

wiffle ::= waffle [waffle-tail] | piffle { + piffle }*

piffle ::= 1 | M { piffle }*

Models.

op ::= op-name

spec ::= spec-form

Symbols and Names.

symbol ::= simple-name | literal | special-symbol

simple-name ::= first-syllable { _ next-syllable }*

first-syllable ::= first-word-syllable | non-word-syllable

next-syllable ::= next-word-syllable | non-word-syllable

first-word-syllable ::= word-start-mark { word-continue-mark }*

next-word-syllable ::= word-continue-mark { word-continue-mark }*

word-start-mark ::= letter

word-continue-mark ::= letter | decimal-digit | ’ | ?

letter ::=
A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

decimal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

83

Appendix A. Metaslang Grammar

non-word-syllable ::= non-word-mark { non-word-mark }*

non-word-mark ::=
‘ | ~ | ! | @ | $ | ^ | & | * | -

| = | + | \ | | | : | < | > | / | ’ | ?

special-symbol ::= _ | (|) | [|] | { | } | ; | , | .

Comments.

comment ::= line-end-comment | block-comment

line-end-comment ::= % line-end-comment-body

line-end-comment-body ::=
any-text-up-to-end-of-line

block-comment ::= (* block-comment-body *)

block-comment-body ::=
any-text-including-newlines-and-nested-block-comments

Units.

unit-definition ::= unit-identifier = unit-term

unit-term ::=
spec-term

| morphism-term
| diagram-term
| target-code-term
| proof-term

specware-file-contents ::=
unit-term

| infile-unit-definition { infile-unit-definition }*

infile-unit-definition ::= fragment-identifier = unit-term

fragment-identifier ::= simple-name

Unit Identifiers.

84

Appendix A. Metaslang Grammar

unit-identifier ::= swpath-based-path | relative-path

swpath-based-path ::= / relative-path

relative-path ::= { path-element / }* path-element [# fragment-identifier]

path-element ::= path-mark { path-mark }*

path-mark ::=
letter | decimal-digit

| ! | $ | & | ’ | + | -
| = | @ | ^ | ‘ | ~ | .

Specs.

spec-term ::=
unit-identifier

| spec-form
| spec-qualification
| spec-translation
| spec-substitution
| diagram-colimit
| obligator

Spec Forms.

spec-form ::= spec { declaration }* endspec

Qualifications.

spec-qualification ::= qualifier qualifying spec-term

qualifier ::= simple-name

name ::= simple-name | qualified-name

qualified-name ::= qualifier . simple-name

Translations.

spec-translation ::= translate spec-term by name-map

name-map ::= { [name-map-item { , name-map-item }*] }

85

Appendix A. Metaslang Grammar

name-map-item ::=
type-name-map-item

| op-name-map-item
| wildcard-map-item

type-name-map-item ::= [type] name +-> name

op-name-map-item ::= [op] annotable-name +-> annotable-name

annotable-name ::= name [type-annotation]

type-annotation ::= : type-descriptor

wildcard-map-item ::= wildcard +-> wildcard

wildcard ::= simple-wildcard | qualified-wildcard

simple-wildcard ::= _

qualified-wildcard ::= qualifier . simple-wildcard

Substitutions.

spec-substitution ::= spec-term [morphism-term]

Diagram Colimits.

diagram-colimit ::= colimit diagram-term

Obligators.

obligator ::= obligations unit-term

Morphisms.

morphism-term ::=
unit-identifier

| spec-morphism

spec-morphism ::= morphism spec-term -> spec-term name-map

Diagrams.

86

Appendix A. Metaslang Grammar

diagram-term ::=
unit-identifier

| diagram-form

diagram-form ::= diagram { diagram-element { , diagram-element }* }

diagram-element ::=
diagram-node

| diagram-edge

diagram-node ::= simple-name +-> spec-term

diagram-edge ::= simple-name : simple-name -> simple-name +-> morphism-
term

Target Code Terms.

target-code-term ::=
generate target-language-name spec-term [generate-option]

generate-option ::=
in string-literal | with unit-identifier

target-language-name ::= c | java | lisp

Proof Terms.

proof-term ::=
prove claim-name in spec-term

[with prover-name]
[using claim-list]
[options prover-options]

prover-name ::= snark

claim-list ::= claim-name { , claim-name }*

prover-options ::= string-literal

Declarations.

declaration ::=
import-declaration

87

Appendix A. Metaslang Grammar

| type-declaration
| op-declaration
| claim-declaration
| definition

definition ::=
type-definition

| op-definition

equals ::= is | =

Import-declarations.

