
SPECWARE LANGUAGE MANUAL

Specware 2.0.3

March 1998

Specware 2.0.3. Specware is a registered trademark of Kestrel Development
Corporation.

Notice: This program is protected under international and U.S. copyright laws as an
unpublished work, which is confidential and proprietary to Kestrel Institute and
Kestrel Development Corporation.

Its reproduction or disclosure, in whole or in part, or the production of derivative
works therefrom without the express signed permission of Kestrel Institute and
Kestrel Development Corporation is prohibited.

Copyright  1988-1998, by Kestrel Institute and Kestrel Development Corporation.
All rights reserved.

Use of a copyright notice is precautionary only and does not imply publication or
disclosure.

This material may be reproduced by or for the US Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (OCT 1988).

Kestrel Institute Kestrel Development Corporation
3260 Hillview Avenue 3260 Hillview Avenue
2nd Floor 2nd Floor
Palo Alto, CA 94304 Palo Alto, CA 94304

Phone: (650) 493-6871
Fax: (650) 424-1807
Email: specware-request@kestrel.edu

Language Manual i

Table of Contents

Introduction 1

Part I Specification Constructs in Specware 3

1 Basic Specifications 5
1.1 Sorts . 8

1.2 Sort Constructors . 10

1.2.1 Product Sorts . 10

1.2.2 Coproduct Sorts . 12

1.2.3 Function Sorts . 13

1.2.4 Quotient Sorts . 14

1.2.5 Subsorts . 15

1.2.6 Precedence . 16

1.3 Sort Axioms. 17

1.4 Operations. 17

1.4.1 Built-in Operations. 18

1.4.2 Quantifiers . 18

1.4.3 Equality . 19

1.5 Terms and Formulas . 20

1.6 Axioms and Theorems . 20

1.7 Definitions . 22

1.8 Constructor Sets . 23

2 Morphisms and Diagrams 25
2.1 Overview of Specification-Constructing Operations 25

2.2 Morphisms. 25

2.3 Diagrams. 33

3 Specification-Building Operations 37
3.1 Translate . 37

3.2 Import . 38

3.3 Application: Families of Specifications . 40

3.4 Colimit . 46

3.4.1 The Colimit Construction Algorithm. 50

3.4.2 Colimit to Merge Elements . 50

3.4.3 Colimit to Instantiate Parameters . 52

3.4.4 Qualified Names . 55

3.4.5 Consistency of Colimits . 56

ii Specware

Part II Refinement Constructs in Specware 59

4 Overview of Refinement 61
4.1 Refinement of Basic Specifications . 61

4.2 Refinement of Structured Specifications . 62

5 Interpretations and their Composition 63
5.1 Definitional Extensions . 63

5.2 Basic Interpretations . 64

5.3 Sequential Composition of Interpretations. 75

5.4 Parallel Composition of Interpretations . 78

5.4.1 Interpretation Schemes . 80

5.4.2 Interpretation Morphisms . 81

5.4.3 Categories . 84

5.4.4 Interpretation Diagrams and Shape Mappings 87

5.5 Interpretation of Definitional Extensions . 100

5.6 Composing Diagram Refinements. 101

6 Code Generation 113
6.1 Restrictions on the Abstract Target Language . 114

6.2 The Entailment-System Morphism . 117

6.2.1 The Specifications LIST-PRIM, INTEGER, and LIST 118

6.2.2 Translating Constructed Sorts . 120

6.2.3 Translating Colimits . 121

6.2.4 Translation by Instantiation . 122

6.3 Refinement for Code Generation. 122

Part III Appendices 133

A Names 135
 A.1 Naming and Scoping Rules . 135

 A.2 Lexical Conventions . 136

B Syntax 137
 B.1 Notation . 137

 B.2 Grammar . 137

 B.3 Refinement Constructs . 142

C Table of Terms 145

Language Manual iii

D Example: Nonnegative Integers 147

E Example: Sequences into Arrays 149
 E.1 Static Arrays . 149

 E.2 Dynamic Arrays. 151

 E.3 Sequences as Arrays . 152

 E.4 Sequences into Arrays . 153

F Example: Finite Sets into Fixed Bit Vectors 155
 F.1 Bits, Bit Vectors, and Fixed Bit Vectors. 155

 F.2 Sets as Fixed Bit Vectors . 157

 F.3 Finite Sets into Fixed Bit Vectors . 158

G Example: Bags into Bags via a Quotient 159

iv Specware

List of Figures

Language Manual v

Figure 1: Basic Specification for the Nonnegative Integers . 6

Figure 2: The Specification PAIR . 28

Figure 3: The Specification CONS-PAIR . 30

Figure 4: Diagram for a Preorder . 34

Figure 5: Family of Collection Theories . 45

Figure 6: A Colimit . 46

Figure 7: Colimit for PREORDER . 48

Figure 8: Binary Relation Colimit Diagram . 51

Figure 9: Set-of-Pairs Colimit Diagram . 53

Figure 10: Specification of Sets of Pairs Defined Directly . 54

Figure 11: Specification for Sets Represented as Bags . 66

Figure 12: Specification for Sequences Augmented to Represent Bags 70

Figure 13: A Parallel Composition . 79

Figure 14: An Interpretation Morphism . 82

Figure 15: A Failed Interpretation Morphism . 84

Figure 16: A Parallel Composition . 91

Figure 17: Colimit for Sequences of Sets . 92

Figure 18: Specification for Sorting . 96

Figure 19: Sorting Refinement . 100

Figure 20: First Diagram of Interpretations for Bags of Bags 106

Figure 21: Stage One: Inner Bags into Sequences . 107

Figure 22: Second Diagram of Interpretations for Bags of Bags 108

Figure 23: Refinement of Bags of Bags . 109

Figure 24: Incompatibility . 110

Figure 25: Alternative Refinement of Bags of Bag . 111

Figure 26: Stage One: Sets into Bags . 124

Figure 27: .Sets into Sequences of Nonnegative Numbers 126

Figure 28: Third Stage: Nonnegative Integers to Integers 129

Figure 29: Stage Four: Sequences into Lists . 130

vi Specware

Language Manual 1

Introduction

This document describes the language of the SPECWARE system. SPECWARE is a
system for the specification and formal development of software.

SPECWARE may be regarded as a system for the construction, combination, and
manipulation of specifications. There are many levels of specification in SPECWARE.
Some describe the ultimate purpose of the target software in abstract terms, some
describe the properties and operations of various data structures, and others describe
the details of a language-dependent implementation. Domain theories are SPECWARE

specifications, and the system has sophisticated facilities for building task-oriented
theories from more general ones.

A basic operation in SPECWARE is refinement (also called interpretation), the passage
from high-level task-descriptive specifications to low-level implementation-oriented
specifications, and ultimately to code generation. This process involves the design of
algorithms and the selection of data structures, as well as the generation of code.
While mechanical aspects of this task are automated, it is not the intention of
SPECWARE to replace the human designer, but rather to support and facilitate the best
software-development practices and to ensure that correctness is maintained at each
stage in the development of large software systems.

This document is organized as follows. Part I describes the specification constructs in,
Slang the SPECWARE language. Section 1 describes basic specifications, which are
formed by explicitly providing their constituent sorts, operations, and axioms. Section
2.1 is a brief overview of specification-building operations, which construct new
specifications from simpler ones, using morphisms and diagrams, described in
Section 2.2. With that background, the specification-building operations—translate,
import, and colimit—are described in detail in Section 3.

Part II describes the constructs in Slang for the stepwise refinement of a specification
into an implementation. Section 4 gives an overview of the conceptual basis for
refinement. Section 5 describes the associated language concepts, interpretations and
interpretation morphisms, and how these concepts support the stepwise-refinement
process.

Part III contains the appendices, which provide an overview of names in Slang, a BNF
grammar for Slang, a table of Slang terms, some sample specifications and
interpretations, and an index.

SPECWARE is a visual language, in the sense that there are certain operations that can
best be performed and understood in terms of the system's graphical facilities. There
is a separate document that details how to interact with the SPECWARE system.

2 Specware

INTRODUCTION

The specifications and interpretations given in this manual are simplified for
pedagogical purposes. The actual specifications in the SPECWARE library are
accessible via a SPECWARE web page.

Language Manual 3

Part I Specification Constructs in Specware

Slang, the SPECWARE language, includes constructs for building specifications and
their refinements. Refinements are described in Part II; in this part, we describe the
specification concepts of Slang:

specification: A description of an intention, a theory, a data structure, or a program.

morphism: A mapping between specifications that describes how one specification
can be viewed as a part of the other.

diagram: A graph that indicates how various specifications are to be combined.

specification-building operation: An operation for building new specifications by
combining other, more elementary specifications.

Rather than constructing huge monolithic specifications, it is to our advantage to
build them up from many small basic ones. There are several operations for
combining specifications in SPECWARE; the most important is the colimit. Before we
can use the colimit operation to combine specifications, we must indicate how they
are to be related. This is achieved by exhibiting morphisms between them. The colimit
operation is applied to a diagram of specifications linked by morphisms.

In Part II we shall discuss how to combine morphisms to build a refinement, a
transformation of specifications, which can be used for the selection of data structures
and the implementation of software.

PART I SPECIFICATION CONSTRUCTS IN SPECWARE

4 Specware

Language Manual 5

1 Basic Specifications

1 Basic Specifications

Specifications are the fundamental objects in Slang, the SPECWARE language, and are
used to describe domains, data structures, and programs, at multiple levels. In
general, a specification is viewed as a presentation or description of a theory. Each
specification conveys two pieces of information:

legal sentences: The set of strings of symbols that are within the language of the
theory.

valid sentences: The subset of the legal sentences that are valid in the theory.

Both sets are infinite, but the specification itself is a finite expression that describes
these infinite sets.

Specifications are either given directly as basic specifications or constructed via
specification-building operations. This section introduces basic specifications; Section
3 describes specification-building operations.

 A full BNF description of the syntax of a specification appears in the appendix; in the
text, we give only informal descriptions of syntax. A basic specification consists of a
set of specification elements. (In the BNF description of Slang these are called
development-elements.) Not all of these elements need appear, and the order of
appearance of the elements is irrelevant. We discuss each of these specification
elements subsequently in separate subsections.

We distinguish between elements that describe the syntactically legal sentences and
those that describe the semantically valid sentences. The legal sentences are described
by providing a signature, a presentation of the sorts of objects and operations the
theory deals with. Elements that describe the signature are:

sort: A declaration of the classes of objects discussed by the specification. Each
specification has a built-in sort Boolean, which contains two objects, denoted
by true and false, and which is not mentioned explicitly in the specification.

operation: A declaration of named constants that denote objects, functions, and
predicates, of specified sorts. A specification also has a number of built-in
operations, such as logical connectives, which are not mentioned explicitly.

sort axiom: An assertion of the equivalence between a primitive sort and a
constructed sort. A primitive sort is one that appears explicitly in a sort
declaration; a constructed sort is obtained by applying sort-constructor
functions to primitive sorts.

1 BASIC SPECIFICATIONS

6 Specware

spec NAT-BASIC is
sorts Nat, Pos
const zero : Nat
op nonzero? : Nat -> Boolean
definition of nonzero? is

axiom (iff(nonzero? x)
(not (equal x zero)))

end-definition

sort-axiom Pos = Nat | nonzero?

op nat-of-pos : Pos -> Nat
definition of nat-of-pos is

axiom (equal nat-of-pos (relax nonzero?))
end-definition

op succ : Nat -> Pos

axiom (nonzero? (nat-of-pos (succ x)))
axiom succ-is-one-to-one is

(implies (equal (succ x)(succ y))
(equal x y))

constructors {zero, nat-of-pos} construct Nat
constructors {succ} construct Pos

theorem (fa (x : Pos)
(ex (y : Nat)

(equal x (succ y))))
end-spec

Figure 1: Basic Specification for the Nonnegative Integers

Example 1.1 Basic Nonnegative Integers.

To illustrate the discussion throughout this section, we present in Figure 1 a simple
specification for the nonnegative integers. (A more complete specification for the
nonnegative integers, which builds on this one, will be given in an appendix, Section
D on page 147). The specification NAT-BASIC contains two explicit primitive sorts, Nat
and Pos, denoting the nonnegative integers and the strictly positive integers
respectively; it also contains the implicit built-in sort Boolean.

The constant declaration

const zero : Nat

says that zero stands for an object of sort Nat. The operation declaration

Language Manual 7

1 Basic Specifications

op nonzero? : Nat -> Boolean

stipulates that the operation nonzero? is a predicate on elements of sort Nat; a
predicate is a boolean-valued operation. (Although we often end predicate symbols
with a question mark, it is not required.) The sort axiom

sort-axiom Pos = Nat | nonzero?

asserts that the primitive sort Pos is equivalent to a constructed sort Nat|nonzero?
(which is the subsort of elements of sort Nat that satisfy the predicate nonzero?).

Elements of a specification that describe the subset of valid sentences are:

axiom: A logical sentence that is asserted to hold for all the objects and functions
discussed by the specification.

definition: A set of axioms that does not restrict the theory but gives a name to an
already existing object or function

theorem: A logical sentence that is a provable consequence of all the axioms of the
theory (including implicit axioms, discussed later).

constructor set: A statement that every object of a certain sort is in the range of at
least one of a set of operators. The constructor sets correspond to an implicit
structural induction axiom.

A valid sentence is one that is true of all the objects and functions discussed by the
specification. Thus the axioms of a specification are valid in the corresponding theory,
by definition. The theorems are also valid, because they are provable from the axioms.

For example, in the specification NAT-BASIC in Figure 1, the definition of the predicate
nonzero? consists of a single axiom, a logical sentence that asserts that a nonnegative
integer is said to be nonzero when it is not equal to zero. Another definition, of the
function nat-of-pos, asserts that the constant nat-of-pos stands for the function
(relax nonnegative?)—the function relax will be introduced subsequently. Note
that sentences are in higher-order logic—the function relax has a predicate
nonnegative? as its argument and yields another function; the constant nat-of-pos
is equal to that function. Syntax is Lisp-like—thus the successor of x is written (succ
x) rather than succ(x) or x.

The specification has axioms, some of them in definitions, and a theorem. Axioms and
theorems in specifications are implicitly universally quantified; thus the axiom succ-
is-one-to-one holds for all nonnegative integers x and y. In addition to the explicit
axioms, which appear literally in the specification, there are implicit axioms
corresponding to some specification constructs. The definitions do not alter the theory
but merely provide meanings for the defined constants, in this case nonzero? and

1 BASIC SPECIFICATIONS

8 Specware

nat-of-pos. The specification also has axioms that are not definitions, e.g., the axiom
succ-is-one-to-one. The theorem is a provable logical consequence of the implicit
and explicit axioms. Introducing a theorem does not change the meaning of a
specification. (See Sections 1.6 and 1.7 for more on the distinction between axioms,
definitions, and theorems.)

 The specification has two constructor sets, one for each of its two sorts, Nat and Pos.
The first constructor set,

constructors {zero, nat-of-pos} construct Nat

stipulates that every nonnegative integer is either the object zero or is in the range of
the function nat-of-pos. The second constructor set

constructors {succ} construct Pos

states that every positive integer is in the range of the successor function succ.
Together these constructor sets correspond to an implicit structural induction axiom
for the nonnegative integers.

 In the subsequent subsections we discuss each of the specification elements in more
detail. There are many interdependencies in the discussion. For example, in
discussing sorts, we introduce implicit axioms, while the subsequent presentation of
axioms relies on our knowledge of the sort structure.

1.1 Sorts

The primitive sorts of a specification are introduced via sort declarations. Each sort
declaration consists of the keyword sort or sorts followed by a list of one or more
sort identifiers.

An object is never viewed independently of its sort; two objects of distinct sort are
never equal. Thus, in the specification NAT-BASIC, 1 viewed as a positive integer is
distinguished from 1 viewed as a nonnegative integer; we may imagine that the two
versions of 1 are invisibly subscripted, 1Nat and 1Pos. The function nat-of-pos maps
each positive integer into the same number viewed as a nonnegative integer; the
function succ maps each nonnegative integer into its successor viewed as a positive
integer. Thus

(succ 0Nat) =1Pos
 (nat-of-pos1Pos) = 1Nat

Language Manual 9

1.1 Sorts

The relationship between the nonnegative integers and the positive integers is
illustrated as follows:

The top row of integers are positive, the bottom, nonnegative. The upward-diagonal
arrows indicate the successor function succ, and the downward-vertical arrows
indicate the inclusion function nat-of-pos.

Note that the so-called inclusion function is not the identity. It would be a type error
to say

(nonzero? (succ x))

because succ yields a positive integer but nonzero? accepts only nonnegative
integers. For this reason, the axiom in the specification had to say

(nonzero? (nat-of-pos (succ x)))

We may illustrate the situation by the following figure:

We could have decided to eliminate the sort Pos and declare the successor function to
yield a nonnegative integer. That would have simplified this specification but
complicated matters later, when we want to extend the specification and define a
predecessor function pred to subtract 1 from a positive integer. Using Pos, we can
define

op pred : Pos -> Nat
definition of pred is
axiom (equal (pred (succ x)) x)

end-definition

In this theory, the expression (pred zero) has no meaning and is syntactically illegal.

If instead we were to declare

nat-of-possucc

Pos

Nat

Pos

Nat Nat

Boolean

nonzero?

relax(nonzero?) = nat-of-possucc

1 BASIC SPECIFICATIONS

10 Specware

op pred : Nat -> Nat

and revise the axioms accordingly, we would be asserting that (pred zero) is a
nonnegative integer, even though the axioms do not determine which nonnegative
integer it is. It would thus be a legal operation to take the predecessor of zero. This
would be a subtly different version of the theory, not incorrect but different.

As mentioned earlier, the sort Boolean is the sort of the two truth values, true and
false. This sort is built into every specification and need not be declared.

1.2 Sort Constructors

Sort constructors are operators that apply to sorts. They are used to generate
constructed sorts from primitive sorts or other constructed sorts. Slang has five sort
constructors:

product: Product sorts are denoted by a sequence E1, E2,...,En of two or more
component sorts. They consist of tuples of elements from the component sorts,
in order.

coproduct: Coproduct sorts are denoted by a sequence E1+E2+...+En of two or
more component sorts. Intuitively a coproduct consists of the “disjoint union”
of elements from the component sorts.

function: A function sort is denoted by D -> E, where D is a domain sort and E is a
range (or codomain) sort. It consists of functions from the domain sort D into the
range sort E.

quotient: Quotient sorts are denoted by E/r?, where E is a base sort and r? is an
equivalence relation. It consists of the equivalence classes of elements of the
base sort E modulo the equivalence relation r?.

subsort: Subsorts are denoted by a E|p?, where E is a supersort and p? is a unary
predicate. It consists of those elements of the supersort E that satisfy the
predicate p?.

