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Chapter 1:    Executive Summary 
This paper motivates and describes an emerging and enabling technology for 

systems development.  This technology solves several fundamental and unsolved 

challenges for software and systems development and maintenance.  We hope to develop 

a program aimed at a phased maturation of this technology.  This, in turn, is aimed 

towards eventual technology transfer of this technology into industrial software and 

systems development.. 



Chapter 2:    Challenges 
Government agencies, corporations, and businesses are increasingly automating 

their work processes by developing computer systems that assist people with their work.  

However, the current state of software engineering and software development technology 

presents three major challenges; software systems: 

 

1. Are expensive and time consuming to develop, 

2. Do not always perform what users want or need, 

3. Are difficult to maintain and adapt to changes in requirements. 

 

Systems development and maintenance needs to be made faster, cheaper, and better.  

These are the central challenges addressed by the research and technology development 

program laid out in this paper.  In this chapter, we will discuss these three challenges in 

reverse order. 

Section A:   Software Systems Adaptation 

Let us begin our exploration of these issues by first focusing on the challenge of 

maintaining and adapting software systems.  Companies such as Boeing are increasingly 

embedding corporate knowledge, engineering design rationale, and human expertise into 

software systems.  The following list demonstrates the pervasiveness of engineering 

software systems that have been developed at Boeing: 

 

 Numerical Analysis – math and statistics library, optimization software. 

 Preliminary Design – wing and airflow analysis, airplane configuration. 

 Systems Design – Tube Routing such as Genesys, Kirts, Super Router. 

 Structures Design – Various ICAD applications; e.g., wing box design. 

 Detailed Part Design – ICAD systems for design of shear ties, stringer clips, etc. 

 Materials Engineering – ESDS (engineering standards distribution system). 

 Tooling – NC Tooling, ICAD-based design of tools (e.g., lay-up mandrels). 

 Manufacturing – Factory scheduling, automated process planning. 

 Electrical – Electrical connectors selection, LRU equipment locator. 

 Avionics – Mission planning, flight control, navigation, sensor fusion. 

 Propulsion, System Communication, Human Factors… 

 And broadly, systems engineering and integration 

 

Many of these systems were designed for very specific contexts, or requirements.  

When requirements change, software systems must change accordingly.  Experience 

suggests this is often a costly and time-consuming process .  In addition to evolving 

requirements for specific tasks, we would like to leverage the knowledge embedded in 

these systems for other, related tasks (e.g., using knowledge about a manufacturing 

process in both a design and manufacturing context).  However, this goal has been hard 

to achieve as well.  The reasons for these problems are complex, but a large challenge 

arises from the attempt to reuse knowledge at the software level. 



Subsection i:    The Challenge of Software Reuse 

Software is the end artifact of a long and complicated process that goes from user 

requirements, through a process of design, to an implementation, which is built on top of 

some virtual machine ([ICSR2000]).  In this process, many constraints and assumptions 

(from both the requirements and the virtual machine) come into play, often in subtle 

ways, affecting design decisions and ultimately the software itself.  In looking at software 

components, or their specifications, it is often difficult to understand what constraints and 

assumptions led to their particular formulation.  Errors of understanding lead to errors in 

system implementation.  Even if the constraints and assumptions are understood, and fit 

current needs, they may not fit a future need.  If the original requirements and design 

rationale have not been made explicit, it is difficult to adapt the software to meet this 

future need. 

 A fundamental problem in this paradigm of reuse is that what we are trying to 

reuse is software – the end artifact of a long and complicated process.  Knowledge 

sharing and reuse cannot easily and uniformly occur at the software level alone.  Instead 

of simply striving for software reuse, we would like to record the intellectual effort that 

goes into software systems development and leverage that for other purposes.   

However, accomplishing this with current software development technology is 

difficult due to multiple representations for various software artifacts (e.g., different 

languages for requirements, architectures, designs, and programming), the inability to 

seamlessly, and effectively, interoperate between these representations, and the inability 

to easily trace and verify requirements through the design process to software. 