import-declaration ::= import spec-term { , spec-term }*

Type-declarations.

type-declaration ::=
type type-name [formal-type-parameters] [equals old-or-new-type-descriptor]

formal-type-parameters ::= local-type-variable | (local-type-variable-list)

local-type-variable ::= simple-name

local-type-variable-list ::= local-type-variable { , local-type-variable }*

old-or-new-type-descriptor ::= type-descriptor | new-type-descriptor

Type-definitions.

type-definition ::=
type-abbreviation

| new-type-definition

type-abbreviation ::=
def [type] type-name [formal-type-parameters] equals type-descriptor

new-type-definition ::=
def [type] type-name [formal-type-parameters] equals new-type-descriptor

Op-declarations.

op-declaration ::=

88

Appendix A. Metaslang Grammar

op [type-variable-binder] formal-expression [fixity] type-annotation
[equals expression]

| op formal-expression [fixity] polytype-annotation
[equals expression]

polytype-annotation ::= : type-variable-binder type-descriptor

type-variable-binder ::= [local-type-variable-list]

formal-expression ::= op-name | formal-application

formal-application ::= formal-application-head formal-parameter

formal-application-head ::= op-name | formal-application

formal-parameter ::= closed-pattern | (pattern | expression)

fixity ::= associativity priority

associativity ::= infixl | infixr

priority ::= nat-literal

Op-definitions.

op-definition ::=
def [op] [type-variable-binder] formal-expression [type-annotation]

equals expression
| def [op] formal-expression polytype-annotation

equals expression

Claim-declarations.

claim-declaration ::= claim-kind claim-name is claim [proof-script]

claim-kind ::= axiom | theorem | conjecture

claim-name ::= name

claim ::= [type-variable-binder] expression

Type-descriptors.

89

Appendix A. Metaslang Grammar

type-descriptor ::=
type-arrow

| slack-type-descriptor

new-type-descriptor ::=
type-sum

| type-quotient

slack-type-descriptor ::=
type-product

| tight-type-descriptor

tight-type-descriptor ::=
type-instantiation

| closed-type-descriptor

closed-type-descriptor ::=
type-name

| Boolean
| local-type-variable
| type-record
| type-restriction
| type-comprehension
| (type-descriptor)

Type-sums.

type-sum ::= type-summand { type-summand }*

type-summand ::= | constructor [slack-type-descriptor]

constructor ::= simple-name

Type-arrows.

type-arrow ::= arrow-source -> type-descriptor

arrow-source ::= type-sum | slack-type-descriptor

Type-products.

type-product ::= tight-type-descriptor * tight-type-descriptor { * tight-type-descriptor }*

90

Appendix A. Metaslang Grammar

Type-instantiations.

type-instantiation ::= type-name actual-type-parameters

actual-type-parameters ::= closed-type-descriptor | (proper-type-list)

proper-type-list ::= type-descriptor , type-descriptor { , type-descriptor }*

Type-names.

type-name ::= name

Type-records.

type-record ::= { [field-typer-list] } | ()

field-typer-list ::= field-typer { , field-typer }*

field-typer ::= field-name type-annotation

field-name ::= simple-name

Type-restrictions.

type-restriction ::= (slack-type-descriptor | expression)

Type-comprehensions.

type-comprehension ::= { annotated-pattern | expression }

Type-quotients.

type-quotient ::= closed-type-descriptor / closed-expression

Expressions.

expression ::=
lambda-form

| case-expression
| let-expression
| if-expression
| quantification
| unique-solution

91

Appendix A. Metaslang Grammar

| annotated-expression
| tight-expression

tight-expression ::=
application

| closed-expression

closed-expression ::=
op-name

| local-variable
| literal
| field-selection
| tuple-display
| record-display
| sequential-expression
| list-display
| monadic-expression
| structor
| (expression)
| (inbuilt-op)

inbuilt-op ::= inbuilt-prefix-op | inbuilt-infix-op

inbuilt-prefix-op ::= ~

inbuilt-infix-op ::= <=> | => | || | && | = | ~= | <<

Lambda-forms.

lambda-form ::= fn match

Case-expressions.

case-expression ::= case expression of match

Let-expressions.

let-expression ::= let let-bindings in expression

let-bindings ::= recless-let-binding | rec-let-binding-sequence

recless-let-binding ::= pattern equals expression

92

Appendix A. Metaslang Grammar

rec-let-binding-sequence ::= rec-let-binding { rec-let-binding }*

rec-let-binding ::=
def simple-name formal-parameter-sequence [type-annotation] equals expres-

sion

formal-parameter-sequence ::= formal-parameter { formal-parameter }*

If-expressions.