A sort term is either the name of a primitive sort or a term obtained by applying a sort
constructor to other sort terms. We shall now describe each of the sort constructors in
a little more detail.

1.2.1 Product Sorts

If e1 through en are of sorts E1 through En, respectively, then

<e1 e2 ... en>

Language Manual 11

1.2.1 Product Sorts

is a tuple whose sort is the product E1,E2,...,En. For example, if one is of sort Nat
and X is of sort Atom, then <one X> is of sort Nat, Atom.

In SPECWARE, an operation that we think takes multiple arguments actually takes
only a single argument, a tuple. For example, the binary relation br is declared as
follows:

op br : E, E -> Boolean

The term “E, E” is a product sort; it indicates that the predicate br takes a tuple of
two arguments, both of sort E. In practice, we are more likely to write (br e1 e2)
than (br <e1 e2>), but both are legal and they have the same meaning.

The empty product sort () contains a single tuple, the empty tuple <>. When the
empty product occurs as the domain of a function sort, its syntax may be omitted.
Thus, instead of writing () -> F, we may write -> F.

There are two kinds of built-in operations on every product sort: an n-ary tuple
constructor, which constructs elements of the product sort, and n projection
functions, which select components of tuples. The constructor function maps
elements e1,...,en into the tuple <e1 ... en>. Each projection function (project
i) is of sort

(project i): E1,...,En -> Ei

It maps <e1 ... en> into ei. The application of a projection function is written as
((project i) <e1 ... en>).

 Note that project is a higher-order function; it maps i into (project i). Also,
project is polymorphic; hence, it is implicitly indexed by the product sort, as in
(projectE1,...,Eni). Thus (projectA1,A21) is distinct from (projectB1,B21) even
though both would be written (project 1); the ambiguity is resolved by type
inference. Tuples can be nested—thus <a <b c>> is a legitimate tuple.

For each product sort, there corresponds a set of implicit axioms (See “Axioms and
Theorems,” Section 1.6) that serve as the definition of the projection functions. These
axioms do not appear literally in the specification, but will be used automatically in
proving theorems in the corresponding theory. For a product of two sorts, “E1, E2”,
we have two implicit axioms:

(equal ((project 1) <e1 e2>) e1)

(equal ((project 2) <e1 e2>) e2)

Similarly, for a product of n sorts we have n analogous implicit axioms.

Two tuples are equal only if their respective components are all equal. Thus, if <d1
d2> equals <e1 e2>, we know that d1 equals e1 and d2 equals e2.

1 BASIC SPECIFICATIONS

12 Specware

1.2.2 Coproduct Sorts

The coproduct of a set of sorts may be thought of as their disjoint union. In other
words, each element of any of the component sorts corresponds to an element of the
coproduct, and no two elements of distinct components correspond to the same
element of the coproduct. The structure is known as a variant record in some
programming languages.

For example, if E1 is a sort containing two elements X and Y, and E2 is a sort
containing two elements Y and Z, then E1+E2 is a sort containing four elements X, Y,
Y, and Z. We may imagine that the two elements originating in sort E1 have invisible
subscripts 1, and the two elements originating in E2 have invisible subscripts 2; at any
rate, the two copies of Y are not equal. The situation is illustrated by the following
figure:

The empty coproduct, [], is the coproduct of zero components; it has no elements.

For every coproduct sort, there is a family of embedding operations, one for each
component sort. The embeddings map elements of the component sorts into the
coproduct sort. For each i = 1, … ,n, we have

(embed i): Ei -> E1+...+En

Thus, in the above example, (embed 1) maps E1 into E1+E2. The element X1 of E1
maps into X1 of E1+E2 and Y1 of E1 maps into Y1 of E1+E2.

 The function embed is higher order and polymorphic (similar to project). Thus an
application is written ((embed i) ei), with the embed symbol implicitly indexed

(embedE1+...+Eni)

The embedding function is defined by the following axioms, which are present
implicitly in the specification in which the coproduct appears. For a coproduct of two
sorts, E1+E2, we have

(implies (equal ((embed 1) d1) ((embed 1) e1))
(equal d1 e1))

(implies (equal ((embed 2) d2) ((embed 2) e2))
(equal d2 e2))

E1 = { X1, Y1 } E2 = { Y2, Z2 }

E1 + E2 = { X1, Y1, Y2, Z2 }

(embed 1) (embed 2)

Language Manual 13

1.2.3 Function Sorts

That is, embeddings are one-to-one (injective); two distinct elements in a component
cannot map into the same element in the coproduct.

(fa (d : E1+E2)
(or (ex (e1 : E1) (equal d e1))

(ex (e2 : E2) (equal d e2))))

That is, embeddings are collectively surjective; every element in the coproduct is
mapped onto by some element in one component.

(not (equal ((embed 1) e1)((embed 2) e2)))

That is, embeddings have disjoint images; elements from distinct components cannot
map onto the same element in the coproduct.

Analogous implicit axioms hold for coproducts of more than two sorts.

1.2.3 Function Sorts

Given a domain sort D and a range (or codomain) sort E, the function sort D -> E
contains the functions from D into E. Most operations belong to function sorts. For
example, the reflexive-closure operation cl maps one binary relation into another:

op cl : (E,E -> Boolean) -> (E,E -> Boolean)

There are two built-in operations on function sorts, the lambda term constructor and
the application operation.

If D is a sort term and exp is a term of sort E, then the lambda term

(lambda (d : D) exp)

is of sort D -> E. Occurrences of d in exp must be of sort D; if the sort of d can be
determined to be of sort D syntactically, we may omit the sort term, as in

(lambda (d) exp)

The resulting lambda term stands for the function that, for input d, yields the value of
the corresponding term exp. The variable d is regarded as a bound variable of the
lambda term. Similarly for sequences of variables (x1 x2 ... xn); thus

(lambda (x1 x2) (plus (times x1 x1) x2))

is of sort Nat, Nat -> Nat in a specification in which plus and times also have that
sort.

If f is a function of sort D -> E and d is a term of sort D, then the apply operation
yields the result (f d) of applying f to d. (See Section 1.5.)

1 BASIC SPECIFICATIONS

14 Specware

The operations on functions satisfy two implicit axioms: an α rule that allows us to
rename bound variables systematically without changing the value of a term, and a β-
rule for application, namely (in the one-variable case)

(equal ((lambda (d) ex p) arg)
exp[arg])

Here exp[arg] is the result of replacing all occurrences of d in exp with arg,
renaming bound variables systematically if necessary to avoid name clashes.

1.2.4 Quotient Sorts

Given a base sort E and an equivalence relation

r?: E, E -> Boolean

the sort E/r? denotes the quotient sort of E modulo r?. The elements of the quotient
sort E/r? are equivalence classes of elements of the base sort E. For each quotient sort
E/r?, there is a built-in abstraction function which maps each element of the base sort
to the equivalence class that contains it. This abstraction function, called quotient, is
a higher-order polymorphic function:

(quotient r?) : E -> E/r?

For example, suppose Sixteen is a sort consisting of the integers from 0 through 15;
we arrange them in a rectangular arrays follows:

0 1 2 3

 4 5 6 7

 8 9 10 11

12 13 14 15

Let mod4? be the relation that holds between two elements of Sixteen if they both
belong in the same column of the above array; thus (mod4? 1 9) is true but (mod4? 5
6) is not.

Then Sixteen/mod4? is the sort of equivalence classes of elements, where two
elements are in the same class if the relation mod4? holds between them; in other
words, Sixteen/mod4? is the sort of columns in the above array. The abstraction
function (quotient mod4?) maps a nonnegative integer in Sixteen into the column
in which it appears. Thus ((quotient mod4?) 2) and ((quotient mod4?) 6) are
both equal to the third column of the array.

The abstraction function quotient is defined by the following implicit axioms:

(iff (r? e1 e2)

Language Manual 15

1.2.5 Subsorts

(equal ((quotient r?) e1)
((quotient r?) e2)))

That is, the equivalence relation r? on E maps under abstraction into the equality
relation on E/r?. For example, two elements in the Sixteen array are equivalent with
respect to the relation mod4 if and only if the columns they appear in are equal.

Also

(fa (d : E/r?)(ex e : E) (equal d ((quotient r?) e)))

In other words, the abstraction function is surjective. For example, every column in
the Sixteen array contains an element.

1.2.5 Subsorts

Given a sort E and a unary predicate p?: E -> Boolean, the sort E|p? denotes the
subsort of E generated by p?. The subsort E|p? consists of those elements of the
supersort E that satisfy the predicate p?. For each subsort E|p?, there is a built-in
inclusion function, which maps elements of the subsort to the corresponding elements
of the supersort. This inclusion function is called relax, and is a higher-order
polymorphic function:

(relax p?) : E|p? -> E

For example, in the specification NAT-BASIC for the nonnegative integers on page 6,
the positive numbers have been defined to be the subsort of those nonnegative
integers that satisfy the predicate nonzero?. The function nat-as-pos was defined to
be equal to the inclusion function (relax nonzero?), the function that maps each
positive integer x into the nonnegative integer x.

One might think that (relax p?) is the identity function, since it maps an element
into itself. But, as we have noted earlier, it maps x viewed at an element of the subsort
into x viewed as an element of the supersort; these are not the same because we don't
think of the element as existing independently of its sort.

Another example: in the specification for arrays, (see Appendix E on page 149) an
array a may have entries a[0], … , a[n-1], where n is the size of the array. To represent
this in the specification, we introduce a function access-array, which is intended to
return the value of the array entry a[i] for given array a and index i.

Suppose E is the sort of the entries. If we declared our function with the signature

op access-array : Array, Nat -> E

1 BASIC SPECIFICATIONS

16 Specware

it would mean that our access function would have to return an array entry a[i] for
every nonnegative integer i, even though the array only has entries when i is less than
the size of a. So instead we declare our function with the signature

op access-array : ((Array, Nat) | in-bounds?) -> E

Here in-bounds? is a predicate that holds only for an array a and index i such that i is
less than the size of a. Thus the function access-array is only defined on a subsort of
the product of arrays and nonnegative integers, those for which the integer is within
the bounds of the array.

In that specification, applying the function (relax in-bounds?) to an element, say
ai, of the subsort, yields a corresponding pair <a,i>. One must be careful to apply
the function access-array only to the subsort element ai, not to the pair <a,i>.

The definition of the inclusion function relax is provided by the following implicit
axioms:

(p? ((relax p?) d))

 (implies (p? e)
(ex (d : E|p?) (equal e ((relax p?) d))))

In other words, the subsort consists of those elements of the supersort that satisfy the
predicate. For example, every positive integer corresponds to a nonnegative integer
that satisfies the relation nonzero?, and vice versa. Also

(implies (equal ((relax p?) d1) ((relax p?) d2))
(equal d1 d2))

That is, the inclusion function is injective (one-to-one). For example, it is impossible
for two distinct positive integers to correspond to the same nonnegative integer.

1.2.6 Precedence

The product and coproduct sort constructors “,” and “+” have equal precedence,
which is higher than that of the function sort constructor “->”; thus “C, D -> E” is
parsed as the function sort “(C, D) -> E,” not as the product sort “C, (D -> E).”

Similarly, the subsort and quotient sort constructors “|” and “/” have equal
precedence, which is higher than that of the product or coproduct, “,” or “+”; thus “D
+ E|p?” is parsed as “D + (E|p?).” This precedence may be overridden by using
parentheses.

The function sort constructor “->” is right associative; thus “C -> D -> E” is parsed
as “C -> (D -> E).” The product and coproduct sort constructors are not

Language Manual 17

1.3 Sort Axioms

associative; insertion of parentheses corresponds to grouping, and will generate
different products and coproducts from the ungrouped version.

1.3 Sort Axioms

Sort axioms can be used to assert an equivalence between an (elsewhere introduced)
primitive sort and a constructed sort. The sorts and operations used in a sort axiom
must be declared separately. The left side of a sort axiom must be a primitive sort; the
right side can be either a primitive sort or a constructed sort.

For example, the specification NAT-BASIC contains the sort axiom

sort-axiom Pos = Nat | nonzero?

where the sorts Pos and Nat and the operation nonzero? have already been declared.
(In this case there is actually a definition for nonzero?, but this is not required for the
predicate to be mentioned in a sort axiom).

There is a semantic freeness restriction: sort axioms cannot be used to assert the
equivalence between constructed sorts that are not structurally equivalent. For
example, a sequence of sort axioms

sort-axiom A = B, C sort-axiom A = B -> C

in a specification will result in an error message—A cannot be both a product and a
function sort. This is an implementation decision to simplify the type-checking—it
may change in future versions.

1.4 Operations

Specifications introduce operations as named constants of a specified sort. For
example, NAT-BASIC contains the following operation declarations:

const zero : Nat

op nonzero? : Nat -> Boolean

Each operation declaration consists of the keyword op or const followed by the
name of the operation, followed by a colon and a sort term which specifies the
signature of the operation. Typically, the signature of an op is a function sort and the
signature of a const is a primitive sort, but they may be used interchangeably and the
signature can be any sort term. The system chooses a specific keyword while printing:
op if the signature of the operation is a function sort, and const otherwise.

1 BASIC SPECIFICATIONS

18 Specware

It is permissible in a specification to give two distinct sort declarations to the same
operation symbol. However, these will be treated as declarations for two distinct
operations with the same name. If in subsequent expressions the type-checker cannot
determine which operation is being referred to, it is regarded as an error. For
example, every sort has a corresponding equality relation—different operations with
the same name.

Constants vs. Nullary Operations. Note that the two declarations

op f : E
op f : -> E

introduce two different operations; the former denotes a constant while the latter
denotes a 0-ary function. A constant is not identical to a 0-ary function; the difference
between them becomes apparent when they are used in a term (see Section 1.5); the
former appears as f while the latter appears as (f).

1.4.1 Built-in Operations

Built-in operations are declared implicitly in a specification and need not be declared
explicitly. We have mentioned built-in operations associated with certain sort terms,
such as relax, quotient, lambda, project, and embed. There are also built-in
boolean operations: the constants true and false, the unary not, and the binary and,
or, implies, and iff; all yield a boolean. Note that there is no n-ary and or.

1.4.2 Quantifiers

The boolean universal quantifier fa and existential quantifier ex are built-in boolean
operations. If D is a sort term and exp is a term of sort boolean, so are the quantified
terms

(fa (d : D) exp)

which means that exp holds for all d of sort D, and

(ex (d : D) exp)

which means that exp holds for some d of sort D. The symbol d is regarded as a bound
variable in the quantified term. As in the case of lambda terms, the occurrences of d in
exp must be of sort D, and the sort term may be omitted if it is redundant. If an
undeclared operator appears in an axiom or theorem, it will be given implicit
universal quantification (see Section 1.5).

For example, in the specification NAT-BASIC, we have the theorem

(fa (x : Pos) (ex (y : Nat) (equal x (succ y))))

Language Manual 19

1.4.3 Equality

Because the domain of succ is Nat, we can determine syntactically that the sort of y is
Nat and omit that sort declaration. Similarly, because the range of succ is Pos we can
determine the sort of x syntactically and omit that sort declaration. Finally, we can
omit the universal quantification on x, because it is there implicitly. Thus the above
theorem could have been written as follows with no change of meaning:

(ex (y) (equal x (succ y)))

The former way of writing the theorem is less surprising, however.

The sort term D may be primitive or constructed. For example, we have seen the
implicit axiom for the abstraction function

(fa (d : E/r?)(ex e : E) (equal d ((quotient r?) e)))

1.4.3 Equality

For every sort, there is a built-in equality relation equal declared implicitly on that
sort. These relations are all represented by the same symbol—type inference must
resolve any ambiguity. The built-in boolean operator iff is identified with the
equality relation on the sort Boolean; the two may be used interchangeably on
boolean terms. If two objects within a sort are equal, the results of applying any
operation to them will also be equal—they are indistinguishable within that
specification.

The equality relation satisfies the following implicit axioms:

(equal x x)

For given sorts D and E and operation f : D -> E,

(implies (equal d1 d2)
(equal (f d1) (f d2)))

It is not necessary to declare the equality relation for a sort, and it is illegal to provide
a definition: the relation is already defined. If a relation equal for a sort is declared
explicitly in a specification, it will be treated as distinct from the built-in equality
relation for that sort. It is permissible, however, to provide axioms that constrain the
meaning of the equality relation. For example, in the specification NAT-BASIC on
page 6, the axiom succ-is-one-to-one asserts that the equality relation cannot hold
between the successors of two distinct nonnegative integers.

1 BASIC SPECIFICATIONS

20 Specware

1.5 Terms and Formulas

Terms are constructed according to conventional rules of typed lambda calculus. In
particular:

• Each constant is a term.

• If d is a term of sort D and f is an operator of sort D -> E, then the application (f
d) is a term of sort E.

We have introduced the term-construction rules for the other built-in operators in the
appropriate sections. A formula is a term of sort boolean.

All functions in Slang accept one argument and return one result. Functions that
accept more than one argument , or none , and functions that return more than one
value are handled by accepting and returning tuples. The function application
notation implicitly builds tuples if there is more than one argument. For example,
(plus x y) is parsed as (plus <x y>).

When there is only one argument, a tuple is not automatically constructed. As a
consequence, the composition (union (split s)) below is well-formed:

op union : Set, Set -> Set

op split : Set -> Set, Set

axiom (equal s (union (split s)))

The appendix (Appendix C) contains a table of terms in Slang and their sorts.

1.6 Axioms and Theorems

Axioms and theorems in a specification are formulas that use the symbols (sorts and
operations) appearing in the signature of that specification. The distinction between
axioms and theorems is that theorems can be proved from the rest of the specification
and thus do not add to the theory generated by the specification. The order of the
axioms and theorems in a specification is not significant.

For example, the specification NAT-BASIC contains the axioms

axiom (iff (nonzero? x) (not (equal x zero)))

axiom (equal nat-of-pos (relax nonzero?))

axiom (nonzero? (nat-of-pos (succ x)))

Language Manual 21

1.6 Axioms and Theorems

axiom succ-is-one-to-one is
(implies (equal (succ x)(succ y)) (equal x y))

and the theorem

theorem (fa (x : Pos) (ex (y : Nat) (equal x (succ y))))

Note that the name of an axiom or theorem is optional.

As we have remarked, if an undeclared operator appears in an axiom or theorem, it
will be given implicit universal quantification. For example, suppose a specification
contains an axiom (p e), where neither p nor e has been declared. Then the axiom
will be taken as an abbreviation for

(fa (p e) (p e))

In other words, every predicate holds for every argument. The system will give a
warning that p is not declared, because p is syntactically in the position of an
operator—it is probably an error. It will give no warning about e because e is in the
position of an argument—it assumes that e is intended to be universally quantified.
The omitted initial universal quantifiers will be added internally; however, the system
will print the formula in the original form, without the quantifier prefix.