Subsection ii:    Knowledge Management 

Consider the following statistics from the United States Bureau of Labor Statistics 

(taken from http://stats.bls.gov/news.release/tenure.t06.htm): 

 
Median years of tenure with current employer for 

employed wage and salary workers by occupation 

                                                                                                    

1983 1987 1991 1996 1998 2000   

                                                                                                                    

Engineers........................... 6.3  6.1  6.7  6.6  5.3  4.8   

Mathematical and computer scientists 3.8  5.0  4.2  4.5  3.3  3.3   

 

Institutional memory is being lost in industry.  The knowledge of how computing systems 

are developed and why is increasingly being lost due to high labor turnover rates.  Yet 

this knowledge, if made more explicit, could be a key asset for an institution or 

corporation such as Boeing.  Hopefully this knowledge can be codified, structured, used, 

reused, and evolved, in an easy to use, but disciplined, manner.  This calls for a corporate 

knowledge management system. 

There are many criteria for determining whether and how knowledge should be 

stored and explicitly represented, including ([AnnieBrooking]): 

 

1. Longevity of knowledge 

2. Extent of knowledge growth and change 

3. Return on investment for codifying knowledge 

http://stats.bls.gov/news.release/tenure.t06.htm


4. Size of problem space of knowledge applicability 

5. Complexity of problem knowledge addresses 

 

Let us assume that it is worth codifying software development knowledge for some 

computing systems.  It is important to recognize that any knowledge management system 

exists in the context of a corporate culture, management philosophy, and management 

and business processes.  While technology can enable people to capture, share, and 

access knowledge more easily, it cannot make people contribute and share knowledge.   

Accompanying changes in corporate culture and management practices are needed (e.g., 

new incentive systems to encourage longer term planning).  While these issues are 

crucial, the focus of this paper is upon enabling technology.  

Section B:  User-Centered Computing 

Let us turn now to our second major challenge – building computing systems that 

accomplish what users want and need.  A report by the Standish group (see 

http://www.standishgroup.com/visitor/chaos.htm) describes why software development 

projects fail: 

 

 Successful Projects   

o Good User Involvement  

o Executive Management Support  

o Clear Statement of Requirements  

 Projects that either were Over Budget, or delivered Incomplete Functionality 

o Lack of User Input  

o Incomplete Requirements & Specifications  

o Changing Requirements & Specifications  

 Canceled Projects  

o Incomplete Requirements 

o Lack of User Involvement 

o Lack of Resources 

 

Clearly, a major challenge for software development is more effective involvement by 

end-users in the elicitation of system requirements. 

Methods for eliciting requirements from end-users can range from interviews, to 

questionnaires, to task analysis (ideally by human factors engineers) within the context of 

actual work scenarios.  Since some forms of knowledge are often tacit, it is important to 

include some form of contextual task analysis .   By contrast, common approaches to 

requirements elicitation involve primarily interviews and requirement reviews (which are 

not done within the context of actual work environments).  After a fairly complete 

working version of the system has been developed, usability testing and analysis is 

sometimes performed.  Of course, any changes that are uncovered at this point in time are 

often difficult to implement (for reasons discussed in the previous section).  Computing 

systems need to be made in such a way that usability and adaptability by end-users is 

fundamentally built into them. 

A rapid prototyping approach to system definition and development can make 

requirements elicitation iterative.  This approach initially provides user interface 

http://www.standishgroup.com/visitor/chaos.htm


prototypes with limited functionality, in a manner akin to storyboard use in movie script 

development.  Functionality is added to the evolving system to meet evolving 

requirements.  Continuing cycles serve to refine the system definition and development.  

Combining this approach with contextual task analysis makes it possible to elicit a more 

complete and correct set of end-user requirements.  Thus, we are led to a user-centered, 

adaptive approach to system definition and development. 

Section C:  Software Development 

Let us now consider the first major challenge we mentioned at the beginning of 

this chapter - software systems are expensive and time consuming to develop.  In addition 

to the problems already discussed in this chapter, software development is hindered by 

two major factors – a general lack of correctness in the software development process, 

and the shear size and complexity of modern computing systems.   

Even if one assumes that system requirements have been adequately captured, the 

lack of an ability to assure correctness (that the software does what is needed) in the 

software development process leads to high software testing costs.  Software testing can 

consume as much time as (or more than!) software development.  While testing will 

never be entirely eliminated, it can be greatly reduced with “correct by construction” 

software synthesis technology.  Synthesized software can often be proven to satisfy 

requirements (as will be seen below). 

Perhaps the greatest challenge of all lies in the shear size and complexity of 

modern computing systems.  Large computing systems involve the integration of multiple 

software and hardware components.  Overall system functionality, or requirements, must 

be driven down (or built on top of) the functionality provided by component systems.  