if-expression ::= if expression then expression else expression

Quantifications.

quantification ::= quantifier (local-variable-list) expression

quantifier ::= fa | ex | ex1

local-variable-list ::= annotable-variable { , annotable-variable }*

annotable-variable ::= local-variable [type-annotation]

local-variable ::= simple-name

Unique-solutions.

unique-solution ::= the (local-variable-list) expression

Annotated-expressions.

annotated-expression ::= tight-expression type-annotation

Applications.

application ::= prefix-application | infix-application

prefix-application ::= application-head actual-parameter

application-head ::=
closed-expression

| inbuilt-prefix-op
| prefix-application

93

Appendix A. Metaslang Grammar

actual-parameter ::= closed-expression

infix-application ::= operand infix-operator operand

operand ::= tight-expression

infix-operator ::= op-name | inbuilt-infix-op

Op-names.

op-name ::= name

Literals.

literal ::=
boolean-literal

| nat-literal
| char-literal
| string-literal

Boolean-literals.

boolean-literal ::= true | false

Nat-literals.

nat-literal ::=
decimal-digit { decimal-digit }*

| 0 X hexadecimal-digit { hexadecimal-digit }*
| 0 x hexadecimal-digit { hexadecimal-digit }*
| 0 O octal-digit { octal-digit }*
| 0 o octal-digit { octal-digit }*
| 0 B binary-digit { binary-digit }*
| 0 b binary-digit { binary-digit }*

hexadecimal-digit ::=
decimal-digit

| a | b | c | d | e | f
| A | B | C | D | E | F

octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

binary-digit ::= 0 | 1

94

Appendix A. Metaslang Grammar

Char-literals.

char-literal ::= #char-literal-glyph

char-literal-glyph ::= char-glyph | "

char-glyph ::=
letter

| decimal-digit
| other-char-glyph

other-char-glyph ::=
! | : | @ | # | $ | % | ^ | & | * | (|) | _ | - | + | =

| | | ~ | ‘ | . | , | < | > | ? | / | ; | ’ | [|] | { | }
| \\ | \"
| \a | \b | \t | \n | \v | \f | \r | \s
| \x hexadecimal-digit hexadecimal-digit

String-literals.

string-literal ::= " string-body "

string-body ::= { string-literal-glyph }*

string-literal-glyph ::= char-glyph | significant-whitespace

significant-whitespace ::= space | tab | newline

Field-selections.

field-selection ::= closed-expression . field-selector

field-selector ::= nat-literal | field-name

Tuple-displays.

tuple-display ::= (tuple-display-body)

tuple-display-body ::= [expression , expression { , expression }*]

Record-displays.

record-display ::= { record-display-body }

95

Appendix A. Metaslang Grammar

record-display-body ::= [field-filler { , field-filler }*]

field-filler ::= field-name equals expression

Sequential-expressions.

sequential-expression ::= (open-sequential-expression)

open-sequential-expression ::= void-expression ; sequential-tail

void-expression ::= expression

sequential-tail ::= expression | open-sequential-expression

List-displays.

list-display ::= [list-display-body]

list-display-body ::= [expression { , expression }*]

Monadic-expressions.

monadic-expression ::= { open-monadic-expression }

open-monadic-expression ::= monadic-statement ; monadic-tail

monadic-statement ::= expression | monadic-binding

monadic-binding ::= pattern <- expression

monadic-tail ::= expression | open-monadic-expression

Structors.

structor ::=
projector

| quotienter
| chooser
| embedder
| embedding-test

projector ::= project field-selector

96

Appendix A. Metaslang Grammar

quotienter ::= quotient [type-name]

chooser ::= choose [type-name]

embedder ::= [embed] constructor

embedding-test ::= embed? constructor

Matches.

match ::= [|] branch { | branch }*

branch ::= pattern [guard] -> expression

guard ::= | expression

Patterns.

pattern ::=
annotated-pattern

| tight-pattern

tight-pattern ::=
aliased-pattern

| cons-pattern
| embed-pattern
| quotient-pattern
| closed-pattern

closed-pattern ::=
variable-pattern

| wildcard-pattern
| literal-pattern
| list-pattern
| tuple-pattern
| record-pattern
| (pattern)

annotated-pattern ::= pattern type-annotation

aliased-pattern ::= variable-pattern as tight-pattern

cons-pattern ::= closed-pattern :: tight-pattern

97

Appendix A. Metaslang Grammar

embed-pattern ::= constructor [closed-pattern]

quotient-pattern ::= quotient [type-name]

variable-pattern ::= local-variable

wildcard-pattern ::= _

literal-pattern ::= literal

list-pattern ::= [list-pattern-body]

list-pattern-body ::= [pattern { , pattern }*]

tuple-pattern ::= (tuple-pattern-body)

tuple-pattern-body ::= [pattern , pattern { , pattern }*]

record-pattern ::= { record-pattern-body }

record-pattern-body ::= [field-patterner { , field-patterner }*]

field-patterner ::= field-name [equals pattern]

98

Appendix B. Inbuilts
This appendix provides a brief description of the “inbuilt” types and operators.