Type inference is used to deduce the types of omitted quantifiers. For example, as we
have remarked, the theorem

theorem (fa (x : POS) (ex (y : NAT) (equal x (succ y))))

may also be written

theorem (ex (y) (equal x (succ y))

In addition to the explicit axioms, which appear literally in the specification, we have
seen that there are implicit axioms corresponding to the equality relation, the sort
constructors, the constructor sets, and other operations that are built into
specifications.

Each specification corresponds to a theory and defines a class of “models” of the
theory. Informally, a model of a specification may be regarded as a structure, i.e., a
collection of sets and functions, that it applies to. The axioms, explicit and implicit,
determine the class of models; each axiom, unless it is redundant, outlaws some
models. For example, without the axiom succ-is-one-to-one, the specification NAT-
BASIC on page 6 would have additional models, in which the successor of 8 would be
the same as, say, the successor of 4, namely 5; these models are excluded by the
axiom.

The theorems of a specification, on the other hand, do not alter the class of models—
they apply to any model that satisfies the axioms of the specification. In principle, the

1 BASIC SPECIFICATIONS

22 Specware

theorems could be proved by the automatic theorem prover to follow from the
axioms, although this is not currently enforced by the system.

Consistency. It is quite possible to write specifications that contain inconsistent sets
of axioms, and it is impossible in general to check specifications for consistency. (The
consistency of common specifications for set theory have been questioned by
mathematicians.) If a specification is inconsistent, any sentence in its language is a
theorem, so it cannot be relied on for establishing correctness.

On the bright side, the specifications in SPECWARE for implementation languages,
such as Lisp, have been subjected to a good deal of scrutiny and are believed to be
correct and hence consistent. If we succeed in finding a refinement of a source
specification into a consistent target specification (see Section 3), the consistency of the
source specification is established. Thus, by using SPECWARE to implement a
specification, we construct a proof of its consistency, relative to that of the
implementation theory.

1.7 Definitions

A definition for an operation f:D -> E in Slang is a set of axioms that characterize f.
For example, the specification NAT-BASIC defines the predicate nonzero? as follows:

definition of nonzero? is
axiom (iff (nonzero? x) (not (equal x zero)))

Larger specifications for the nonnegative integers also contain definitions for plus,
which adds two nonnegative integers, and pred, which subtracts 1 from a positive
integers:

definition of plus is
axiom (equal (plus zero y) y)
axiom (equal (plus (nat-of-pos (succ x)) y)

(nat-of-pos (succ (plus x y))))
end-definition
definition pred-def of pred is
axiom (equal (pred (succ x)) x)

end-definition

Syntactically, a definition is a set of axioms enclosed by the pair of keywords
definition and end-definition. Optionally, the definition may have a name or the
name of the operation being defined, or both. Note that the user may select the name
of the definition but the name of the operation in the heading must agree with the
actual name of the operation that appears in the axioms. See the BNF grammar in the
Appendix (B.1) for the precise syntax of definitions

Language Manual 23

1.8 Constructor Sets

A definition does not change the class of models for the specification, but it does
assign a name to an object or function that exists in each of the models. For example,
in each model for the nonnegative integers, there exists a unique function that maps x
+1 into x; the effect of the definition pred-def is to declare that the name of that
function is pred, not to eliminate any of the models.

1.8 Constructor Sets

A constructor set is a set of operations with the same range sort; it implicitly
introduces an induction axiom for that sort. It means that every element of the range
sort can be obtained by repeated application of the elements of the constructor set.

Suppose a specification for binary trees contains a constructor set

constructors {at, cons} construct Tree

where the specification contains the following operator definitions:

at: Atom -> Tree cons: Tree, Tree -> Tree

In other words, each atom a corresponds to a binary tree (at a), and any two trees s
and t can be combined into a new tree (cons s t).

Here are some binary trees; X and Y are atoms:

The right tree is the image, under at, of the atom X. The left tree is the result of
applying the function cons to two other trees.

The intended meaning of the constructor set is that every tree either corresponds to an
atom or can be obtained by repeatedly combining other binary trees.

From this constructor statement, the following induction axiom will be introduced
implicitly:

X

X Y

X

1 BASIC SPECIFICATIONS

24 Specware

(fa (p)
(implies
(and
(fa (a : Atom) (p (at a)))
(fa (s : Tree t : Tree)
(implies (and (p s) (p t)) (p (cons s t)))))

(fa (t : Tree) (p t))))

In other words, to prove that a property is true of all trees, it suffices to show two
conditions:

• A base case, that the property is true for all the atomic trees.

• An inductive step, that if the property is true for each of two trees, it is also true
for the result of combining them into a new tree.

Not Disjoint. Note that constructor set declaration does not imply that the images of
the constructors are disjoint. Sometimes this property can be asserted by explicit
axioms, e.g.,

axiom (nonzero? (nat-of-pos (succ x)))

asserts that the images of nat-of-pos are distinct from zero.

Language Manual 25

2 Morphisms and Diagrams

2.1 Overview of Specification-Constructing Operations

There are four ways of constructing a specification in Slang:

basic—form a basic specification as a set of specification elements (sorts, sort
axioms, operations, axioms/theorems, definitions, and constructor sets).

translate—copy a specification while renaming some symbols (see Section 3.1).

import—enrich an imported specification with additional specification elements
(see Section 2.3).

colimit—take the colimit of a diagram of specifications (see Section 3.4)—this is the
primary means for combining two or more specifications.

The basic form explicitly constructs a specification, while the next three are
specification-constructing operations which take as arguments specifications and
diagrams, and yield specifications. The four ways of constructing specifications
should be considered as expressions that yield specifications. Wherever a
specification is expected in these or other expressions, the name of a specification can
be substituted.

The operations translate, import, and colimit will be described in Section 3.
However, before these operations can be explained, morphisms and diagrams need to
be described. In particular, before applying the colimit operations, which combines
more than one specification, we must indicate how the specifications are to relate with
each other. The way of relating specifications in SPECWARE is in terms of a morphism
that describes how one specification can be viewed as part of another. The colimit is
applied to a diagram of specifications related by morphisms. Furthermore, each of the
operations constructs new morphisms that describe how the newly constructed
specification is related to the given ones.

2.2 Morphisms

Definition 2.1: Morphism.

A morphism is a mapping from a specification called the source specification to a
specification called the target specification. Intuitively, it describes how the source
theory can be regarded as a part of the target theory. A morphism m from a source

2 MORPHISMS AND DIAGRAMS

26 Specware

specification S to a target specification T maps the sorts of S into the sorts of T, and the
operations of S into the operations of T such that

• The signatures of the operations are translated compatibly.

• The axioms of S are translated into theorems of T.

• The constructor sets of S are translated into constructor sets of T.

We shall write m : S → T to indicate that the morphism m has source S and target T,
i.e., m maps S intoT.

When an element of S is mapped into an element of T under a morphism, that means
those elements are being identified. For example, a morphism that maps the sort Seq
into the sort Array is identifying the sequences with the arrays, in the appropriate
specifications.

 Morphisms are described in Slang by listing a translation of each of the explicitly
declared sorts and operations. The translation of constructed sorts and formulas is
then computed inductively. Morphisms are represented by expressions of the form

morphism [name] : <source spec> -> <target spec> is
{<name> -> <name>,

<name> -> <name>,
...}

Every symbol of the source specification must be mapped into a symbol of the target
specification; however, if a symbol of the source specification is not mentioned
explicitly in the mapping, it is assumed that it is mapped into a symbol of the same
name in the target specification.

Although we have said that the source theory can be regarded as part of the target
theory, in fact multiple elements of the source theory can be mapped into the same
element in the target theory. That is, distinct sorts can map into the same sort, or
distinct operations can map into the same operation.

We typically give only the name of the source and target specifications in a
morphism, and define the corresponding specifications elsewhere, but we may
provide any expression whose value is a specification. The name we give to a
morphism is optional. The precise syntax for a morphism is given in the appendix
(Section B.1, Syntax).

Let us define the identity morphism and the composition operation for morphisms.

Language Manual 27

Definition 2.2: Identity and Composition.

For any specification S, the identity morphism is the morphism whose source and
target are both S and which maps each element of S into itself.

For any morphisms m : R → S and n : S → T, the composition of m and n is a
morphism m; n : R → T, which maps each element of S into the result of applying first
m and then n.

The reader should be convinced that the identity morphism and the composition of
two morphisms are indeed morphisms.

We begin with a toy example and continue with a more meaningful one.

Example 2.3 Consider the following two specifications:

spec FOO is spec BAR
sort A, B sort C, D, E
op f: A -> B op g: C -> D

end-spec op h: D -> E
end-spec

The following morphism MOO is well-formed.

morphism MOO : FOO -> BAR is
{A -> C,
B -> D,
f -> g}

It might be illustrated like this:

Here the function f is mapped into the function g; hence the domain A of f is mapped
into the domain C of g, and the range B of f is mapped into the range D of g.

A second mapping GOO is not a well-formed morphism:

FOO BAR

A

B

C

D

E

f g

MOO

h

2 MORPHISMS AND DIAGRAMS

28 Specware

morphism GOO : FOO -> BAR is
{A -> C,
B -> E,
f -> g}

It might be pictured like this:

Here the function f is mapped into the function g, but the range B of f is not mapped
into the range of g.

We follow with a more substantive example.

Example 2.4 Morphism over Pairs.

As an example, suppose we have the two specifications for pairs of elements. In the
first specification, PAIR (Figure 2) each component of a pair is of a different sort, D and
E respectively. For example, if D is the letters of the alphabet and E is the decimal
digits, [X, 2] would be of sort Pair.

spec PAIR is
sorts D, E, Pair
op make-pair : D, E -> Pair
op first : Pair -> D
op second : Pair -> E

axiom (equal (first (make-pair d e)) d)
axiom (equal (second (make-pair d e)) e)
constructors {make-pair} construct Pair

theorem (equal p (make-pair (first p) (second p)))
end-spec

Figure 2: The Specification PAIR

FOO BAR

A

B

C

D

E

f g

GOO

h

Language Manual 29

2.2 Morphisms

The function make-pair forms a pair from two elements, of sorts D and E respectively.
Thus makepair applied to X and 2 yields the pair [X, 2]. There are two functions, first
and second, that extract the first and second components, respectively, from a pair.
Thus first and second applied to [X, 2] yield X and 2, respectively.

The axioms and theorem describe the relationships among these functions. The
constructor statement, in this case, corresponds to an implicit axiom

(fa (P)
(implies
(fa (d : D e : E) (P (make-pair d e)))
(fa (p : Pair) (P p))))

In other words, to show that a property holds for all pairs, it suffices to show that it
holds for all pairs of form (make-pair d e). (It follows that all pairs actually have this
form.) This is a degenerate induction axiom; it has no induction hypothesis, because
the function make-pair in the constructor set does not take an argument of sort Pair;
its arguments are of sorts D and E, but these sorts have no constructor set. The
induction axiom for binary trees (Section 1.8), in contrast, is a proper induction axiom,
because the function cons in the constructor set for the sort Tree takes arguments of
sort Tree.

2 MORPHISMS AND DIAGRAMS

30 Specware

spec CONS-PAIR is
sorts Atom, Pair

op cons : Atom, Atom -> Pair
axiom uniqueness is
(implies (equal (cons a b) (cons aa bb))

(and (equal a aa) (equal b bb)))

constructors {cons} construct Pair

op head : Pair -> Atom
op tail : Pair -> Atom
definition of head is
axiom (equal (head (cons a b)) a)

end-definition
definition of tail is
axiom (equal (tail (cons a b)) b)

end-definition
theorem (equal p (cons (head p) (tail p))

op rev-pair : Pair -> Pair
definition of rev-pair is
axiom (equal (rev-pair (cons a b)) (cons b a))

end-definition
end-spec

Figure 3: The Specification CONS-PAIR

In the second specification, CONS-PAIR (Figure 3), both components of a pair are of the
same sort, Atom. For example, if Atom is the letters of the alphabet, [X, Y] would be of
sort Pair.

The functions cons, head, and tail play the role of make-pair, first, and second,
respectively, in PAIR. In addition, CONS-PAIR includes the definition of a function
rev-pair that reverses the components of a pair; thus the result of reversing the pair
[X, Y] is [Y, X]. We could not define this function in the first specification, PAIR,
because the result of reversing a pair would not be a pair—the sorts would be
reversed. The following morphism, then, embeds PAIR into CONS-PAIR and indicates
the relationship between these two specifications:

morphism PAIR-TO-CONS-PAIR : PAIR -> CONS-PAIR is
{D -> Atom,
E -> Atom,
make-pair -> cons,
first -> head,
second -> tail}

Language Manual 31

2.2 Morphisms

Note that the mapping associates each primitive sort or operation symbol in the
source specification with a corresponding primitive sort or operation symbol,
respectively, in the target specification. The sort symbol Pair from the specification
PAIR is mapped into the same symbol in the specification CONS-PAIR, even though no
replacement Pair -> Pair is included explicitly in the mapping.

Definitions vs. Axioms. Note that in the specification PAIR, the axioms for first
and second are not regarded as definitions, because they restrict the models of the
specification. Without these axioms, for example, we could have a model in which
there were many elements of sort D or E but only one pair, p1; in such a model,
whatever its arguments, the value of (make-pair d e) would be p1.

The axioms for first and second preclude this possibility. If there are at least two
distinct elements of sort D, say d1 and d2, the axiom for first would then imply that
the first element of p1 =(make-pair d1 e) is d1, and also that the first element of p1
= (make-pair d2 e) is d2, which is impossible. Similarly, if there are at least two
distinct elements of sort E, the axiom for second implies a contradiction.

On the other hand, the definitions for head and tail in the specification CONS-PAIR
are true definitions. The uniqueness axiom of this specification already guarantees
that there cannot be any such bizarre models. From this axiom and the implicit axiom
corresponding to the constructor set, we can establish that there exist unique
functions satisfying the axioms for head and tail; the definitions serve only to name
these functions.

In this case, each axiom of the source specification is mapped into an axiom of the
target specification. Thus, the axiom for first from the specification PAIR:

axiom (equal (first (make-pair d e)) d)

is mapped into the definition of head in the specification CONS-PAIR:

axiom (equal (head (cons a b)) a)

(Here a, b, d, and e are dummy variables: they are implicitly quantified universally
and do not need to be translated.) In general, however, it would suffice if each axiom
from the source were mapped into a theorem of the target; the theorem need not be
listed explicitly in the target specification, so long as it is provable from the axioms of
the target.

Observe that we could not define a morphism between CONS-PAIRS and PAIR,
because we cannot map the sort Atom into two distinct sorts D and E.

Morphisms and Built-In Constructs. The translations for built-in sorts and
operations cannot be specified in a morphism. These entities are automatically
translated to the corresponding built-in entities in the target. Examples of built-in
entities are the sort Boolean, the Boolean operations (and, or, not, etc.), quantifiers

2 MORPHISMS AND DIAGRAMS

32 Specware

(fa, ex, lambda, etc.), and equality.

Note that if the morphism m maps the sort S into the sort T, then m maps the built-in
equality on S into the built-in equality on T. You cannot use a morphism to map the
equality relation on the source sort into another relation r on the target sort; the built-
in axioms for equality on S would map into sentences that must hold for r on T, and
equality is the only relation on a sort that satisfies these equality axioms.

Morphisms and Constructed Sorts. Morphisms are defined as symbol maps of the
basic sorts and are extended to maps on sort expressions in the natural way. This
means that since the morphism MOO mentioned earlier maps sorts A into C and B into
D, it also maps, for example, the constructed sort A, B -> A into C, D -> C.

Local Morphisms. In contexts where a morphism needs to be mentioned and the
source and the target of the morphism can be inferred, it is only necessary to specify
the rules which make up the morphism; the source and target may be omitted. This
will be illustrated subsequently, e.g., in Example 2.5.

The source and target of a morphism are sometimes referred to as its domain and
codomain. The image of a morphism comprises those elements of its codomain that
are mapped onto by some elements of its domain; thus E is in the image of {X -> E}
but D is not. We say that a morphism is injective or one-to-one if it doesn’t collapse
two distinct sorts or operations of its domain into a single sort or operation,
respectively, of its codomain; thus {X -> E, Y -> E} is not one-to-one.

Morphism Terms. In some contexts an entire morphism can be identified by a
keyword; the domain (source), codomain (target), and rules can then be determined
by context. For instance, associated with every specification is the identity
morphism, which maps every sort and operation onto itself. If the domain is
determined by the context, this morphism can be denoted by the keyword identity-
morphism. There is no syntax in Slang for denoting the composition of two
morphisms; this is done using the graphical facilities of SPECWARE.

The specification-building operations, which are introduced briefly in Section 2.1 and
are fully described in Section 3, not only construct specifications but also construct
one or more morphisms which relate the constructed specifications and their
components. See the relevant subsections of Section 3 for more on the morphisms
constructed by the specification-building operations translate, import, and colimit.
These morphisms can be referred to using appropriate keywords, provided the
context determines the source, target, and rules.

Language Manual 33

2.3 Diagrams

2.3 Diagrams

A diagram is a directed multigraph whose nodes are labeled with specifications and
whose arcs are labeled with morphisms. A multigraph differs from a graph in that
there may be more than one arc between nodes. For a diagram to be well formed, the
source and target specifications of each of the morphisms must be the same as the
specifications that label the source and target nodes of the corresponding arc. To give
an example of a diagram, let us first introduce some simple specifications.

Example 2.5 Preorder Diagram.

Here is a basic specification for the theory of reflexive relations:

spec REFLEXIVE-RELATION is
sort E
op rr : E, E -> Boolean
axiom reflexive is (rr e e)

end-spec

In this specification, the operation rr stands for a reflexive relation, such as ≤ or iff;
thus if rr stands for ≤, the condition (rr d e) would mean d ≤ e. The reflexive axiom
states the reflexive property of the relation.

Here is a specification for the transitive relations:

spec TRANSITIVE-RELATION is
sort E
op tr : E, E -> Boolean
axiom transitive is
(implies (and (tr c d) (tr d e))
(tr c e))

end-spec

The operation tr in this specification plays the role of rr in the specification for the
reflexive relations. The transitivity axiom states the transitivity property of the
relation tr.

 In introducing the colimit construction in Section 3.4, we will want to combine these
two specifications to yield the notion of a preorder, which satisfies the axioms of both
specifications. For this purpose we must indicate which components of these
specifications are to be identified. We therefore introduce a third specification, which
describes what these two specifications have in common. This is the basic
specification for a binary (two-argument) relation:

2 MORPHISMS AND DIAGRAMS

34 Specware

spec BINARY-RELATION is
sort E
op br : E, E -> Boolean

end-spec

The specification is analogous to the preceding two, but it has no axioms.