Each component may have its own inherent complexity.  Descriptions of component 

interfaces are often informal, ambiguous, and not at the right level of abstraction.  This 

leads to great challenges in designing systems and assuring their overall correctness.  

Systems, or integration, testing is a separate area of testing geared towards empirically 

evaluating the correctness of a system of components.  This branch of testing is an 

extremely costly and time-consuming process. If one were responsible for integrating a 

COTS (commercial off-the-shelf) payroll system with a COTS employee benefit system, 

one would understand these issues better!  Or better yet, integrating various avionics 

systems to achieve flight control and management. 

A computing system must be understood and designed at appropriate levels of 

abstraction.  Too much unnecessary detail introduced early in the design process leads to 

systems that are unnecessarily complex, inflexible, and faulty.  Abstraction, modularity, 

and loosely coupled systems, can be used to help manage complexity.  Object-oriented 

systems certainly help software development in this regard.  However, OO 

methodologies lack abstraction capabilities that are necessary for complexity reduction.  

Nevertheless, managing complexity of large systems is a daunting task!  What appears to 

be lacking in the current state of software development and maintenance technology is 

having an infrastructure that is fundamentally oriented towards managing complexity at 

all levels.  As we shall see, a branch of mathematics, category theory (which concerns 

itself with structure and structure preserving mappings), provides a foundational theory 

that allows knowledge to be expressed at different levels of abstraction, and uses the 

structure of this knowledge to help manage system complexity. 



The development and maintenance of computing systems needs to be made faster, 

cheaper, and better.  But as we have seen, the current state of software development 

technology must overcome the following challenges to enable this to happen: 

 

 Difficulty of leveraging knowledge embedded in software for: 

o Evolving a task, or  

o Adding related tasks. 

 Multiple representations of various software artifacts.  

 Lack of requirements tracability in software construction. 

 Lack of user-centered, adaptive approach to system definition and development. 

 Lack of correctness in software construction. 

 Shear complexity of modern computing systems. 



 

Chapter 3:    Software Synthesis Technology 
This chapter describes a new paradigm and discipline for software system 

development and maintenance.  This paradigm addresses the challenges laid out in the 

previous chapter.  To some extent, this technology is currently available and has been 

used and evaluated in industrial settings.  However, further evaluation and maturation of 

this technology is needed.   

Section A:  General Background 

The notions of software generation and software synthesis have been around for 

some time in various guises.   In general, the goal is to help automate the construction of 

software systems from a description of requirements.  However, most of these tools either 

do not generate complete software solutions or do not generate general-purpose software. 

There are commercial tools (e.g.; see http://www.rational.com/) that allow 

generation of software templates based on diagrams written in the Unified Modeling 

Language (UML, which is a standard design language [UMLdistilled]).  Software 

templates capture the syntax of data types and their operators, but are limited in their 

expressiveness of the underlying meaning, or behavioral semantics, of data and 

operations.  While UML contains the Object Constraint Language (OCL), which does 

have the ability of describe the semantics of operations (through the use of invariants, 

pre-conditions, and post-conditions), current commercial tools do not generate software 

based on OCL descriptions.  Without this capability, the correctness of the final software 

solution is hard to determine without a good deal of testing. 

There are languages and tools for generating software from finite state machine 

representations of requirements (e.g., the tools available from http://www.ilogix.com/, 

which are also based on UML).  Often geared towards embedded software, these tools are 

able to generate complete software systems that implement the requirements as stated in 

finite state machine representations.  However, the expressiveness and computational 

capability of finite state machines is limited, which prevents their use for general-purpose 

software description and generation.   

Section B:  Software Refinement Systems 

There are a few languages and tools that support the generation of complete and 

general-purpose software systems from requirements.  Both the Vienna Development 

Method (VDM) and the B-Method have languages and tools that support a refinement-

based approach to software generation [VDM, B-Method].  One starts with a 

requirements statement in a general-purpose algebraic specification language, and 

gradually and iteratively refines this into successively more detailed specifications, 

eventually arriving at a specification that maps directly into some virtual machine (e.g., 

the programming languages C, Ada, or Lisp).  Each refinement step involves proving, or 

demonstrating, that the semantic properties of a requirements specification are upheld in 

the refined specification (automated theorem provers are provided to assist with these 

proofs).  Software could, in principle, be proven to meet requirements.  Requirements 

traceability can be provided based on these proofs.    These methods have been used in 

Europe for developing software systems such as a metropolitan railway management 

http://www.rational.com/
http://www.ilogix.com/


system [VDMcitation] and a manufacturing production cell control program 

[Bcasestudies].  These methods adequately meet all of our goals except two – managing 

complexity and user-centered design. 