For the sake of brevity, infixl is abbreviated below to L and infixr to R.

Inbuilt Type

Boolean

Inbuilt Ops

Name Fix-
ity

Type Description

= R 20 [a] a * a -> Boolean tests if the parameters are
equal

~= R 20 [a] a * a -> Boolean tests if the parameters are
unequal

~ Boolean -> Boolean logical negation
&& R 15 Boolean * Boolean ->

Boolean

non-strict logical and

|| R 14 Boolean * Boolean ->

Boolean

non-strict logical or

=> R 13 Boolean * Boolean ->

Boolean

non-strict logical implication

<=> R 12 Boolean * Boolean ->

Boolean

logical equivalence

<< L 25 {x:A,...,y:B,...} *
{x:A,...,z:C,...} ->
{x:A,...,y:B,...,z:C,...}

see Section Applications
under record update

99

Appendix B. Inbuilts

100

	Specware 4.2 Language Manual
	Table of Contents
	Disclaimer
	Chapter 1. Introduction to Specware
	1.1. What is Specware?
	1.2. What is Specware for?
	1.3. The design process in Specware
	1.4. Stages of application building
	1.4.1. Building a specification
	1.4.2. Refining your specifications to constructive specifications

	1.5. Reasoning about your code
	1.5.1. Abstractness in Specware
	1.5.2. Logical inference in Specware

	Chapter 2. Metaslang
	2.1. Preliminaries
	2.1.1. The Grammar Description Formalism
	2.1.2. Models
	2.1.3. Typecorrectness
	2.1.4. Constructive

	2.2. Lexical conventions
	2.2.1. Symbols and Names
	2.2.2. XSymbol
	2.2.3. Comments

	2.3. Units
	2.3.1. Unit Identifiers
	2.3.2. Specs
	2.3.2.1. Spec Forms
	2.3.2.2. Qualifications
	2.3.2.3. Translations
	2.3.2.4. Substitutions
	2.3.2.5. Diagram Colimits
	2.3.2.6. Obligators

	2.3.3. Morphisms
	2.3.4. Diagrams
	2.3.5. Target Code Terms
	2.3.6. Proof Terms

	2.4. Declarations
	2.4.1. Importdeclarations
	2.4.2. Typedeclarations
	2.4.3. Typedefinitions
	2.4.4. Opdeclarations
	2.4.5. Opdefinitions
	2.4.6. Claimdeclarations

	2.5. Typedescriptors
	2.5.1. Typesums
	2.5.2. Typearrows
	2.5.3. Typeproducts
	2.5.4. Typeinstantiations
	2.5.5. Typenames
	2.5.6. Typerecords
	2.5.7. Typerestrictions
	2.5.8. Typecomprehensions
	2.5.9. Typequotients

	2.6. Expressions
	2.6.1. Lambdaforms
	2.6.2. Caseexpressions
	2.6.3. Letexpressions
	2.6.4. Ifexpressions
	2.6.5. Quantifications
	2.6.6. Uniquesolutions
	2.6.7. Annotatedexpressions
	2.6.8. Applications
	2.6.9. Opnames
	2.6.10. Literals
	2.6.10.1. Booleanliterals
	2.6.10.2. Natliterals
	2.6.10.3. Charliterals
	2.6.10.4. Stringliterals

	2.6.11. Fieldselections
	2.6.12. Tupledisplays
	2.6.13. Recorddisplays
	2.6.14. Sequentialexpressions
	2.6.15. Listdisplays
	2.6.16. Monadicexpressions
	2.6.17. Structors
	2.6.17.1. Projectors
	2.6.17.2. Quotienters
	2.6.17.3. Choosers
	2.6.17.4. Embedders
	2.6.17.5. Embeddingtests

	2.7. Matches and Patterns
	2.7.1. Matches
	2.7.2. Patterns

	Appendix A. Metaslang Grammar
	Appendix B. Inbuilts