Figure 4: Diagram for a Preorder

To combine these specifications we must indicate with a diagram what elements are
to be identified. In graphical form, such a diagram is illustrated in Figure 4. The
diagram indicates that the operation rr in the reflexive-relation specification is to be
identified with the operation tr in the transitive-relation specification. The binary-
relation specification acts as an intermediary in making these identifications.
Morphisms map constructs from the binary-relation specification into the
corresponding constructs in the other two specifications; if one construct is mapped
into the other, the two are to be identified.

The morphism that links the specification for binary relations to the specification for
reflexive relations is

morphism BIN-REL-TO-REFLEXIVE :
BINARY-RELATION -> REFLEXIVE-RELATION is

{br -> rr}

It indicates that the operation br is to be identified with the operation rr.

The morphism that links the binary-relation specification to the transitive-relation
specification is

REFLEXIVE-RELATION

sort

E

op

rr

TRANSITIVE-RELATION

sort

E

op

tr

BINARY-RELATION

sort

 E

op

br

axiom reflexive

axiom reflexive

Language Manual 35

2.3 Diagrams

morphism BIN-REL-TO-TRANSITIVE :
BINARY-RELATION -> TRANSITIVE-RELATION is

{E -> E,
br -> tr}

The rule E -> E could have been omitted, since both sorts have the same name E.
Note that this morphism maps the operation br into the operation tr.

 In the diagram of Figure 4, the nodes are the three specifications and the arcs are the
two morphisms. This diagram is represented textually as follows:

diagram PREORDER-DIAGRAM is
nodes BINARY-RELATION, REFLEXIVE-RELATION, TRANSITIVE-RELATION
arcs BINARY-RELATION -> REFLEXIVE-RELATION : BIN-REL-TO-REFLEXIVE,
BINARY-RELATION -> TRANSITIVE-RELATION : BIN-REL-TO-TRANSITIVE

end-diagram

When the colimit operation is applied to this diagram, the three theories will be
combined and the constructs that are linked by morphisms will be identified. For
instance, since br is mapped into rr by one morphism and into tr by the other, all
three operations will be identified in the colimit specification. This will be discussed
further in Section 3.4.

We could not have constructed a morphism directly between REFLEXIVE-RELATION
and TRANSITIVE-RELATION, or vice versa, because each specification has an axiom
that would not be mapped into a theorem of the other. But we were able to construct
morphisms from the impoverished specification BINARY-RELATION into the other
two.

Note that, as we mentioned in Section 2.2, we are able to specify the morphism by
merely listing the rules; we may omit the names BINARY-RELATION and REFLEXIVE-
RELATION of the source and target specifications, respectively, because these are the
same as the labels of the nodes at the ends of the arc, and can be inferred.

In our example of a diagram, we have given specification names as the nodes. As
usual, it is permissible to give instead any expression whose value is an unnamed
specification; similarly, we may give sets of rewriting rules or morphism terms
instead of morphism names. Thus, the first arc of the preorder diagram could have
been written:

spec
sort E
op br : E, E -> Boolean

end-spec
-> REFLEXIVE-RELATION : {br -> rr}

2 MORPHISMS AND DIAGRAMS

36 Specware

Language Manual 37

3 Specification-Building Operations

Now that we have discussed morphisms and diagrams, we can introduce the
operations for constructing a specification from other specifications: translate,
import, and colimit.

3.1 Translate

The translate operation creates a copy of a specification, perhaps renaming some
components. Here is an example:

Example 3.1 Translated Binary Relations.

The specification BINARY-RELATION was introduced on page 34. The expression

translate BINARY-RELATION by
{br -> rr}

rewrites the specification according to the indicated replacements. The resulting
specification is as follows:

spec TRANSLATED-BINARY-RELATION is
sorts E
op rr : E, E -> Boolean

end-spec

Note that the first expression translate ... cannot be given at the top level because
it is not named; it could not be referred to elsewhere.

Translation is often used to introduce a more convenient or conventional vocabulary
into a specification. The translation in the example will be useful when we want to
reconstruct the specification REFLEXIVE-RELATION by importing the specification
BINARY-RELATION (see Section 2.3, instead of defining it as a basic specification as
in Example 2.5. Another common use of the translate operation is to rename colimit
specifications (see Section 3.4).

A translation is given by the keyword translate followed by a specification and a set
of renaming rules, which indicate how the symbols of the specification are to be
renamed. A renaming map is a one-to-one map used for copying a specification. If a
renaming maps two sorts onto the same sort name, or two operations onto the same
operation name, there will be multiple sorts or operations with the same name in the
copied specification. Although this is not illegal, it is inconvenient in that references to

3 SPECIFICATION-BUILDING OPERATIONS

38 Specware

these sorts or operations will be ambiguous. In a translation, the axioms are also
rewritten to reflect the new names of the sorts and operations; however, the names of
axioms, theorems, etc., remain the same. Also, the names of bound variables are
unaffected by a translation, but changing the names of bound variables does not
change the meaning of a formula anyway.

Translation Morphisms. The translate operation also constructs a translation
morphism, which maps the elements of the original specification to the
corresponding elements of the copied specification. This morphism can be denoted
by translation-morphism, without giving its domain, codomain, or rules, in a
context in which these can be inferred (see Section 2.2). This can happen, for
instance, in presenting an interpretation (see page 67 for an example).

3.2 Import

Another simple operation for constructing specifications in Slang is import. The
purpose of the import operation is to enrich a specification with new sorts,
operations, axioms, and theorems. The operation is not technically necessary—a
specification generated with import can also be constructed with other operations—
but it is sometimes convenient.

Example 3.2 Reflexive Relations.

The specification REFLEXIVE-RELATION on page 33 is similar to BINARY-RELATION (see
Example 2.5), except that it has an axiom and employs a different notation. In that
example, we built the two specifications separately; however, when different
specifications share structure in that way, it is wise to make the relationship explicit.
For one thing, we save effort and reduce the chance of error, because we introduce
each new concept once, not many times. Furthermore, any later change we make in
the subspecification will be automatically reflected in the larger specification. These
points will be evident in our larger examples.

In Example 3.1 of the previous section, the specification BINARY-RELATION was
translated so that its notation was made consistent with that of REFLEXIVE-RELATION.
We now use the import operation to add the additional axiom:

spec REFLEXIVE-RELATION is
import
translate BINARY-RELATION by
{br -> rr}

axiom reflexive is
(rr e e)

end-spec

Language Manual 39

This alternative specification for reflexive relations makes explicit the relationship
with the binary relations.

Models and Definitional Extensions. As we have mentioned earlier, the model of a
specification may be regarded as the class of objects it discusses. For example, the

natural numbers with the relation ≤ may be regarded as a model for the

specification BINARY-RELATION; so may the sets with the proper subset relation ⊂. A
model of a specification assigns a meaning to each of its sorts and operations so that
each of its axioms will be true.

In the preceding example, the import mechanism was used to extend a theory, by
adding an axiom that restricted the models. For example, the reflexive axiom
restricted the models of the specification BINARY-RELATION, because some binary
relations are not reflexive. The nonnegative integers with ≤ are a model for
REFLEXIVE-RELATION—the sets with ⊂ are not.

Sometimes we may import a specification to define some new operations, without
restricting the models. Such an operation is called a definitional extension. For
example, let us extend the theory of binary relations by introducing the notion of the
reflexive closure (rcl br) of a binary relation br.

spec REFLEXIVE-CLOSURE is
import BINARY-RELATION

op rcl : (E, E -> Boolean) -> (E, E -> Boolean)
definition of reflexive-closure is
axiom (iff((rcl br) d e)

(or (br d e)(equal d e)))
end-definition

end-spec

Thus, the reflexive closure of the proper subset relation ⊂ is the subset relation ⊆.

In this specification, we are not restricting the models of the specification BINARY-
RELATION, because every binary relation has a reflexive closure. Thus this is a
definitional extension of the binary relations.

The notion of definitional extension will be important when we begin to discuss
refinement. (Section 4)

Note that in this specification we are defining a higher-order operation rcl, which is
applied to other operations. Its type is

(E, E -> Boolean) -> (E, E -> Boolean)

3 SPECIFICATION-BUILDING OPERATIONS

40 Specware

This means that when applied to one binary relation, i.e., an operation of type

(E, E -> Boolean)

it yields another binary relation.

There can be only one import in a specification (but see the discussion “Import
Abbreviations”on page 49). A specification term containing an import declaration (as
in the example above) stands for a specification which contains all the elements of the
imported specification together with any sorts, operations, axioms, or theorems
added in the term.

Import Morphisms. The import operation also constructs an import morphism
which maps the elements of the imported specification to the corresponding
elements of the importing specification. Rather than being spelled out explicitly, this
morphism can be denoted simply by import-morphism in a context in which the
domain and codomain can be inferred (see Section 2.2), e.g., in an interpretation.
This will be illustrated on page 67.

3.3 Application: Families of Specifications

While it is always possible to build up a large specification directly, there are many
advantages to building it modularly from smaller components, as we have remarked.
For one, we can see the relationship between various specifications—what they have
in common and how they differ. If instead of building up these specifications from
scratch separately, we develop them in a tree-like hierarchy, we can see immediately
which axioms the theories share and which serve to distinguish between them.

Example 3.3 Sets, Bags, and Sequences.

We need to develop three separate theories of finite collections of elements. These
theories have a family resemblance. In each theory, all the elements are of the same
sort and there is an empty collection and an insertion operation for introducing new
elements to a collection. In each theory, every collection can be obtained by repeatedly
inserting new elements to the empty collection. The theories differ, however, in
whether the order of the elements or their multiplicity is regarded as significant.

In a set, neither order nor multiplicity is significant. Two sets are regarded as equal if
they have the same elements, regardless of order or multiplicity. Thus, if E is the sort
of upper-case letters, {X, Y}, {Y, X}, and {X, X, Y} are all the same set.

A bag is like a set but it makes a difference how many times an element occurs in a
bag. Two bags are regarded as equal if they have the same elements with the same

Language Manual 41

3.3 Application: Families of Specifications

multiplicity; the order is insignificant. Thus the bag {{X, Y}} is the same as the bag {{Y,
X}} but different from the bag {{X, X, Y}}.

In a sequence, both order and multiplicity are significant. Two sequences are equal if
they have the same elements in the same order. Thus the three sequences [X, Y], [Y,
X], and [X, X, Y] are distinct.

Rather than defining three separate specifications, we shall define a generic
specification COLLECTION. In a collection, we do not say whether order or multiplicity
is significant—that is unspecified. Thus we cannot prove that col(X, Y) and col(Y, X)
are the same, but neither can we prove that they are distinct.

We shall then extend the theory of collections to obtain a specification SACK, in which
order is not significant but it is not specified whether multiplicity is significant. Thus,
we can prove that sack(X, Y) and sack(Y, X) are the same but we cannot prove
whether sack(X, Y) or sack(X, X, Y)are the same or distinct. Maybe so, maybe not.

The theories for sets and bags are each extensions of the theory of sacks, obtained by
introducing additional axioms. The theory of sequences, on the other hand, is a
separate extension of the theory of collections.

Collections. The theory of collections is specified as follows:

spec COLLECTION is

sorts E, Col
const empty-col : Col
op insert-col : E, Col -> Col

constructors {empty-col, insert-col} construct Col

theorem decomposition is
(implies (not (equal c empty-col))

(ex (e d)(equal c (insert-col e d))))
end-spec

Here empty-col is the empty collection and (insert-col e c) is the operation that
inserts a new element e into the collection c. The collection that we informally write as
col(d, e) is denoted in the theory by the term

(insert-col d (insert-col e empty-col))

The constructor set expresses the property that every collection can be obtained by
repeatedly applying the insertion operation, a finite number of times, to the empty
collection and the elements of E. It corresponds to an induction principle. There are no
other explicit axioms. The decomposition theorem, which follows, says that every

3 SPECIFICATION-BUILDING OPERATIONS

42 Specware

nonempty collection can be decomposed into the result of applying the insertion
function to an element and a collection.

The theory of collections is very weak: one of its models, in fact, is one in which all
collections are equal to the empty collection.

Sacks. Here is the specification for the theory of sacks:

spec SACK is
import
translate COLLECTION a
by {Col -> Sack,

empty-col -> empty-sack,
insert-col -> insert-sack}

op in-sack? : E, Sack -> Boolean

axiom empty is
(not (in-sack? e empty-sack))

axiom in-sack is
(iff
(in-sack? e (insert-sack d s))
(or (equal e d)

(in-sack? e s)))

axiom exchange is
(equal
(insert-sack e (insert-sack d s))
(insert-sack d (insert-sack e s)))

theorem retention is
(in-sack? e (insert-sack e s))

theorem conservation is
(not (equal empty-sack (insert-sack e s)))

end-spec

Note that the specification is constructed by importing the specification for
collections, translated to replace collection vocabulary with sack vocabulary.
Therefore we implicitly have a constructor set and a decomposition theorem for sacks;
the translated decomposition theorem reads

theorem decomposition is
(implies (not (equal s empty-sack))

(ex (e t)(equal s (insert-sack e t))))

Language Manual 43

3.3 Application: Families of Specifications

(Actually we have changed the names of the variables c and d to s and t by hand to
make the notation consistent with our other sack properties.)

We extend the translated specification by introducing a membership predicate in-
sack?, for determining whether an element belongs to a sack. The axioms empty and
in-sack define the predicate. A third axiom exchange asserts that the order in which
elements are inserted into a sack is inconsequential.

The axioms empty and in-sack are not merely definitions of the membership
predicate—they extend the theory and restrict its models. They imply, for instance,
the retention theorem, that the result of inserting an element into a sack does indeed
contain that element; and hence the conservation theorem, that the empty sack is
distinct from the result of inserting an element into a sack, because the empty sack has
no members but the result of the insertion has at least one. Consequently, in contrast
with the theory of collections, there is no model for the theory of sacks in which all
sacks are equal

The theory of sacks is still neutral about whether the multiplicity of the elements in a
sack is significant—in some models it is, in others it isn’t.

Sets. As before, the specification for the theory of sets is constructed by importing
the theory of sacks, translated into appropriate vocabulary:

spec SET is
import
translate SACK
by {Sack -> Set,

empty-sack -> empty-set,
insert-sack -> insert-set,
in-sack? -> in-set?}

axiom condensation is
(equal (insert-set e (insert-set e s))

(insert-set e s))
theorem equality is
(iff (equal s t)

(fa (e) (iff (in-set? e s)(in-set? e t))))
end-spec

Any properties of sacks, such as the conservation theorem, automatically apply to
sets, after translation. We introduce a single condensation axiom, to convey that
inserting an element into a set twice in succession is the same as inserting it once.
This, along with the translated sack axioms, is enough to imply the equality theorem,
that two sets are equal if they have the same elements, regardless of order or
multiplicity. The condensation axiom and the equality theorem do not hold for sacks.

3 SPECIFICATION-BUILDING OPERATIONS

44 Specware

Bags. The specification for bags, like the specification for sets, imports the
specification for sacks but translates its vocabulary:

spec BAG is
import
translate SACK
by {Sack -> Bag,

empty-sack -> empty-bag,
insert-sack -> insert-bag,
in-sack? -> in-bag?}

axiom uniqueness is
(implies
(equal (insert-bag e b) (insert-bag e c))
(equal b c))

end-spec

Instead of the condensation axiom we had for sets, we introduce a uniqueness axiom,
which says that if the results of inserting the same element into two bags are equal,
the two bags must already be equal; this axiom holds for bags but not for sets. (For
example, the inserting X into the unequal sets {Y} and {X, Y} yields the equal sets {X, Y}
and {X, Y}.) The uniqueness axiom, along with the translated axioms for sacks, allows
us to establish that two bags are equal if they have the same elements with the same
multiplicity, regardless of order. We do not state this explicitly within the
specification, because we haven’t introduced the vocabulary for talking about
multiplicity.

Sequences. Because order is significant in sequences, the specification is an
extension of the theory of collections, not sacks:

spec SEQ is
import
translate COLLECTION
by {Col -> Seq,

empty-col -> empty-seq,
insert-col -> prepend}

axiom conservation is
(not (equal (prepend e s) empty-seq))

axiom uniqueness is
(implies (equal (prepend e s) (prepend d t))

(and (equal e d) (equal s t)))
end-spec

Language Manual 45

3.3 Application: Families of Specifications

For historical reasons, the insertion operation for sequences is called prepend; it is
thought of as the operation that adds an element to the very beginning of a sequence
(although nothing in the specification requires that, it could just as well be the end or
middle). Note that the conservation property, which was a theorem for sacks, shows
up as an axiom for sequences; without it there would be models for the theory in
which all sequences are equal to the empty sequence. The uniqueness axiom for
sequences is stronger than the uniqueness axiom for bags: it says that the only way
the results of any two insertion operations can be equal is for both the corresponding
new elements and the two original sequences to be equal. For instance, inserting the
element X into a sequence never yields the same result as inserting the distinct
element Y into a sequence. The analogous property for bags is false; for instance,
inserting X into the bag {{Y}} gives the same result as inserting Y into the bag {{X}}.

The specification for sequences contains no membership relation, but a predicate in-
seq? can be introduced by a definitional extension. This is in contrast to the theory of
sacks, in which the axioms for in-sack? were an essential part of the theory and
restricted its models.

The entire family of theories we have developed is illustrated in Figure 5. In this
figure, each arc is labeled with the operations and axioms needed to extend one
theory to the next; each node is a theory and is annotated with the theorems it
mentions.

Figure 5: Family of Collection Theories

SET BAG

SEQSACK

COLLECTION

Sorts E, Col
const: empty-col
op: insert-col
constructor set

theorem: decomposition

axiom: conservation

axiom: uniqueness

theorem: retention
theorem: conservation

axiom: condensation

theorem: equality

axiom: uniqueness

op: in-sack?

axiom: empty

axiom: in-sack

axiom: exchange

3 SPECIFICATION-BUILDING OPERATIONS

46 Specware

Note that a theorem associated with any of the nodes is also a theorem of any of its
descendents, after translation into the appropriate vocabulary. This gives us a certain
economy—for instance, we need to prove the decomposition theorem only once, not
five or more times.

3.4 Colimit

The colimit operation is the fundamental method in Slang for combining
specifications. The operation takes a diagram of specifications as input and yields a
specification, commonly referred to as the colimit (or apex) of the diagram. The
colimit contains all the elements of the specifications in the diagram, but elements that
are linked by arcs in the diagram are identified in the colimit.

Each component specification of the diagram is linked to the colimit by a cocone
(pronounced “CO-cone”) morphism, which indicates how it may be viewed as a part
of the colimit.