Like VDM and the B-Method, Specware™ supports the generation of complete 

and general-purpose software systems from requirements [Specware].  Unlike those 

methods however, Specware™ is based on category theory.  Specware™ generalizes the 

notion of how a specification can be embedded in another specification, and uses 

diagrams and colimits (from category theory) as a more general mechanism for 

composing specifications (see Figure 1 and 2).  Specification refinements can be 

composed using similar constructs from category theory.  These more general 

compositional mechanisms improve the management of system complexity [Specware]. 

Section C:  Specware™ 

The paradigm embodied in Specware™ is one that allows for the capture and 

structuring of formal requirement specifications, design specifications, implementation 

software, and the refinement processes that lead from requirements to software 

([JASE2001]).  In this approach, the refinement process can guarantee correctness of the 

derived software.  By recording, replaying, and modifying the software derivation 

history, we are able to more easily maintain the software.  By capturing, abstracting, and 

structuring requirement, design, and implementation knowledge, we are able to more 

easily reuse this knowledge for other applications.  Knowledge reuse occurs at whatever 

level of abstraction is most appropriate.  Sometimes that level is a domain theory that is 

involved in stating requirements.  Sometimes it is a design pattern.  Sometimes it is a 

software component.  Often it is a combination of these. 

Specware™ consists of a specification language, specification refinements, 

constructors from category theory, an underlying theorem prover (tied to the specification 

language), and mappings from subsets of the specification language to target 

programming languages (e.g., Lisp and C).  The next two pages, and figures, will be 

somewhat technical, but I ask for the readers’ diligence and attention.  What you will 

hopefully see is a general-purpose infrastructure that corresponds fairly naturally to the 

manner in which programmers go about doing their work, though much of this work is 

currently rarely documented in an explicit and complete fashion. 

Subsection i:    Specifications, Morphisms, and Diagrams 

Primitive components of Specware™ are signatures, signature morphisms, 

specifications, and specification morphisms (see Figure 3).  Signatures capture the syntax 

– the terms used to express data types and their operations.  Signature morphisms are 

mappings between signatures that embed terminology of one specification into another 

specification.  Specifications build on signatures by adding rules describing the semantics 

(axiomatic statements of properties holding between terms).  Specification morphisms are 

signature morphisms that preserve these properties (modulo signature morphism).  A 

theorem prover can be used to assure this.  Specifications are components of knowledge, 

and can be used to describe portions of requirements, architectures, designs, or 

implementations.  Specification morphisms express the structural relationship of 

embedded knowledge between specifications. 
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Figure 1:  Construction of Parts Requirement Specification 
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Figure 2:  Construction of Manufactured-Panels Requirement Specification 



spec S 
sorts A,B 
op f: A -> B 
axiom a1 
axiom a2 

axiom a3 

spec T 
sorts C,D,E 
op g: C -> D 
op h: D -> E 
axiom b1 
axiom b2 
axiom b3 
theorem t1 
theorem t2 

theorem t3 

Specification Morphism 

 Semantics: preserves meaning 

 Syntax: terminology translation 

               { A -> C, B -> D, f -> g } 

 Syntax: 
o Sorts in S map to Sorts in T  

o Ops in S map to Ops in T 

o Compatible mapping of Ops in S to Ops in T 

 Semantics: 

o Axioms in S must translate to Theorems in T 
 

 

 

 

 

 

Figure 3: Specifications and their Morphisms 
 

 



         Collections of structurally related specifications can be described in specification 

diagrams (the dashed rectangles in Figures 1 and 2).  The colimit of a specification 

diagram is a specification that captures the overall system specification described in the 

diagram
1
. Colimit specifications can be automatically generated in Specware™.  The 

specifications outside the diagrams in Figures 1 and 2 are colimits of their respective 

diagrams.  Specification diagrams and colimits allow us to represent and decompose 

knowledge at an appropriate level of abstraction.  Determining the appropriate level of 

abstraction is left to the specification writer (e.g., requirements analyst or designer), and 

may evolve over time. 

Subsection ii:    Specification Refinement  

By writing specifications and using diagrams and colimits, one can construct a 

specification describing system requirements.  To synthesize software, interpretations are 

used to express the refinement of a specification (see Figure 4).  At all levels of systems 

development, one is always mapping from some requirement specification to some 

virtual machine specification by writing a specification that satisfies requirements and is 

operationally defined in terms of the virtual machine.  When all the requirements are 

refined to a point where they can be mapped directly to a concrete virtual machine (e.g., 

some programming language), software can be generated that satisfies the requirements. 

A definitional extension of a specification B is a specification C that adds only 

constructive definitions to B
2
.  This is the heart of programming.  Whenever one writes 

part of a program, one adds data types and operations that are operationally defined in 

terms of data types and operations provided by some virtual machine.  An interpretation 

from specification A to specification B is a specification morphism from A into a 

definitional extension C of B.  The morphism from B to C shows what the virtual 

machine is, and how the program builds on top of it.  The morphism from A to C is the 

morphism that assures requirement properties are preserved.  This morphism makes 

explicit the proof obligations that are necessary to demonstrate that software does what it 

should.  All this may seem technical, but in essence, this is a large part of what 

programmers implicitly accomplish when they program. 

Subsection iii:    Refinement Composition 

An interpretation, or implementation, can be constructed automatically from other 

interpretations in Specware via two general mechanisms – sequential and parallel 

refinement.  In sequential refinement, two or more interpretations can be composed in 

sequence.  In Figure 5, we see that sets can be implemented in terms of bags, and bags 

can be implemented in terms of lists.  Thus, sets can be implemented in terms of lists.  

This corresponds to an iterative style of program development.  Note that in Figure 5, a 

”cross logic” morphism is alluded to.  These morphisms go from the logic of the 

specification language to the logic of a programming language.  More will be said about 

this in the next chapter. 

                                                
1 Technically, the colimit specification is actually the apical object of the colimit cocone. 
2 Syntactic restrictions in definitions enable translation to a target programming language. 



 

 
 

 
 

 

 

Figure 4: Interpretations 
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Figure 5: Sequential Composition of Interpretations 
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The other mechanism for constructing interpretations is via parallel refinement. 

Given a diagram of specifications and its colimit, and interpretations for each of the 

specifications in the diagram
3
, an interpretation for the colimit specification can be 

automatically constructed.  In Figure 6, we have a colimit specification that is a statement 

of an optimization problem for the layout of manufactured panels.  This colimit 

specification is constructed from a diagram of component specifications.   Each of these 

specifications has parallel interpretations.  From this information, an interpretation for the 

entire panel layout problem can be automatically constructed.  In this constructed 

interpretation, the “implementation” specification is a consistent amalgamation of the 

constituent implementation specifications, and the “virtual machine” specification is 

likewise an amalgamation of the constituent virtual machine specifications.  

 One can view parallel refinement as a general mechanism for program 

construction from components.  This general ability to decompose the programming task 

into subtasks brings manageability to the construction of complex systems.  Note that no 

matter how interpretations are arrived at, one is always going from requirements to some 

virtual machine.  If the requirements are complex, the refinement process decomposes 

based on the structure of the knowledge (specifications, in this case).  The overall 

decomposition and design of a system might look something like Figure 7.  In this sense, 

category theory provides a foundational theory that allows knowledge to be expressed at 

different levels of abstraction, and uses the structure of this knowledge to help manage 

system complexity. 

Subsection iv:    Software Synthesis in Specware™ 

A person can derive software with Specware™, by writing requirement 

specifications, assembling them into larger specifications, writing interpretations, and 

assembling them into larger pieces (through sequential or parallel refinement).  

Eventually all requirement specifications get decomposed as much as needed, and 

eventually every interpretation goes to a concrete virtual machine.  The creative aspects 

of programming are left to the programmer (deciding how to decompose and how to 

implement); the tedious aspects (assembling components in a consistent fashion and 

checking that requirement properties are upheld in implementations) are left to 

Specware™.  In this semi-automated approach to software development, we have 

documented and structured requirements, architectures, designs, implementations and the 

refinements processes (and proof obligations) that link them together. 

                                                
3 Additionally, there needs to be consistency across interpretations that jointly implement shared 

functionality (see [Specware]). 