Figure 6: A Colimit

Figure 6 illustrates a colimit operation. On the left side is a diagram of four
specifications, Sa through Sd, with morphisms between them. On the right side is the
diagram with the colimit S. The dotted arrows represent cocone morphisms between
the component specifications and the colimit.

Example 3.4 Preorders.

In the preorder diagram (Example 2.5), we indicated correspondences between
elements of two specifications, REFLEXIVE-RELATION and TRANSITIVE-RELATION, by
means of an intermediate specification, BINARY-RELATION. By applying the colimit
operation to this diagram, we can combine these specifications, identifying the

 Sc

 Sb

 Sd

 Sa

diagram

 Sc

 Sb

 Sd

 Sa

diagram with colimit

 S colimit

Language Manual 47

3.4 Colimit

corresponding elements, to obtain a specification for PREORDER, a theory of the
reflexive, transitive relations. The combined specification will contain both the
reflexive and transitive axioms.

Let us recall the specification for the binary relations:

spec BINARY-RELATION is
sort E
op br : E, E -> Boolean

end-spec

Here is the specification for the reflexive relations, phrased so that it imports the
binary-relation specification, as on page 38:

spec REFLEXIVE-RELATION is
import
translate BINARY-RELATION by
{br -> rr}

axiom reflexive is
(rr e e)

end-spec

And here is the specification for the transitive relations, phrased in the same way to
import the binary-relation specification.

spec TRANSITIVE-RELATION is
import
translate BINARY-RELATION by
{br -> tr}

axiom transitive is
(implies (and (tr c d) (tr d e))

(tr c e))
end-spec

As in Example 2.5, let us compose these into a diagram:

diagram PREORDER-DIAGRAM is
nodes BINARY-RELATION, REFLEXIVE-RELATION, TRANSITIVE-RELATION
arcs BINARY-RELATION -> REFLEXIVE-RELATION :

{br -> rr},
BINARY-RELATION -> TRANSITIVE-RELATION :
{br -> tr}

end-diagram

We can now define a preorder, i.e., a reflexive, transitive relation, by taking the
following colimit:

spec PREORDER is
colimit of PREORDER-DIAGRAM

3 SPECIFICATION-BUILDING OPERATIONS

48 Specware

This colimit is illustrated in Figure 7.

Figure 7: Colimit for PREORDER

The resulting specification PREORDER will have a single sort that identifies the separate
sorts and operations indicated by the morphisms. It is equivalent to the following
specification:

spec PREORDER is
sorts E
op pr : E, E -> Boolean
axiom reflexive is
(pr e e)

axiom transitive is
(implies (and (pr c d)(pr d e))

(pr c e))
end-spec

The observant reader will have noticed that in the specification PREORDER we have
introduced new vocabulary; the relation operation is pr. To get this effect, we may
compose the colimit operation with a translation:

spec PREORDER is
translate
colimit of PREORDER-DIAGRAM

by {br -> pr}

REFLEXIVE-RELATION

sort

op

rr

TRANSITIVE-RELATION
sort

op

tr

BINARY-RELATION
sort
 E

op

br

axiom
 reflexive

axiom

PREORDER-COLIMIT

sort

op

pr

axioms

reflexive

E

transitive

E

E

transitive

Language Manual 49

3.4 Colimit

It is typical to follow a colimit operation with a translation in this way.

Informally, the colimit specification is a “shared” union of the specifications
associated with each node of the original diagram. “Shared” here means that sorts
and operations that are linked by the morphisms of the diagram are identified as a
single sort and operation in the colimit specification. Thus the separate operations br,
rr, and tr, which are linked by morphisms of the diagram, are identified as a single
operation pr in the colimit.

 Formally, given a diagram, the colimit operation creates a new specification, the
colimit specification. It also creates a new cocone morphism from the specification at
each node in the given diagram to the new colimit specification. In Figure 7, the
arrows leading into the rightmost box, the PREORDER-COLIMIT, represent cocone
morphisms.

 The colimit specification and the cocone morphisms leading into it satisfy the
property that the resulting diagram commutes. In other words, for every node in the
diagram and for every sort or operation in the specification at that node, the
translation of the sort or operation along any path leading from the node to the
colimit specification is the same; thus, whatever path we follow from the operation br
in the specification BINARY-RELATION, we reach the same operation in PREORDER-
COLIMIT. Furthermore, the colimit specification only contains those sorts and
operations which arise as the translations of some sort or operation in the
specification at some node in the diagram.

Cocone Morphisms. As discussed just above, for each node, the colimit operation
constructs a cocone morphism from the specification at that node in the given
diagram to the colimit specification. These morphisms can be denoted by cocone-
morphism from <node-name> in a context in which the codomain can be inferred
(see Section 2.2); the domain is indicated by <node-name>.

Import Abbreviations. Slang provides abbreviations for two frequently occurring
constructs involving colimits and imports

• The phrase “import colimit of diagram <diagram>” can be abbreviated as
“import <diagram>.”

• The construct

spec
import colimit of diagram
nodes <spec1>, <spec2>, ..., <specn>

end-diagram ...
end-spec

in which the diagram has no arcs, can be abbreviated as simply

3 SPECIFICATION-BUILDING OPERATIONS

50 Specware

spec import <spec1>, <spec2>, ..., <specn> ... end-spec

3.4.1 The Colimit Construction Algorithm

The colimit specification and the associated cocone morphisms are constructed using
the standard union-find algorithm for computing the connected components of a
graph. The disjoint union of the sorts and operations contained in the specifications at
all the nodes in the diagram is formed; note that, if the same specification labels two
different nodes in a diagram, then two copies of the sorts and operations in that
specification are generated in the disjoint union. This set is partitioned into
equivalence classes according to the mappings given by the morphisms that label the
arcs in the diagram. Two sorts or operations are made equivalent (i.e., they are put
into the same equivalence class) iff there is an arc whose morphism maps one into the
other. The colimit specification contains one sort or operation corresponding to each
equivalence class. The cocone morphism from the specification at each node in the
diagram is the map that takes each sort or operation to the equivalence class that
contains it.

In the presence of sort axioms, it is possible for the basic equivalence classes to contain
multiple constructed sorts. Hence, when using sort axioms, you must ensure that no
two distinct constructed sorts are made equivalent: this would violate the freeness
restriction—see the discussion of sort axioms in Section 1.3 on page 17.

As a special case of the colimit operation, if a diagram consists of just nodes with no
arcs between them, the colimit is the disjoint union of the specifications labeling the
nodes of the diagram. In other words, the equivalence classes are all singletons.

3.4.2 Colimit to Merge Elements

We have used the colimit operation to combine separate theories; morphisms indicate
what elements of the theories are to be identified. The colimit operation can be used to
identify two sorts or operations in a single specification. This is illustrated in the
following example.

Example 3.5 Binary Relations.

In our specification BINARY-RELATION, the domain and codomain of our relations
were of the same sort E. Let us reconstruct this specification by assuming we have a
specification BINARY-RELATION-DISTINCT, in which the domain and codomain may
be of two different sorts, D and E respectively. We shall use the colimit operation to
identify the two sorts D and E to obtain a specification equivalent to our BINARY-
RELATION, in which the domain and codomain of a relation are of the same sort.

Language Manual 51

3.4.2 Colimit to Merge Elements

The more general specification for the binary relations, in which the domain and
range may be distinct, is:

spec BINARY-RELATION-DISTINCT is
sorts D, E
op bd : D, E -> Boolean

end-spec

To identify the two sorts D and E, we introduce a specification ONE-SORT with only a
single sort. This specification is as follows:

spec ONE-SORT is
sort X

end-spec

The sort X will be linked by two morphisms to D and E respectively; thus, all three
sorts will be regarded as the same in the colimit. Actually, the colimit will have a
single sort, the equivalence class {D,E,X}. This class may also be referred to by the
aliases D, E, and X.

The colimit operation that combines these specifications is

spec BINARY-RELATION is
translate
colimit of
diagram
nodes ONE-SORT, BINARY-RELATION-DISTINCT
arcs ONE-SORT -> BINARY-RELATION-DISTINCT : {X -> D},

ONE-SORT -> BINARY-RELATION-DISTINCT : {X -> E}
end-diagram

by {bd -> br} colimit}

It is illustrated graphically in Figure 8.

Figure 8: Binary Relation Colimit Diagram

Note that, as we mentioned earlier, there are two morphisms from ONE-SORT to
BINARY- RELATION-DISTINCT:

bd

BINARY-RELATION-

COLIMIT

E

op

br

sort

BINARY-RELATION-

DISTINCT

D
E

op

sorts

ONE-SORT

sort

X

mD

mE

3 SPECIFICATION-BUILDING OPERATIONS

52 Specware

• mD, mapping X into D.

• mE, mapping X into E.

As a result, in the colimit, D and E are collapsed into a single sort. As we saw in the
previous example, the vocabulary for the colimit (br instead of bd) is introduced in a
subsequent translation phase.

3.4.3 Colimit to Instantiate Parameters

 In our next example, we shall use the colimit operation to instantiate parameters.

Example 3.6 Sets of Pairs.

We have seen a specification for the theory of finite sets, in which the elements of the
sets are all of the same sort E (Section 3.3 on page 40). We shall now give a
specification PAIR for pairs [d, e], where d and e are of sorts D and E, respectively. We
shall then use the colimit operation to construct a specification SET-OF-PAIRS for sets
whose elements are all pairs.

The specification for pairs, as on page 28, is as follows:

spec PAIR is
sorts D, E, Pair
op make-pair : D, E -> Pair
op first : Pair -> D
op second : Pair -> E

axiom (equal (first (make-pair d e)) d)
axiom (equal (second (make-pair d e)) e)
constructors {make-pair} construct Pair

theorem (equal p (make-pair (first p) (second p)))
end-spec

In this specification, the pairs are of sort Pair. The operation make-pair constructs a
pair from two elements; the two functions first and second extract the first and
second components, respectively, from a pair.

To combine these two theories, we want to make E, the sort of the elements of the sets,
the same as Pair, the sort of the pairs. For this purpose, we introduce a third
specification, the theory ONE-SORT we used in the previous example, to indicate the
sorts that are to be identified. This was the specification with a single sort X and no
operations or axioms. Two morphisms identify X with the sort E of SET and the sort
Pair of PAIR, respectively.

Language Manual 53

3.4.3 Colimit to Instantiate Parameters

The combination of the theories is achieved by the following colimit operation:

spec SET-OF-PAIRS is
translate
colimit of
diagram
nodes ONE-SORT, SET, PAIR
arcs
ONE-SORT -> SET : {X -> E},
ONE-SORT -> PAIR : {X -> Pair}

end-diagram
by {Set -> Set-of-Pairs,

empty-set -> empty-set-of-pairs,
insert-set -> insert-set-of-pairs,
in-set? -> in-set-of-pairs?}

We follow the colimit operation with a translation, so that the set operations in the
colimit will be distinguished by the suffix set-of-pairs. Thus, the empty set in this
specification is called empty-set-of-pairs. A diagram of the essentials of the colimit
is given in Figure 9.

Figure 9: Set-of-Pairs Colimit Diagram

The specification obtained by taking the colimit is equivalent to one presented
directly in Figure 10.

SET-OF-PAIRS-

COLIMIT

Set-of-Pairs
Pair
D1
D2

sorts

ONE-SORT

sort

X

PAIR

sorts

Pair
D1
D2

SET

sorts

Set
E

3 SPECIFICATION-BUILDING OPERATIONS

54 Specware

spec SET-OF-PAIRS is
sorts Set-of-Pairs, Pair, D2, D1
op in-set-of-pairs: Pair, Set-of-Pairs -> Boolean
op insert-set-of-pairs: Pair, Set-of-Pairs -> Set-of-Pairs
const empty-set-of-pairs: Set-of-Pairs
op second: Pair -> D2
op first: Pair -> D1
op make-pair: D1, D2 -> Pair
constructors {empty-set-of-pairs, insert-set-of-pairs}
construct Set-of-Pairs

constructors {make-pair} construct Pair
conjecture equality is
(fa (t s)
(iff
(equal s t)
(fa (e) (iff (in-set-of-pairs e s) (in-set-of-pairs e t)))))

axiom condensation is
(fa (s e)
(equal
(insert-set-of-pairs e (insert-set-of-pairs e s))
(insert-set-of-pairs e s)))

theorem conservation is
(fa (s e)
(not (equal empty-set-of-pairs (insert-set-of-pairs e s))))

theorem retention is
(fa (s e) (in-set-of-pairs e (insert-set-of-pairs e s)))

axiom exchange is
(fa (s d e)
(equal
(insert-set-of-pairs e (insert-set-of-pairs d s))
(insert-set-of-pairs d (insert-set-of-pairs e s))))

axiom in-sack is
(fa (s d e)
(iff
(in-set-of-pairs e (insert-set-of-pairs d s))
(or (equal e d) (in-set-of-pairs e s))))

axiom empty is
(fa (e) (not (in-set-of-pairs e empty-set-of-pairs)))

theorem decomposition is
(fa (c)
(implies
(not (equal c empty-set-of-pairs))
(ex (e d) (equal c (insert-set-of-pairs e d)))))

conjecture
(fa (x) (equal x (make-pair (first x) (second x))))

axiom (fa (x2 x1) (equal (second (make-pair x1 x2)) x2))
axiom (fa (x2 x1) (equal (first (make-pair x1 x2)) x1))

end-spec

Figure 10: Specification of Sets of Pairs Defined Directly

Language Manual 55

3.4.4 Qualified Names

This specification combines axioms from the two specifications. Note that, as our
specifications grow larger, it becomes more economical to use the colimit and other
specification-constructing operations than to define specifications directly.

3.4.4 Qualified Names

As explained above, the sorts and operations in a colimit specification are equivalence
classes. Each such sort or operation inherits all the names of its elements as aliases,
and may be referred to (in a specification which imports the colimit) by any one of
these aliases. However, it is frequently the case that the name of an element of an
equivalence class does not uniquely determine the class. This can occur when more
than one node in the diagram for the colimit is associated with the same specification.

In such a case, to denote these equivalence classes, qualified names are used. A simple
qualified name is a name of the form <qualifier>.<name>. The qualifier is the name
of a node in the diagram used to construct the colimit. The denotation of such a
qualified name is the equivalence class that contains the sort or operation denoted by
the unqualified name in the specification attached to the qualifier node. Qualified
names need not be used if a sort (or operation) name alone uniquely identifies an
equivalence class. This is true even if the equivalence class contains many names.

Example 3.7 Double Binary Relations.

To illustrate the need for qualified names, consider the following specification, in
which two binary relations are defined on the same sort.

spec DOUBLE-BINARY-RELATION is
colimit of
diagram
nodes A: ONE-SORT,

B: BINARY-RELATION,
C: BINARY-RELATION

arcs A -> B : {X -> E},
A -> C : {X -> E}

end-diagram

Here we take the colimit of a diagram that contains two nodes labeled by the same
specification, that of a binary relation. To collapse the sorts in the two copies of the
binary relation specification into one, we introduce a third node, labeled with the
specification ONE-SORT. Two morphisms map the sort X of ONE-SORT into the two
copies of the sort E of BINARY-RELATION, forcing them to be the same; the two copies
of the relation br are not linked, and hence are taken to be distinct.

3 SPECIFICATION-BUILDING OPERATIONS

56 Specware

 The colimit specification will contain a single sort, the equivalence class {E,X}, with
aliases E and X, and two operations with the same name and sort:

br : {E,X}, {E,X} -> Boolean

If, in another specification that imports DOUBLE-BINARY-RELATION, we want to refer
to these operations, we have to use qualified names, B.br and C.br, to distinguish the
two copies. For example, we could rename these operations and require that they be
inverses:

spec FAMILY is
import
translate DOUBLE-BINARY-RELATION
by {E -> People,

B.br -> parent,
C.br -> child}

axiom (iff (parent x y) (child y x))
end-spec

In general, to handle the case of the specification attached to a node being itself a
colimit, cascaded qualifiers are allowed. That is, the most general form of a reference
in Slang is

<qualifier>.<qualifier>....<qualifier>.<name>

Such a reference is resolved by starting with the outermost qualifier and proceeding
inwards. That is, the outermost qualifier must be the name of a node in the diagram
used to construct the current colimit; that node must itself correspond to a colimit; the
second qualifier must be the name of a node in the diagram used to construct that
colimit; and so forth.

While qualified names can be used to refer to a sort or operation of a colimit
specification, the system does not display specifications using qualified names. If an
equivalence class with more than one element is formed in a colimit specification, it is
printed as an equivalence class, i.e., as the set containing all of the names of the sorts
(operations) in the class. If the class contains just a single name, that name is printed
and the set brackets are suppressed.

3.4.5 Consistency of Colimits

It is possible to use the colimit operation to construct an inconsistent theory, even if all
the component specifications in the diagram are themselves consistent. This can
happen when the axioms from the component theories contradict each other.

Language Manual 57

3.4.5 Consistency of Colimits

For example, suppose we want to construct a theory that combines the properties of
sets and sequences; the elements of the sets and sequences will be bits, zero and one.
We specify the combination by the following colimit:

spec SEQ-SET is
import
colimit of diagram
nodes COLLECTION, SEQ, SET, ONE-SORT, BIT
arcs
ONE-SORT -> BIT : {X -> Bit},
ONE-SORT -> COLLECTION : {X -> E},
COLLECTION -> SEQ :
{Col -> Seq,
empty-col -> empty-seq,
insert-col -> prepend},

COLLECTION -> SET :
{Col -> Set,
empty-col -> empty-set,
insert-col -> insert-set}

end-diagram

theorem (equal one zero)
theorem (not (equal one zero))

end-spec

The diagram for the colimit of this specification is illustrated as follows:

ONE-SORT

Sort

X

BIT

Sort

Bit

COLLECTION

Sort

E

insert-col

empty-col

Col

SEQ

Sort

E

insert-seq

empty-seq

Seq

SET

Sort

E

insert-set

empty-set

Set

3 SPECIFICATION-BUILDING OPERATIONS

58 Specware

Note that the sequence and set specifications have been linked together via the
collection specification, so that the respective elements, collections, empty collections,
and insertion functions of these specifications have been identified. (The identification
of the elements in the three specifications does not have to be spelled out explicitly in
the morphisms of the diagram, because they happen to have the same name E.) Hence
collections in the colimit have properties of both sequences and sets. Also the
elements of the three specifications are linked, via the specification ONE-SORT, with
the bits; the specification for bits is as follows:

spec BIT is
sort Bit
op zero : Bit
op one : Bit
axiom (not (equal zero one))
constructors {zero, one} construct Bit

end-spec

Thus the elements of the sequences and sets are zero and one; the axiom ensures that
these elements are distinct, and the constructor set guarantees that there are no others.