 

 
 

 

 

Figure 6: Parallel Composition of Interpretations 
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Figure 7:  Refinement Composition to Capture Design 



While the quality of derived, or synthesized, software can be assured through the 

use of automated theorem provers (and other mechanisms such as constraint solvers), 

maintenance costs and subsequent development times are reduced through the ability to 

automatically replay software derivations in response to requirement modifications.  A 

change to a requirement specification can be made, and an attempt can be made to apply 

the prior software derivation.  If a theorem prover is being used to check that 

requirements are being upheld, any potential problems with applying the previous designs 

will be pointed out automatically.  Even if some of the previous designs need to be 

reworked, presumably many parts of the old design still apply.  Specware™ applies what 

it can of the previous derivation, and points out design rework.  Of course, this assumes 

that theorem proving capabilities are adequate for the task at hand. 

What Specware™ enables is: 

 

1. The explicit capture and structuring of the knowledge that goes into the 

definition, design, and development of software systems,  

2. The partial automation of using this knowledge for developing and 

maintaining software systems that provably satisfy requirements,  

 

By making this institutional knowledge explicit, and using it in a semi-automated process 

for software synthesis, this knowledge of system definition, design, and software 

derivation can become a key institutional or corporate asset. 

Section D:  Specware™ Use 

Specware™ was developed at Kestrel Institute, in Palo Alto, CA.  It has been 

applied there to several areas, most notably in the area of high-performance schedulers 

that have been applied to scheduling and planning of military logistics [Smith].  But it has 

also been applied to such things as developing a provably correct implementation of a 

part of the Java Virtual Machine bytecode verifier [Coglio].  In the scheduling arena, 

there has been considerable effort spent to formalize the knowledge of algorithms and 

data structures associated with various classes of scheduling problems.  The interface to 

Specware™ has been tailored to the domain of scheduling problems, shielding the end-

user (to a large extent) from having to know much about logic and algebra (and nothing 

about category theory). 

Peter White at Motorola applied Specware™ to a portion of the design of secure 

operating system kernel [Motorola].  While software was not generated in this case, the 

requirement specifications and some of the design specifications were written and 

developed with Specware™.  This work did lead to a developed product. 

At Boeing, we have applied Specware™ to synthesizing software that supports 

more traditional engineering disciplines. In 1997, we generated requirement 

specifications, design specifications, and implementation software for a small component 

that was part of a mechanical engineering design task [JIM].  In 1998 and 1999, we did 

the same thing, but this time we tackled a much larger engineering design application, the 

equipment locator problem [ASE99].   This is a problem of finding optimal layouts of 

electrical equipment to positions on shelves.  Not only did we generate this application 

along with the proofs (often done manually) that demonstrated the software was correct, 



but also in 1999, we were able to make changes to various specifications and replay the 

software derivation (thus maintaining the software with Specware™).  

It is interesting to note that when this technology is applied to software systems 

whose outputs are designs for airplane parts, the design rationale that is captured is not 

only software engineering design rationale, but also design rationale for other, more 

traditional, engineering disciplines (e.g., mechanical, material, manufacturing, etc.).  This 

suggests the technology provides an approach to general systems engineering that enables 

one to structure and reuse engineering knowledge broadly ([JIM2000]). 

Section E:  Specware™ Evaluation and Maturation 

The National Security Agency (NSA) recently sponsored an evaluation of two 

potential methodologies for producing secure software systems [Widmaier, et al.].  One 

was CMM Level 4, represented by a contractor team at "Company L".  The other was 

Specware™, represented by a contractor team at "Company M".  Both are large 

aerospace companies whose names were not revealed.  The University of Maryland was 

hired to perform the evaluation.  The NSA supplied a requirements document (an 

informal specification) for a card-key entry system.  The document had some built-in 

ambiguities, left there to make the exercise realistic and to see what affect these would 

have on the two methodologies.  Both teams were given five months before turning their 

results over to the University of Maryland evaluators. 

The CMM team was done in two months.  The Specware™ team took four.  This 

is the same phenomenon noticed at Boeing, where it takes about twice as long to develop 

the full set of formal specifications up front, along with the morphisms, refinements, and 

diagrams for category-theoretic synthesis.  The results were quite interesting.  When 

evaluated, the CMM-developed system had a 56% success rate.  56% of the time, a user 

either gained entry to a building when they were supposed to or was denied entry when 

not.  On the other hand, the Specware-developed system had a 77% success rate.  But the 

story doesn't end there. 

There was an ambiguity in the requirements document that could be interpreted in 

one of two ways.  The CMM team happened to interpret it the right way, but the 

Specware™ team got it wrong, leading to a large negative impact.  It was determined that 

a simple change could be made at an abstract level in the software derivation, and that 

new software could be synthesized rather quickly.  This change would increase the 

system success rate to 98%.  In looking at the CMM developed system, it was determined 

that the needed changes were dispersed and unclearly documented.  At most a few 

percentage points’ improvement could be made without a thorough, and costly, rework of 

the (relatively undocumented) system development. 

The overall conclusion of the NSA study was that the Specware approach was 

better by far, but that the technology was not sufficiently mature for wide application.  

More specific recommendations for the continuing evaluation and maturation of 

Specware™ were made in [JASE].  These can be broken into two broad categories.  The 

first is a set of unknowns, which present risks for eventual wide-scale use of this 

technology.  These areas need further evaluation: 

 

1. Effectiveness of general theorem proving capabilities 

2. Can software synthesis scale to large-scale applications 



3. Can efficient embedded (i.e., state-based) software be generated 

4. To what extent are costs and times saved when reusing knowledge: 

a. Need to carefully examine maintenance costs for single system 

b. Need to carefully examine saving across sets of related systems 

 

Secondly, areas of maturation in the technology include: 

 

1. Improved coverage and usability of tools 

2. Derivation capability for user-interface software 

3. Rapid prototyping capability added 

4. Larger specification library infrastructure 

 

Of all of the challenges outlined at the end of Chapter 2, only a user-centered, 

adaptive approach to system development is missing in Specware™.  Actually, the 

adaptive part is there, but the ability to have this adaptation driven by the end-user is 

missing.  This is what the first three items in this list address. 



Chapter 4:    Systems Synthesis 
Before getting to specific proposals aimed at further evaluation and maturation of 

Specware™, it is worth discussing the underlying theory in a bit more depth.  Category 

theory [MacLane, Pierce, Crole] is an abstract branch of mathematics that is increasingly 

being applied in more concrete settings (e.g., computer science and physics).  In this 

chapter, we describe how category theory can play a foundational role in the definition, 

development, and maintenance of complex systems [GoguenSystems].  What we will 

urge is that foundational research accompany the evaluation and maturation of 

Specware™. 

By broadening the scope of research and technology to be matured, we place 

ourselves in a better position to handle heterogeneous systems - systems composed of 

different types of hardware and software subsystems.  As will be seen, these subsystems 

can embody disparate computational paradigms (e.g., a Java-based component linked to a 

finite-state-machine component linked to a neural-network component).  In principle, 

category theory, in its application to general systems theory, can be applied to systems as 

complex as flight control systems (including the physical design of flight control surfaces 

and their supporting hardware and software subsystems).  This has yet to be demonstrated 

in an industrial setting, however. 

Section A:  Category Theory  

A category consists of objects, arrows (or morphisms) between objects, and a 

composition operation on pairs of arrows (that can be linked) that is transitive
4
.  A 

diagram in a category is a collection of its objects and arrows.  Roughly speaking, the 

limit of a diagram identifies the shared portions in the diagram, while a colimit identifies 

the synthesis of objects in the diagram.  In many categories, it can be shown that limits 

and colimits always exist for any diagram.  In fact, the proofs of these properties often 

lead to constructive ways of automatically computing limits and colimits. 

A functor between two categories maps objects to objects, and arrows to arrows, 

in such a way that the structural relationships holding in the source category still hold in 

the target category (e.g., mapped arrows go between appropriately mapped objects, and 

compositions are preserved by the mapping).  A functor can map multiple objects (or 

arrows) to a single object (or arrow).  Functors are structure-preserving mappings 

between categories.  They show how one category can be embedded in another (see 

Figure 8 for a general example of this).  

It is often useful to think of a functor from A to B as a picture of A embedded in 

B.  Given two functors F and G between categories A and B, a natural transformation is, 

roughly speaking, a way of mapping, or translating, F’s picture (of A in B) to G’s picture 

(of A in B).  See Figure 9 for an example that will be discussed later in this chapter. 

                                                
4 This is a simplification, as it ignores identity morphisms and how they compose with other morphisms. 



 

 

 

 

 

Figure 8:  Functors Manifesting Shared Meaning 
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In Specware™, there are multiple categories underlying the tool.  To name a few 

important ones, there are categories for specifications, interpretations, and shapes 

(parallel refinement does not always map from a diagram into another diagram having the 

same shape as the first).  To a large extent, the benefit of category theory lies in its 

general applicability.  In each of these categories underlying Specware™, a diagram can 

be formed, and colimits can be automatically constructed.  This general mechanism 

works for each of the categories underlying Specware™. 