The inconsistency of the resulting specification is demonstrated by including two
contradictory theorems. That zero and one are not equal is the axiom of the
specification BIT, which has been inherited via the colimit mechanism. That they are
equal follows because, by axioms of the sets, col (zero, one) is equal to col (one,
zero). But then, by the uniqueness axiom for sequences, zero equals one.

Note that if we had not linked the elements to the bits or some other specification with
at least two elements, no contradiction would have been obtained. We could use the
same kind of argument to show that any two elements are equal, i.e., that the sort of
elements actually has only one element, but that is not a contradiction.

Although there is no general mechanism for checking consistency of a colimit,
SPECWARE can detect inconsistencies in some cases by invoking the system’s theorem
prover. Furthermore, if we use SPECWARE to generate code for a specification (Section
6), we must find a refinement into one of the built-in theories; assuming that these
theories are themselves consistent, that implies that the specification is also consistent.

Language Manual 59

Part II Refinement Constructs in Specware

The principal technique for software design and development in SPECWARE is a
process of refinement of a problem (or source) specification into a solution (or target)
specification. Refinements replace behavioral constraints with algorithms and
abstract data structures with implementations. Source and target specification as well
as the refinements between them are precise, formal objects. Slang’s refinement
constructs, introduced and defined in subsequent chapters, address three important
aspects of refinement:

• formation of a basic refinement (interpretation).

• sequential (vertical) composition of refinements (refinement layers); this
allows the development of software by successive refinement.

• parallel (horizontal) composition of refinements (refinement components); this
allows us to develop different components of a piece of software separately and
to combine the results.

PART II REFINEMENT CONSTRUCTS IN SPECWARE

60 Specware

Language Manual 61

4 Overview of Refinement

A morphism maps each element (e.g., a sort or operation) of the source specification
into an element that exists explicitly in the target; this notion is too restrictive to serve
as the basis for all refinement. Interpretations generalize morphisms to capture a
more applicable notion of specification refinement. In particular, we may map
elements in the source into elements that do not exist explicitly in the target, but that
are introduced by definitions. These new elements are introduced in an intermediate
specification known as a “mediator”.

In SPECWARE, refinement of specifications proceeds by induction on the specification
structure; in other words, we define the refinement of a structured specification,
which has been defined by specification-constructing operations, in terms of the
refinements of its components.

 The next section gives an overview of refinement of basic specifications and the
following section gives an overview of the refinement of structured specifications.
These notions are more fully discussed in Section 5. It will then be seen that
refinement of structured specifications requires a systematic lifting of specification
notions (specifications, specification morphisms, and specification-constructing
operations) to corresponding refinement notions (interpretations, interpretation
morphisms, and interpretation-constructing operations).

Convention. All the morphisms and diagrams we treated in Part I were specification
morphisms and diagrams. In Part II, we shall encounter other kinds of morphisms
and diagrams, e.g., interpretation morphisms and interpretation diagrams. We have
the convention, however, that when “morphism” or “diagram” is used without a
qualifier, it means “specification morphism” or “specification diagram,”
respectively. Other uses are qualified with the kind of objects involved.

4.1 Refinement of Basic Specifications

The basic refinement construct in Slang is an interpretation (see Section 5).
Interpretations generalize morphisms as follows.

We have seen (Section 2.2) that a morphism from specification S to specification T
maps the sorts, operations, and axioms of S into sorts, operations, and theorems,
respectively, of T. We have also seen (Section 3.2) that a definitional extension of T is a
specification that contains all the sorts, operations, and axioms of T plus definitions of
additional sorts and operations. An interpretation from S to T, then, is a morphism
from S into a mediator, often called S-as-T, which is a definitional extension of T. We

4 OVERVIEW OF REFINEMENT

62 Specware

shall then also say that T is a refinement of S. The words “refinement” and
“interpretation” are synonymous.

For example, in the next section we implement sets in terms of bags. Under the
interpretation we construct, each set corresponds to a bag with no repeated elements.
In the basic specification for bags, there is no sort corresponding to bags with no
repeated elements. Therefore, we define this sort in a mediator that is a definitional
extension of the specification for bags. The morphism then maps the sort of sets in the
source into this new sort in the mediator.

Every morphism from S to T is an interpretation, because T can be regarded as a
definitional extension of itself. But not every interpretation is a morphism, because
some elements of S may map into sorts or operations of the definitional extension of T
that are not in T itself. It will turn out that interpretations, like morphisms, are closed
under sequential composition—the result of following one interpretation with
another is a refinement of the original specification. This allows us to follow one
refinement by another.

4.2 Refinement of Structured Specifications

We systematically exploit the specification structure to construct interpretations for
complex specifications.

Colimit Refinement The colimit of a diagram of interpretations yields an
interpretation from a colimit of the interpretations sources to a colimit of the
interpretation targets.

Translation Refinement If specification T is a translation of specification S, then
there is a translation of any interpretation with source S into an interpretation with
source T.

Import Refinement If specification T imports specification S, it is not in general
possible to construct an interpretation for T from an interpretation for S. However, it
is possible if the import morphism is a definitional extension.

Language Manual 63

5 Interpretations and their Composition

We first introduce the syntax for interpretations in Slang and illustrate with some
examples. Subsequently, we discuss the sequential (vertical) and parallel (horizontal)
composition of interpretations. The parallel compositions, i.e., the gluing of
interpretations from pieces, requires us to consider interpretation morphisms and a
generalization of interpretations, interpretation schemes. Parallel composition
requires that the refinement components be compatible. This compatibility notion is
made precise in Section 5.4.

Before we give the definition of an interpretation, let us give a more technical
treatment of the notion of a definitional extension.

5.1 Definitional Extensions

An interpretation from S into T is a morphism from S into a definitional extension of
T. We have already introduced definitional extensions informally (Section 3.2). Now
let us go over the same material more formally.

For two specifications S and T, a morphism S to T is a strict definitional extension if it
is injective (one-to-one) and if every sort or operation of T that is outside the image of
the morphism is defined in terms of elements that are inside the image. A definitional
extension is a strict definitional extension optionally composed with a specification
isomorphism. (An isomorphism is an injection whose image includes all the elements
of the specification, e.g., a translation.)

 If m: S →T is a definitional extension, we also say that T is a definitional extension of
S. If T is a definitional extension of S, then T is consistent if and only if S is consistent.
Also, any translation of a specification is a definitional extension of that specification.

 A specification and its definitional extensions are in some sense equivalent—they
define the same theories and have the same models, except for changes in
vocabulary—but the extensions will contain explicit definitions for new sorts and
operations.

In the present implementation, SPECWARE determines whether a morphism is a
definitional extension by using syntactic properties of definitions. A definitional
extension will graphically be shown as

S Td

5 INTERPRETATIONS AND THEIR COMPOSITION

64 Specware

In the following figure, suppose T¢ is a colimit of the diagram containing the
morphisms m and n (and hence S, S¢, and T); we call such a configuration a pushout
and indicate it with the marking “po.’

Pushouts preserve definitional extensions in the sense that if m is a definitional
extension, then the opposite (cocone) morphism m¢ is also a definitional extension.
Furthermore, definitional extensions are closed under (sequential) composition—the
composition of two definitional extensions is also a definitional extension. Both
properties, preservation by pushouts and closure under composition, will be needed
for sequential composition of interpretations.

5.2 Basic Interpretations

Now that we have discussed definitional extensions, we can give the definition of an
interpretation.

Definition 5.1: Interpretation.

An interpretation with domain (or source) specification S and codomain (or target)
specification T has several components:

• A definitional extension of T, called the mediator specification, denoted by S-
as-T.

• A source morphism s from S into the mediator S-as-T.

• A target morphism t from T into S-as-T.

We require that the target morphism t be a definitional extension—hence t is one-to-
one and any axioms of the mediator that are outside of the image of t merely define
new sorts or operations without restricting the models. We also allow the mediator to
employ a different vocabulary. We may also say that the mediator itself is a
definitional extension of the target—this agrees with our terminology in the previous
subsection.

S S¢d
m

m′

n′n

T T¢d
po

Language Manual 65

5.2 Basic Interpretations

 Typically, the mediator S-as-T will import the target T and add whatever definitions
are necessary to provide images or representations for the elements of S. If the target
morphism were not a definitional extension, there would be no guarantee that we
could use the interpretation to provide implementations for elements of the source
specification.

A prototypical example of a named Slang interpretation is of the form

interpretation s-to-t: S => T is
mediator S-as-T
dom-to-meds
cod-to-med t

Note the use of the double arrow instead of a single arrow, to indicate an
interpretation rather than a morphism.

A graphical rendering of this construct is as follows:

Because any specification can be regarded as a definitional extension of itself, any
morphism can be the source morphism of an interpretation whose target morphism is
the identity. In this sense, the notion of interpretation is considered to be a
generalization of the notion of a morphism. Usually, though, we must extend the
target specification with definitions of new sorts and operations to serve as images of
the elements of the source specification.

Example 5.2 Interpretation of Sets as Bags.

Here is a paradigmatic use of an interpretation to refine a data type specification: the
representation of sets by bags. Both the set and the bag specifications describe finite
unordered collections of elements. While it is not meaningful to ask how many times
an element occurs in a set, it is meaningful in a bag (see Families of Specifications,
Example 3.3).

Our specification for sets was given on page 43. It provided a constant empty-set, an
operation insert-set for adding a new element into a set, and a predicate in-set-
for determining whether an element belongs to a set. Our specification for bags was
given on page 44. It provides a constant empty-bag, an operation insert-bag, and a
predicate in-bag- analogous to those for sets.

 We shall represent sets as bags in which no elements are duplicated; for example, the
set {X, Y, Z} will be represented as the corresponding bag {{X, Y, Z}}. We cannot
simply map Set into Bag, empty-set into empty-bag, insert-set into insert-bag,
and so forth, because the condensation axiom for sets, which says that inserting an

S S-as-T
s Tt

d

5 INTERPRETATIONS AND THEIR COMPOSITION

66 Specware

element twice in succession into a set is the same as inserting it once, will then
translate into a sentence that is not true of bags. Instead, our specification for bags is
augmented in the mediator with a new sort, Set-as-Bag, which corresponds to bags
with no duplicated elements. We also introduce operations on this sort that allow us
to mimic the set operations. The axioms for sets will be translated into sentences that
do hold for the new sort and operations. The extended specification, SET-AS-BAG, is
given in Figure 11.

spec SET-AS-BAG is
import BAG
sort Set-as-Bag
op no-dup-bag? : Bag -> Boolean
definition of no-dup-bag? is
axiom (no-dup-bag? empty-bag)
axiom (iff (no-dup-bag? (insert-bag e b))

(and (not (in-bag? e b)) (no-dup-bag? b)))
end-definition
sort-axiom Set-as-Bag = Bag | no-dup-bag?
op bag-of-s-as-b : Set-as-Bag -> Bag
definition of bag-of-s-as-b is
axiom (equal bag-of-s-as-b (relax no-dup-bag?))

end-definition

const empty-s-as-b : Set-as-Bag
op insert-s-as-b : E, Set-as-Bag -> Set-as-Bag
op in-s-as-b? : E, Set-as-Bag -> Boolean

definition of empty-s-as-b is
axiom (equal (bag-of-s-as-b empty-s-as-b) empty-bag)

end-definition
definition of insert-s-as-b is
axiom (implies (in-bag? e (bag-of-s-as-b sb))

(equal (bag-of-s-as-b (insert-s-as-b e sb))
(bag-of-s-as-b sb)))

axiom (implies (not (in-bag? e (bag-of-s-as-b sb)))
(equal (bag-of-s-as-b (insert-s-as-b e sb))

(insert-bag e (bag-of-s-as-b sb))))
end-definition
definition of in-s-as-b? is
axiom (equal (in-s-as-b? e sb)

(in-bag? e (bag-of-s-as-b sb)))
end-definition

constructors {empty-s-as-b, insert-s-as-b} construct Set-as-Bag
end-spec

Figure 11: Specification for Sets Represented as Bags

Language Manual 67

In this specification, we introduce a predicate no-dup-bag? to determine whether a
bag has no multiple occurrences of elements. That predicate is used to define Set-as-
Bag, the subsort of bags that satisfy no-dup-bag?. We define bag-of-s-as-b to be the
function (relax no-dup-bag?), which maps x viewed as an element of the subsort
Set-as-Bag into x viewed as an element of Bag.

We then introduce a constant and two operations on the new subsort—these are to
serve as “implementations” for empty-set, insert-set, and in-set?, respectively.
For instance, the constant empty-s-as-b is defined to be the empty bag, viewed as an
element of the subsort. Finally we introduce a constructor set for Set-as-Bag, to serve
as the image for the constructor set of the set specification.

Now that we have augmented the specification for bags, we can define an
interpretation from sets into bags. The mediator of this specification will be the
augmented specification, SET-AS-BAG. The source morphism, which maps the source
into the mediator, will be

morphism SET-TO-BAG : SET -> SET-AS-BAG is
{Set -> Set-as-Bag,
empty-set -> empty-s-as-b,
insert-set -> insert-s-as-b,
in-set? -> in-s-as-b?}

The target morphism, which maps the target into the mediator, will be simply the
import morphism (see “Import morphisms” in Section 3.2); this is possible because
the mediator imports the bag specification, which is the target.

Therefore our entire interpretation is

interpretation SET-TO-BAG : Set => Bag is
mediator SET-AS-BAG
dom-to-med SET-TO-BAG
cod-to-med import-morphism

Note that we have chosen to give the same name to the morphism and the
interpretation; this is legal because morphisms and interpretation have separate name
spaces; which meaning is intended is clear from context. We could have said
{}instead of import-morphism; this would give the same result because the import
morphism maps each element of the target into the same element in the mediator.
However, if there were more than one element with the same name, it would be
ambiguous to say {}.

5 INTERPRETATIONS AND THEIR COMPOSITION

68 Specware

Example 5.3 Interpretation of Bags as Sequences.

In our next example, we refine bags into sequences. This example illustrates the use of
a quotient sort—each bag is mapped into an equivalence class of sequences, all of
them permutations of each other. For example, the bag {{X, Y}} will be mapped into a
class of two sequences, [X, Y] and [Y, X]. But the example is also of interest because we
shall subsequently compose it with our previous refinement, from sets to bags—our
first example of the (sequential) composition of interpretations. The composition will
then refine sets into sequences. For example, the set {X, Y} will be represented by the
equivalence class of two sequences, [X, Y] and [Y, X]. If we have an implementation
for sequences, the composition will give us an implementation for sets.

Our specification for sequences was given in Section 3.3. Note that we cannot simply
represent bags as sequences. Because the order of the elements in bags is irrelevant
but the order of the elements in sequences is not, such an identification would result
in an inconsistency—the exchange axiom for sacks and bags would map into an
untrue sentence about sequences. Instead, just as we did when we represented sets as
bags, we augment the sequence specification to include sorts and operations that
allow us to mimic bags and bag operations. The extended specification, BAG-AS-SEQ,
is given in Figure 12.

In this specification, we introduce a function count(x s) to count how many times
the element x occurs in the sequence s. Rather than returning a nonnegative integer n
as the answer—we have not imported a specification for the nonnegative integers—
we return a sequence containing exactly n occurrences of x. Thus

(count X ([X, X, Y]) = [X, X])

We then define a predicate perm? that determines whether two sequences are
permutations of each other. It does this using the count function to see if every
element occurs exactly the same number of times in each sequence. This defines an
equivalence relation on the sequences.

The sort Bag-as-Seq is then defined to be the quotient of the sequences by the
permutation relation. The function b-as-s-of-seq is defined to be the quotient
function that maps each sequence into its corresponding equivalence class.

We can then define the constant empty-b-as-s, the function insert-b-as-s, and the
predicate in-b-as-s? to be the analogues for equivalence classes to empty-bag,
insert-bag, and in-bag?, respectively, for bags. Each of these elements of the
augmented specification for sequences will serve as the implementation of its
analogue for bags. Because we have not introduced a membership function in-seq?
into our specification for sequences, we must define the implementation predicate
in-b-as-s? explicitly in the mediator. We also introduce a constructor set for Bag-
as-Seq, to serve as the image for the constructor set for Bag.

Language Manual 69

5.2 Basic Interpretations

Next we define a morphism mapping each element of the specification for bags into
its corresponding implementation in the augmented specification for sequences.

morphism BAG-TO-SEQ : BAG -> BAG-AS-SEQ is
{Bag -> Bag-as-Seq,
empty-bag -> empty-b-as-s,
insert-bag -> insert-b-as-s,
in-bag? -> in-b-as-s?}

Our interpretation from bags to sequences is then

interpretation BAG-TO-SEQ : BAG => SEQ is
mediator BAG-AS-SEQ
dom-to-med BAG-TO-SEQ
cod-to-med import-morphism

Note that, as before, we could replace import-morphism by{}.

5 INTERPRETATIONS AND THEIR COMPOSITION

70 Specware

spec BAG-AS-SEQ is
import SEQ
op count : E, Seq -> Seq
definition of count is
axiom (equal (count e empty-seq) empty-seq)
axiom (equal (count e (prepend e s)) (prepend e (count e s)))
axiom (implies (not (equal e d))

(equal (count e (prepend d s)) (count e s)))
end-definition

op perm? : Seq, Seq -> Boolean
definition of perm? is
axiom (iff (perm? s t)

(fa (e) (equal (count e s) (count e t))))
end-definition

sort Bag-as-Seq
sort-axiom Bag-as-Seq = Seq/perm?
op b-as-s-of-seq : Seq -> Bag-as-Seq
definition of b-as-s-of-seq is
axiom (equal b-as-s-of-seq (quotient perm?))

end-definition

const empty-b-as-s : Bag-as-Seq
op insert-b-as-s : E, Bag-as-Seq -> Bag-as-Seq
op in-b-as-s? : E, Bag-as-Seq -> Boolean
definition of empty-b-as-s is
axiom (equal empty-b-as-s (b-as-s-of-seq empty-seq))

end-definition
definition of insert-b-as-s is
axiom (equal (insert-b-as-s e (b-as-s-of-seq s))

(b-as-s-of-seq (prepend e s)))
end-definition
definition of in-b-as-s? is
axiom (not (in-b-as-s? e empty-b-as-s))
axiom (iff (in-b-as-s? e (insert-b-as-s d bs))

(or (equal e d) (in-b-as-s? e bs)))
end-definition

constructors {empty-b-as-s, insert-b-as-s} construct Bag-as-Seq
end-spec

Figure 12: Specification for Sequences Augmented to Represent Bags

We now introduce a couple of interpretations that are of some interest in their own
right and will be used in subsequent examples

Language Manual 71

5.2 Basic Interpretations

Example 5.4 Interpretation of Sequences as Arrays.