Section B:  Logics and their Semantics 

We mentioned cross-logics morphisms in the preceding chapter.  In going from 

the underlying logic of a specification language to the underlying logic of a programming 

language, there are two categories - one for the specification language, and one for the 

programming language.  In the terminology of category theory, there is a functor, a 

structure-preserving mapping, that goes from one category to the other.  As with the 

interconnectedness of word definitions in a dictionary, what is important is the structural 

connections between objects and preserving that structure when mappings are involved.  

Arguably, elevating structure to be as important as the objects themselves is the idea that 

distinguishes category theory from set theory as a foundation for mathematics, and in our 

case, as a foundation for systems development. 

In many complex systems, subsystems may embody different computational 

paradigms.  There are different abstract models of machines and computation [Denning].  

These include machines like Finite State Machines, Pushdown Automata, and Turing 

Machines.  Other abstract models of computation include Petri Nets, Lambda Calculus, 

Logic Programming, and Neural Networks.  In general, each of these machines has an 

associated language and logic.  In heterogeneous systems, we must map between and 

among these machines, languages, and logics in such a way that overall system coherence 

is achieved.  We want them to work together correctly and seamlessly. 

The theory of general logics [GeneralLogics] and institutions [Institutions] 

provides a general theory for ensuring that mappings preserve meaning in heterogeneous 

systems.  For each logic, there is a category in which the objects correspond to statements 

in that logic, and the morphisms correspond to proof (or computation) in that logic.  

There is another category in which the objects correspond to the models (the semantics of 

the logic), and the morphisms correspond to mappings between models.  There is a 

functor going from the syntactic category to the semantic category, and an adjoint (or 

reverse) functor mapping from semantics to syntax.  These are the ideas behind the 

theory of institutions.  In the theory of general logics, we are able to map between logics 

in such a way that provability (or computation) is preserved.  Providing functors that map 

between the syntactic categories of each logic achieves this.  Of course, we want to do 

this is a way that preserves the underlying semantics of each logic.  Thus, the theory of 

general logics is tied to the theory of institutions. 

What we would like is the ability to describe a system that is composed of 

subsystems.  Each of the subsystems may be refined, or operationalized, in terms of 

virtual machines that embody different abstract models of computation.  We want to 

ensure that overall system requirements are achieved in this heterogeneous 



implementation.  The theory of institutions, general logics, and category theory generally, 

provide a mathematical framework for ensuring coherence of heterogeneous systems 

Section C:  Neural Network Semantics 

To briefly demonstrate the broad applicability of this framework, category theory 

has even been applied to the semantics of neural networks [Healy].  There is a category 

of specifications and specification morphisms (called the concept category in this work).  

A preliminary category has been defined for neural network architectures, called the 

neural category.  There is a functor from the concept category to the neural category that 

shows how the meaning expressed in a collection of specifications can be mapped into a 

neural network architecture.  Issues such as sensor fusion, or sensor integration, can be 

dealt with by means of natural transformations.  This is illustrated in Figure 9.  Details of 

this preliminary approach can be found in [Healy]. 

Section D:  Foundation for System Engineering 

In all this work, system requirements can be stated in a category of specifications 

and specification morphisms, with functors (structure preserving mappings) into virtual 

machines (which could be as diverse as different programming languages or even neural 

networks).  In general, there is a hierarchy of virtual computers: 

 

1. Actual hardware computer 

2. Firmware virtual computer 

3. Operating system virtual computer 

4. Programming language virtual computer 

5. Program virtual computer 

 

Different portions of this hierarchy may be achieved with different models of 

computation.  What we want to be sure to achieve is overall system coherence.  To do 

this, we need to understand how to map the syntax and semantics of these machines.  

Category theory appears to provide a foundation for doing this. 

In a ubiquitous role, category theory appears to provide a foundation for defining, 

developing, and maintaining complex heterogeneous systems.  It is a foundational, 

mathematical theory for systems development and integration.  For corporations such as 

Boeing that see themselves as integrators of complex systems, it seems worthwhile to 

develop a research program oriented towards the application of category theory to general 

systems theory and systems engineering [GoguenSystems]. 
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