In our next example, we shall implement sequences as arrays. Our arrays are actually
one-dimensional vectors of entries a[0], . . ., a[n−1]. Sequences will be represented as
arrays in reverse order; in other words, the first element of the sequence will be the
last element of the array, and vice versa. This is because it is easier to add an element
to a sequence at the beginning, via the operation prepend, but it is easier to add an
element to an array at the end.

We shall relegate the full specification for arrays to Appendix E, page 149. The array
specification imports a specification NAT for the nonnegative integers (see Appendix
D, page 147) to provide the indices. As we have seen, arrays are indexed from 0 to n−
1, where n is the size of the array, just the way the floors of European buildings are
numbered. We distinguish between ordinary static arrays (in the specification ARRAY),
whose size is fixed, and dynamic arrays (in the specification DYNAMIC-ARRAY), which
can be extended. To implement sequences we use dynamic arrays, so that we can
always add new elements to the end.

Some of the operations in the specification of static arrays are:

make-array: The function (make-array n e) constructs an array of size n, each of
whose elements is initialized to e.

access-array: The function (access-array a i) returns the ith element (“a[i]”)
of the array a. The integer i must be within the bounds of the array, that is,
between 0 and n−1 inclusively, where n is the size of a.

update-array: The function (update-array a i e) returns a new array, which
is identical to a except that its ith element is e. Again the integer i must be
within the bounds of the array.

Dynamic arrays are an extension of static arrays. Some additional operations in the
specification of dynamic arrays are:

empty-array: The constant empty-array is the array of size 0, with no elements.

extend-array: The function (extend-array a e) returns a new array, which is
identical to a except that it is one element larger, of size n+1; its final (nth)
element is e.

To implement basic sequences as (dynamic) arrays, we must augment the array
specification with array operations empty-s-as-a and prepend-s-as-a that mimic
the sequence operations empty and prepend, respectively. The constant empty-s-as-
a is identified with the constant empty-array; the function prepend-s-as-a is
defined in terms of the array function extend-array. The resulting mediator
specification SEQ-AS-ARRAY is as follows:

5 INTERPRETATIONS AND THEIR COMPOSITION

72 Specware

spec SEQ-AS-ARRAY is
import translate DYNAMIC-ARRAY

by {empty-array -> empty-s-as-a}

op prepend-s-as-a : E, Array -> Array
definition of prepend-s-as-a is
axiom (equal

(prepend-s-as-a e a)
(extend-array a e))

end-definition

constructors {empty-s-as-a, prepend-s-as-a} construct Array
end-spec

The operation prepend-s-as-a, which will correspond to the operation prepend,
places the new element e at the end of the array rather than the beginning. If we
visualize sequences and arrays in the usual way, this has the effect of reversing the
order of a sequence when it is represented as an array.

The interpretation that maps basic sequences into arrays is then simply

interpretation SEQ-TO-ARRAY : SEQ => DYNAMIC-ARRAY is
mediator SEQ-AS-ARRAY
dom-to-med {Seq -> Array,

empty-seq -> empty-s-as-a,
prepend -> prepend-s-as-a}

cod-to-med {empty-array -> empty-s-as-a} to-array}

Example 5.5 Interpretation of Finite Sets as Bit Vectors.

We have already seen an interpretation from sets into bags: now we shall see another
implementation for sets, as bit vectors.

We represent sets of sort E, where E is finite, by bit vectors of size k, where k is the
number of elements of sort E. If we number all the elements of sort E as e0 through ek-

1, a set s will be represented by a bit vector v, where e1 belongs to s if and only if the
ith element of the bit vector is 1. This is a practical way of representing sets if E is not
too large.

For instance, if E is the integers from 0 through 7, numbered in order, the bit vector [0,
1, 0, 1, 0, 0, 1, 0], in which the first, third, and sixth elements are 1, represents the set {1,
3, 6}.

Language Manual 73

5.2 Basic Interpretations

This is illustrated in the following display:

We shall regard bit vectors as arrays whose elements are bits. Because we shall not
need to make the bit vectors longer, we may use static rather than dynamic arrays. We
have already seen the specification for sets in Section 3.3, page 40; the specification for
static arrays is in Appendix E, page 149. The specification for bit vectors also depends
on the specification for bits, which was given in Section 3.4.5, page 56. It says that
there are two, and only two, distinct bits, denoted by zero and one.

A bit vector, then, is an array whose elements are of sort Bit:

spec BIT-VECTOR is
colimit of
diagram
nodes ONE-SORT, ARRAY, BIT
arcs ONE-SORT -> ARRAY : {X -> E},

ONE-SORT -> BIT : {X -> Bit}
end-diagram

Although we cannot make static arrays longer, our specification for static arrays, and
hence our specification for bit vectors, allows arrays of all different sizes. We shall
want to refine sets of elements of sort E into bit vectors all of the same size as E. Under
this refinement, E will be identified with a sort of those nonnegative integers less than
the size of E; each element of sort E will be identified with a different number. For this
reason, we augment the bit-vector specification, obtaining a new specification BIT-
VECTOR-FIXED, which describes bit vectors all of the same size, size-vector.

The full specification BIT-VECTOR-FIXED is given in the appendix (Section E,
page 149). It contains the constant size-vector, the length of a bit vector, and a sort
Interval, defined by the sort axiom

Interval = Nat | in-interval?

Here the predicate in-interval? holds for nonnegative integers strictly less than
size-vector. The sort Interval will serve as the implementation for E under the
interpretation.

The sort Bit-Vector-Fixed is then defined by the sort axiom

Bit-Vector-Fixed = Array | of-given-size?

bit vector: [0, 1, 0, 1, 0, 0, 1, 0]

indices: 0 1 2 3 4 5 6 7

set: { 1, 3, 6 }

5 INTERPRETATIONS AND THEIR COMPOSITION

74 Specware

Here the predicate of-given-size holds for arrays whose size is exactly size-
vector.

Counterparts of ordinary array operations are then defined for fixed bit vectors:
update-bvf, access-bvf, and others; the definitions relate the bit-vector operations
and the corresponding array operations via the operator relax.

To implement finite sets as bit vectors, we augment the fixed-bit-vector specification
to mimic the set operations. The empty set is the fixed bit vector each of whose
elements is 0. To insert an element into a set, we assign the corresponding bit in the bit
vector to 1. To test if an element is in the set, we see if the corresponding bit is 1.

spec SET-AS-BIT-VECTOR-FIXED is
import BIT-VECTOR-FIXED

const empty-s-as-bvf : Bit-Vector-Fixed
definition of empty-s-as-bvf is
axiom (equal empty-s-as-bvf (make-bvf BIT.zero))

end-definition

op insert-s-as-bvf : Interval, Bit-Vector-Fixed
-> Bit-Vector-Fixed

definition of insert-s-as-bvf is
axiom (equal (insert-s-as-bvf i v)

(update-bvf v i BIT.one))
end-definition

op in-s-as-bvf? : Interval, Bit-Vector-Fixed -> Boolean
definition of in-s-as-bvf? is
axiom (iff (in-s-as-bvf? i v)

(equal (access-bvf v i) BIT.one))
end-definition

constructors {empty-s-as-bvf, insert-s-as-bvf} construct
Bit-Vector-Fixed

end-spec

The constant empty-s-as-bvf is defined to be the array of length size-vector all of
whose elements are zero. Note that the definition refers to BIT.zero to distinguish it
from NAT.zero.

The operation insert-s-as-bvf implements the operation of inserting the element i
into the set represented by the bit vector v by setting the ith element of v to one.

The operation in-s-as-bvf? implements the membership predicate; it tests if i is in
the set represented by v by checking whether the ith bit of v is one.

Language Manual 75

5.3 Sequential Composition of Interpretations

The specification contains a constructor set to serve as the image of the constructor set
for the sets. It corresponds to an induction axiom that asserts that any fixed bit vector
can be obtained by successively applying the insertion function to the empty bit
vector.

The interpretation that maps finite sets into bit vectors is then

interpretation SET-TO-BIT-VECTOR-FIXED :
SET => BIT-VECTOR-FIXED is

mediator SET-AS-BIT-VECTOR-FIXED
dom-to-med

{E -> Interval,
Set -> Bit-Vector-Fixed,
empty-set -> empty-s-as-bvf,
insert-set -> insert-s-as-bvf,
in-set? -> in-s-as-bvf?}

cod-to-med import-morphism

5.3 Sequential Composition of Interpretations

Sequential composition allows us to follow one interpretation with another; in this
way, we can develop a system by successive refinement of its specification. But it is
not immediately obvious that the composition of two interpretations is an
interpretation. Why? What is the mediator of the composed intepretation? What is its
target morphism and why is it a definitional extension? These questions are answered
in this section; we also provide an example.

5 INTERPRETATIONS AND THEIR COMPOSITION

76 Specware

Definition 5.6: Sequential (Vertical) Composition of Interpretations.

Suppose ρ1 and ρ2 are two interpretations such that ρ1 : R fi S and ρ2 : S fi T. Then
their sequential composition ρ1 ; ρ2 : R fi T is indicated by the vertical arrows in the
following diagram:

Diagrams are assumed to be commutative unless stated otherwise. The left diagram is
a summary—the right one provides details. The double arrows in the left diagram
indicate interpretations; the single arrows in the right diagram indicate morphisms. In
the left figure, the vertical arrow denotes the sequential composition of the two
diagonal arrows.

Let us consider the right-hand figure, which shows the mediators and the source and
target morphisms of each of the three interpretations. Here the marking “po”
indicates a pushout square; that is, the mediator R-as-S-as-T of the composed
interpretation is a colimit of the two morphisms in the square whose source is S. The
upper of these morphisms, from S into R-as-S, is a definitional extension; it is the
target morphism of the first of the given interpretations, ρ1.

The source and target morphisms of the composed interpretation, which are the
vertical arrows that lead into the new mediator, are defined to be the composition of
the morphisms of the adjacent diagonal arrows. In particular, the upward arrow,
from T to R-as-S-as-T, which represents the new target morphism, is the composition
of the morphisms for the diagonal arrow from T to S-as-T and the diagonal arrow
from S-as-T to R-as-S-as-T.

Both of these diagonal morphisms are definitional extensions: the morphism from T
to S-as-T is the target morphism of the second of our given interpretations, ρ2, and
the morphism from S-as-T to R-as-S-as-T is opposite a definitional extension in our
pushout square (see page 64). That their composition is also a definitional extension
follows because definitional extensions are closed under composition. Therefore, the
upward arrow is a proper target morphism for the new interpretation.

R

R-as-S

R-as-S-as-T

S-as-T

T

S

d

po

d

d

d

R

T

S

Language Manual 77

5.3 Sequential Composition of Interpretations

Sequential composition of interpretations facilitates incremental, layered refinement;
this is illustrated in the following example.

Example 5.7 Interpretation of Sets as Sequences

As an example of the sequential composition of two interpretations, consider the
interpretation of sets as bags in Example 5.2, page 67, together with the interpretation
of bags as sequences in Example 5.3, page 69.

These two interpretations can be composed to yield an interpretation from sets to
sequences. In the notation of the previous discussion, we simply take R to be SET, S to
be BAG, and T to be SEQ.

We obtain the following configuration:

Sequential composition of interpretations is most easily performed thoughtlessly via
SPECWARE’s graphical facilities, but here we describe it textually. The mediator for the
composed interpretation, SET-AS-BAG-AS-SEQ, is obtained by taking the following
colimit:

spec SET-AS-BAG-AS-SEQ is
colimit of

diagram
nodes BAG, SET-AS-BAG, BAG-AS-SEQ
arcs BAG -> SET-AS-BAG : import-morphism,

BAG -> BAG-AS-SEQ : BAG-TO-SEQ
end-diagram

This is the pushout square we referred to in the previous discussion.

SET

SET-AS-BAG

BAG SET-AS-BAG-AS-SEQ

BAG-AS-SEQ

SEQ

pod

d

d

d

5 INTERPRETATIONS AND THEIR COMPOSITION

78 Specware

The source morphism for the composed interpretation is the composition of two
morphisms:

• The source morphism SET-TO-BAG from the first given interpretation SET-TO-
BAG, which takes sets (in SET) into bags with no duplicated elements (in SET-
AS-BAG).

• The upper cocone morphism from the pushout, which takes bags with no
duplicated elements (in SET-AS-BAG) into the corresponding equivalence
classes of sequences (in SET-AS-BAG-AS-SEQ).

Their composition is equal to the following morphism:

morphism SET-TO-SEQ : SET -> SET-AS-BAG-AS-SEQ is
{Set -> Bag-as-Seq,
empty-set -> empty-b-as-s,
insert-set -> insert-b-as-s,
in-set? -> in-b-as-s?}

The target morphism for the composition is also the composition of two morphisms:

• The target morphism from second given interpretation BAG-TO-SEQ, which is
the import morphism and takes sequences in SEQ into sequences in the
extended interpretation BAG-AS-SEQ.

• The lower cocone morphism from the pushout, which takes sequences in BAG-
AS-SEQ into sequences in SET-AS-BAG-AS-SEQ.

Each of these morphisms is equal to the morphism {}, with the appropriate domain
and codomain, and so is their composition.

The sequential composition of the two interpretations is then

interpretation SET-TO-SEQ : SET => SEQ is
mediator SET-AS-BAG-AS-SEQ
dom-to-med SET-TO-SEQ
cod-to-med {}

5.4 Parallel Composition of Interpretations

Just as a specification can be put together from smaller specifications, so can an
interpretation (refinement) of a specification be put together from interpretations on
component specifications. In SPECWARE, the primary method for combining
specifications is the colimit operation. If we have interpretations for each of the
specifications in a given diagram, we may compose them to obtain an interpretation

Language Manual 79

5.4 Parallel Composition of Interpretations

whose domain is their colimit. The codomain of the composed interpretation will be
the colimit of another diagram. The nodes of this second diagram are labeled with the
codomains of the component specifications.

In addition to refining its component specifications, we can also change the shape of
the given diagram itself. For example, we might begin with a diagram with three
morphisms between four specifications and end with a diagram with two morphisms
between three specifications. This could happen because we may need to identify
components that are distinct in the given diagram of specifications. Thus, to perform a
parallel composition we have to say how the shape of the given diagram of
specifications is to change.

A parallel composition is illustrated in Figure 13.

Figure 13: A Parallel Composition

On the top level, S1 is the colimit of a diagram of four specifications; on the bottom
level, S2 is the colimit of a diagram of three specifications. The interpretations ρa

through ρd are interpretations that map the components of the top diagram into the
components of the bottom diagram. The interpretation ρ is the parallel composition of
the four component interpretations; it maps the colimit S1 of the top diagram into the
colimit S2 of the bottom diagram.

Not all interpretations on the specifications of a diagram can be composed; for the
parallel composition to be applied, it is necessary for the interpretations to satisfy a
compatibility condition, which will be discussed later.

c

S1

S2

d
a

b

5 INTERPRETATIONS AND THEIR COMPOSITION

80 Specware

5.4.1 Interpretation Schemes

For parallel composition, it is necessary to introduce a generalization of an
interpretation called an interpretation scheme (ip-scheme). An interpretation scheme
has the same structure as an interpretation, but the target morphism can be an
arbitrary morphism; it need not be a definitional extension.

Note that for an arbitrary source specification S and target specification T, there is an
interpretation scheme from S to T, whose mediator is the colimit of S and T; the source
and target morphisms are simply the cocone morphisms. This is not an interpretation
because the target morphism is not necessarily a definitional extension; in fact, in
general no interpretation from S into T exists. In other words, the notion of
interpretation scheme is quite a bit looser than that of interpretation.

Let us see an example of an interpretation scheme.

Example 5.8 Interpretation Scheme.

The following is an interpretation scheme from the simple specification ONE-SORT into
itself. Its mediator is a specification TWO-SORT-QUOTIENT with two sorts, one a
quotient of the other, as follows:

spec TWO-SORT-QUOTIENT is
sorts B, Q
op r? : B, B -> Boolean
sort-axiom Q = B / r?

end-spec

In other words, r? is an undefined binary relation on B, and Q is the quotient of B
modulo r?. The specification does not restrict the meaning of the sorts B and Q and the
operation r? except to assert the quotient relationship in the sort axiom.

The interpretation scheme is then

interpretation ONE-SORT-VIA-QUOTIENT :
ONE-SORT => ONE-SORT is
mediator TWO-SORT-QUOTIENT
dom-to-med {X -> Q}
cod-to-med {X -> B}

In other words, in this interpretation scheme, the sort X in the domain specification
ONE-SORT is identified with the quotient, modulo r?, of the sort X in the codomain
specification ONE-SORT.

Language Manual 81

5.4.2 Interpretation Morphisms

Note that, because the relation r?, which is outside the image of the target morphism
{X->B}, is not defined, the target morphism is not a definitional extension, and the
interpretation scheme is not an interpretation.

5.4.2 Interpretation Morphisms

Up to now, we have applied the colimit operation only to specifications. To define the
parallel composition of interpretations, we must employ a colimit of interpretations
instead.

When we wanted to construct a colimit of specifications, we discussed first
morphisms between specifications and then diagrams whose nodes are specifications
and whose arcs are morphisms between them. Similarly, to construct a colimit of
interpretations, we introduce first morphisms between interpretations and then
diagrams whose nodes are interpretations and whose arcs are morphisms between
them. The morphisms tell us which parts of the interpretations are to be identified. In
this way, we extend to interpretations ideas we have already seen for specifications.
We will also be able to take the colimit of a mixture of interpretations and
interpretation schemes; the result will be an interpretation scheme but not necessarily
an interpretation.

Definition 5.9: Interpretation Morphism.

An interpretation morphism from an interpretation ρ1 : S1 fi T1 to another
interpretation ρ2 : S2 fi T2 is a triple of specification morphisms such that the diagram
on the right below commutes.

In other words, any specification element will be mapped into the same element
regardless of which path through the diagram we choose.

The figure on the left is a summary of the one on the right. Note that the interpretation
morphism is indicated by a triple arrow. As usual, specification morphisms and
interpretations are indicated by single and double arrows, respectively.

It is possible that the source or target is an interpretation scheme rather than an
interpretation; then the morphism is an interpretation-scheme morphism rather than
an interpretation morphism.

S1

S2 T2

T1 S1

S2 T2

T1S1-as-T1

S2-as-T2

5 INTERPRETATIONS AND THEIR COMPOSITION

82 Specware

Like a specification morphism, an interpretation morphism indicates how its source
can be regarded as a part of its target—but in this case its source and target are both
interpretations, not specifications.

Figure 14: An Interpretation Morphism

Example 5.10 Interpretation-Scheme Morphism.

Figure 14 illustrates an interpretation-scheme morphism, called ONE-SORT-SEQ-
QUOTIENT. The target of this morphism in the interpretation BAG-TO-SEQ, from bags to
sequences, that we have seen in Section 5.3, page 69. The source of this morphism is
the interpretation scheme ONE-SORT-VIA-QUOTIENT, from ONE-SORT into itself, that we
saw in the preceding section. The top part of the figure shows some of the details of
the morphism—the bottom part is a summary.

ONE-SORT

sort

X

BAG

sorts

Bag

E

TWO-SORT-QUOTIENT

sorts

B

ONE-SORT

sort

X

BAG-AS-SEQ

sorts

Seq

SEQ

sorts

Seq

Q

E
Bag-as-Seq=Seq/

E

= B / r ?

ONE-SORT-VIA-QUOTIENT

BAG-TO-SEQ

op
r?

op
perm?

perm?

Language Manual 83

5.4.2 Interpretation Morphisms

Note that the diagram for the interpretation-scheme morphism commutes, as it must.
For a morphism to exist between two interpretations or ip-schemes, they must be in a
certain sense analogous. Each morphism between specifications at the source (upper)
level is mapped into an appropriate morphism at the target (lower) level.

For instance, in the source interpretation scheme, X in ONE-SORT gets mapped into the
quotient sort Q in TWO-SORT-QUOTIENT, just as, in the target interpretation, Bag in BAG
gets mapped into the quotient sort Bag-as-Seq in BAG-AS-SEQ. The morphism {X ->
Q} from ONE-SORT into TWO-SORT-QUOTIENT at the source level is mapped into the
morphism that included the replacement Bag -> Bag-as-Seq from BAG into BAG-AS-
SEQ at the target level. This is as it must be, because the interpretation-scheme
morphism maps the sort X in ONE-SORT into the sort Bag in BAG, and the sort Q into the
sort Bag-as-Seq. Otherwise the diagram would not commute.

 Often, in presenting an interpretation morphism, we shall omit the details of how
specification morphisms at the source level are mapped into specification morphisms
at the target level, since it usually can be deduced from how the sorts are mapped.

Normally we construct and view an interpretation morphism through the graphical
facilities of SPECWARE. But the same morphism may be viewed textually.

ip-scheme-morphism ONE-SORT-SEQ-QUOTIENT :
ONE-SORT-VIA-QUOTIENT -> BAG-TO-SEQ is

domain-sm morphism ONE-SORT -> BAG is {X -> Bag}
mediator-sm morphism TWO-SORT-QUOTIENT -> BAG-AS-SEQ is
{(r?: B, B -> Boolean) -> (perm?: Seq, Seq -> Boolean),
Q -> Bag-as-Seq,
B -> Seq}

codomain-sm morphism ONE-SORT -> SEQ is {X -> Seq}

Incompatibility. It can be impossible to find an interpretation morphism between
certain pairs of interpretations. For example, suppose in the preceding example we
attempted to take our source interpretation to be the identity from ONE-SORT into
itself, instead of the interpretation scheme ONE-SORT-VIA-QUOTIENT. We are
attempting to find an interpretation morphism from the identity into the
interpretation BAG-TO-SEQ.

5 INTERPRETATIONS AND THEIR COMPOSITION

84 Specware

Figure 15 illustrates a partially filled-in interpretation morphism.

Figure 15: A Failed Interpretation Morphism

Note that we cannot map the middle copy of X (on top) into any of the sorts of BAG-
AS-SEQ (on the bottom) and obtain a commuting diagram. If we map it into Seq, the
left square does not commute; if we map it into Bag-as-Seq, the right square does not
commute. The nonexistence of certain interpretation morphisms is related to the issue
of compatibility in parallel composition of interpretations, as we shall see.

5.4.3 Categories

In developing the notion of an interpretation morphism, we have lifted the concept of
a morphism from the category of specifications and applied it to another category of
objects, that of interpretations. In fact, the notion of category can be given a precise
mathematical meaning, so that concepts that are introduced for an abstract category
can be immediately applied to specific instances of that category.

Definition 5.11: Category.

A category is an abstract mathematical structure with several components:

• A collection of objects.

• A collection of arrows. Each arrow has a domain and a codomain, which are
both objects. If f is an arrow whose domain and codomain are a and b

ONE-SORT

sort

X

BAG

sorts

Bag

E

SEQ

sorts

Seq

E

ONE-SORT

sort

X

ONE-SORT

sort

X

BAG-AS-SEQ

sorts

Seq

E

Bag-as-Seq

?

Language Manual 85

5.4.3 Categories

respectively, we may display this as

• A composition operation: for each pair of arrows f and g, where the codomain
of f is the same as the domain of g, the composition of f and g, denoted f ; g or g °
f, is an arrow whose domain is that of f and whose codomain is that of g. We
may display this as

The composition operation is associative; that is, given the configuration

of objects and arrows, we have

(f ; g) ; h = f ; (g ; h)

• The identity arrow: for each object b, the identity idb is an arrow whose domain
and codomain are both b. We may display this as

The identity arrow must satisfy the identity property, namely, for all arrows f
and g with the configurations

we have

Let us give some examples of categories.

Example 5.12

The prototypical example of a category is the one whose objects are sets and whose
arrows are functions from one set into another. The composition operation is simply
the composition of functions; the identity arrow on a set is the identity function on
that set.

a b
f

a b c
f g

f;g

a b c
f g h d

idb

b

b c
f g

a b
f

f; idb = f and idb;g = g

5 INTERPRETATIONS AND THEIR COMPOSITION

86 Specware

To be precise, the arrows are triples of three components: function, domain, and
range. In particular, we distinguish between the various identity functions on
different sets; we don’t identify ida, the identity function on set a, with idb, the
identity function on set b. We do not identify the arrow with the set of ordered pairs
that make up the function; adding more elements to the range of a function results in
a different arrow, even though the set of ordered pairs in the function remains the
same.

Sets are so pervasive that it is easy to forget that there are categories in which the
objects are not sets. One such is the category of shapes.

Example 5.13

In the category of shapes, the objects are dots and the arrows are actually arrows
between the dots. Here is a shape:

The composition of two arrows is an arrow with the following configuration:

Here the long arrow is the composition of the two short arrows.

The identity arrow is an arrow from a dot to itself:

Note that shapes are a multigraph; in other words, there may be more than one arrow
between the same pair of dots. Of the several arrows between a dot and itself, one of
them is designated as the identity for that dot.

Because objects in category theory are not necessarily sets, definitions in category
theory must avoid relying on set properties of objects, although set-theoretic concepts
do motivate some of the notions of category theory.

·

··

•

•• •

•• •

•

Language Manual 87

5.4.4 Interpretation Diagrams and Shape Mappings

Example 5.14

In the category Spec, the objects are specifications and the arrows are specification
morphisms. The composition operation is the composition of morphisms, and the
identity arrow is the identity morphism.

Similarly, in the category Interp, the objects and arrows are interpretations and
interpretation morphisms, respectively.

5.4.4 Interpretation Diagrams and Shape Mappings

Definition 5.15: Interpretation Diagram

A diagram of interpretations is a graph, each of whose nodes is labeled with an
interpretation and each of whose arcs is labeled with an interpretation morphism. To
be well-formed, each arc must be labeled with an interpretation morphism whose
source and target agree with the interpretations at the corresponding nodes. To be
precise, the graph is really a directed multigraph—arcs are arrows and a pair of nodes
may have more than one arc between them.

Because we must change shapes, we also introduce shape mappings, which change
the shape of a diagram. To describe a shape mapping, first recall (Example) that a
shape is a directed multigraph whose nodes are simply dots.

 A shape mapping transforms a shape, e.g., by adding or deleting nodes or arrows or
by identifying some of them. For example, one shape mapping might transform the
left shape into the right shape as follows:

In this figure, the two “selected” nodes on the left, and the corresponding two
selected arrows, have been merged to form the figure on the right.

5 INTERPRETATIONS AND THEIR COMPOSITION

88 Specware

A diagram of specifications can be viewed as a mapping that assigns a specification to
each node of a shape and a morphism to each of its arrows. For example, consider a
diagram d1 of four specifications:

This can be viewed as the following mapping from a shape into the category Spec of
specifications; we omit the morphisms:

Similarly, a diagram of interpretations can be viewed as a mapping from a shape into
the category Interp of interpretations.

Parallel composition is applied to a diagram refinement, which combines a diagram of
interpretations and a shape mapping. The diagram of interpretations provides the
interpretations on the source components; the shape mapping allows us to identify
and reconfigure target components.

Definition 5.16: Diagram Refinement.

A diagram refinement 〈δ, σ〉 has two components:

• A diagram of interpretations δ.

• A shape mapping σ.

The interpretation diagram δ : I1 → Interp assigns an interpretation to each node of a
shape I1 and an interpretation morphism to each of its arrows. The shape mapping σ

Sc Sd

Sb

Sa

d1

Sc
Sd

Sa

Shape Specs

d1
Sb

Language Manual 89

5.4.4 Interpretation Diagrams and Shape Mappings

maps the shape I1 into a shape I2. The definition requires that the following diagram
commutes:

A diagram refinement can be regarded as an interpretation between diagrams of
specifications. In the figure, d1 and d2 are two diagrams of specifications, which
assign a specification from Spec to each of the nodes of the shapes I1 and I2, and a
morphism to each of its arrows. Also, dom and cod map interpretations into their
corresponding domains and codomains. The diagram refinement can be viewed as an
interpretation whose domain is the diagram d1and whose codomain is the diagram
d2.

Example 5.17

In the case in which I1 and I2 are shapes with four and three nodes, respectively, a
diagram refinement can be illustrated like this:

Here d1 is a diagram of four specifications, S1
a through S1

d, with shape I1. (We omit
the morphisms between them.) For these specifications there are interpretations ra
through rd that map them into specifications S2

a through S2
d, respectively. As it turns

out, the specifications S2
b and S2

c are the same.

I1 I2

InterpSpec Spec

d1
d2

dom cod

s

d

d2

S1
c

S1
d

S1
b

S1
a

d1

a

b

c

d

Spec

Interp

Spec

I1

I2

S2
c

S2
d

S2
b

S2
a

5 INTERPRETATIONS AND THEIR COMPOSITION

90 Specware

The mapping δ is a diagram of the four interpretations ra through rd —we omit the
interpretation morphisms between them. The mapping σ is a shape mapping—it
maps the shape of four nodes I1 into the shape of three nodes I2, collapsing the two
nodes with the same specification. The pair 〈δ, σ〉 constitutes a diagram refinement.

The mapping d2 is a diagram of three specifications, S2
a, S2

b (= S2
c), and S2

c, with
shape I2. The diagram refinement can be thought of as an interpretation from the
diagram d1 into the diagram d2. Note that the composition σ ; d2 of the shape
mapping σ with the diagram d2 can also be viewed as a diagram with shape I1,
labeled with the four specifications S2

a through S2
d; we shall refer to this as the

intermediate diagram. Thus hidden in the figure we actually have three specification
diagrams, d1, σ ; d2, and d2, and a diagram of interpretations δ.

In the following definition, we invoke the notation of the definition of a diagram
refinement.

Definition 5.18: Parallel (Horizontal) Composition of Interpretations.

The parallel composition of the diagram refinement 〈δ, σ〉 is an interpretation from the
colimit of the source diagram d1 into the colimit of the target diagram d2.

To compute the parallel composition, SPECWARE first computes the colimit r1of the
diagram of interpretations δ. The colimit is itself an interpretation, whose source is the
given colimit S1and whose target is the colimit S′2 of the intermediate diagram σ ; d2,
which has shape I1. Note that this is not the desired colimit S2 of the target diagram
d2, which has a different shape I2. The colimit construction, however, determines a
morphism r2, whose source is the colimit S′2 and whose target is the desired colimit
S2. The composition r1 ; r2 of r1 with r2 is the parallel composition of the diagram
refinement 〈δ, σ〉. It has the property that the entire diagram commutes.

 We shall denote the parallel composition of a diagram refinement ∆ by ∆.

Language Manual 91

5.4.4 Interpretation Diagrams and Shape Mappings

Figure 16: A Parallel Composition

Example 5.19

In Figure 16, we illustrate the parallel composition of the diagram refinement we
looked at earlier in Example 5.17. Here we view the diagrams with the specifications
placed directly on the nodes of the shape, not linked by arrows. The specifications S1,
S′2, and S2 are colimits of the three specification diagrams d1, σ ; d2, and d2,
respectively. The interpretation r1 is the colimit of the diagram of interpretations δ.
The morphism r2, which maps S′2 into S2, is defined by the colimit construction. The
parallel composition 〈δ, σ〉 is then the composition r1 ; r2.

Let us illustrate parallel composition with an example.

(=) S2
c S2

bd2

d1

c

d2;

colimit S1

S2

S2
'

1

colimit

2

1 2

 S1
c

 S1
b

 S1
d

 S2
c

 S2
a

 S2
d

 S2
b

 S2
a

 S2
d

colimit

colimit

 S1
a

;

b

a

d

5 INTERPRETATIONS AND THEIR COMPOSITION

92 Specware

Example 5.20 Sequences of Sets.

Let us suppose we want to implement sequences of sets of elements of sort E, where E
is finite; for instance, if E is the integers from 0 through 7, we would like to represent
an object such as the sequence [{0, 7}, {1, 3, 6}].

 Sequences of sets of sort E will be represented by arrays of bit vectors of size k. For
instance, the sequence [{0, 7}, {1, 3, 6}] would be represented by the array

[[0, 1, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1]]
Note that the order of the sets is reversed in the representation. Note also that our
representation choices must be coordinated: the size of the array elements must agree
with the size of the bit vectors. If the size of array elements is specified by a
declaration, so is the size of the sets we can represent.

We begin with the colimit of a diagram that has specifications SEQ and SET glued
together by the specification ONE-SORT to indicate that the elements of the sequences
are to be identified with the sets.

Figure 17: Colimit for Sequences of Sets

This colimit is illustrated in Figure 17.

ONE-SORT

SORT

X

SEQ

SORTS

SEQ

E

SET

SORTS

SET

E

SEQ-OF-SET

Language Manual 93

5.4.4 Interpretation Diagrams and Shape Mappings

Here is the corresponding text:

spec SEQ-OF-SET is
colimit of diagram
nodes ONE-SORT, SEQ, SET
arcs ONE-SORT -> SEQ : {X -> E},

ONE-SORT -> SET : {X -> Set}
end-diagram

We have already seen refinements of basic sequences into arrays (in Example 5.4,
page 71), and finite sets into fixed bit vectors (in Example 5.5, page 72); now let us
compose these interpretations so that the colimit, which specifies sequences of sets,
will be interpreted accordingly as arrays of fixed bit vectors.

In practice, constructing a parallel composition of interpretations is done using the
graphical facilities of SPECWARE, rather than within the textual language, because the
editing of three-dimensional graphs can be complex and is best done visually.

We shall refer to the notation of our general discussion of parallel refinement. Our
given specification diagram d1, before taking the colimit, is:

The shape I1of this diagram is:

The diagram d1 assigns a specification to each node of the shape I1. It may be viewed
as a mapping from I1to the category Spec of specifications. Each node of I1 is mapped
into a specification and each arrow is mapped into a specification morphism. For
instance, the left arrow is mapped into the morphism {X -> E} from ONE-SORT into
SEQ.

A parallel composition applies to a diagram refinement, which has two components, a
diagram of interpretations and a shape mapping. The diagram of interpretations, δ,
assigns an interpretation to each node of the shape I1 and an interpretation morphism
to each of its arrows. The domains of the interpretations are the three specifications in

ONE-SORT

SEQ SET

5 INTERPRETATIONS AND THEIR COMPOSITION

94 Specware

our given diagram d1, namely ONE-SORT, SEQ, and SET. The three interpretation
assignments are as follows:

• To the node labeled ONE-SORT, assign the identity interpretation into ONE-SORT.

• To the node labeled SEQ, assign the interpretation SEQ-TO-ARRAY we introduced
in Example 5.4, page 71.

• To the node labeled SET, assign the interpretation SET-TO-BIT-VECTOR-FIXED
we introduced in Example 5.5, page 72.

We have assigned an interpretation to each node of the shape I1; we must also assign
an interpretation morphism to each of its two arrows. For instance, the interpretation
morphism assigned to the first arrow maps the identity interpretation into SEQ-TO-
ARRAY, and the interpretation morphism assigned to the second arrow maps the
identity interpretation into SET-TO-BIT-VECTOR-FIXED. Some of the details of this
diagram of interpretations are summarized as follows:

The top and bottom halves of the figure illustrate the interpretation morphisms
assigned to the left and right arrows, respectively, of the shape I1. Note that the
diagram commutes—if we could not find such interpretation morphisms, the parallel
refinement would not be compatible. This figure reveals that the sort E of elements in
the specification ARRAY is identified with the sort Bit-Vector-Fixed; this means that
the target theory will describe arrays whose elements are bit vectors of fixed length.

 The resulting interpretation diagram δ may be viewed as a morphism from I1 into the
category Interp of interpretations. The final diagram d2 will have the same shape as
d1. That is, I2 is identical to I1 and the shape mapping σ is the identity. The pair 〈δ, σ〉
is then a diagram refinement. To compute its parallel composition, SPECWARE takes

ONE-SORT

sort

X

SET

sort

Set

ONE-SORT

sort

X

ONE-SORT

sort

X

SET-AS-BIT-VECTOR-
FIXED

sort

Bit-Vector-Fixed

BIT-VECTOR-FIXED

sort

Bit-Vector-Fixed

SEQ

sort

E

SEQ-AS-ARRAY

sort

E

ARRAY

sort

E

Language Manual 95

5.4.4 Interpretation Diagrams and Shape Mappings

the colimit ρ1 of the diagram of interpretations δ. Because the shape mapping in this
case is the identity, this is also the desired parallel composition, an interpretation from
the sequences-of-sets colimit into the arrays-of-bit-vectors colimit, illustrated as
follows:

In this figure, the diagonal single arrows represent specification morphisms, the
vertical double arrows represent interpretations. The parallel composition is the
double arrow in the foreground.

Example 5.21 Sorting.

In the Sequences-of-Sets example the source and target colimit diagrams had the same
shape; therefore we could take the shape mapping to be the identity. In this example,
we find it advantageous to merge two of the nodes of the target diagram; therefore,
we take a shape mapping σ different from the identity. We begin with a specification
of the sorting problem.

Sorting. We suppose we want to specify a sorting function. The input will be a bag,
the output will be a sequence, and the elements will be sorted according to a given
transitive, total relation, called the sorting relation. The bag, sequence, and relation
will all be defined over elements of the same sort. We shall require that the output
have the same elements as the input, ordered according to the given relation. If an
element occurs more than once in the input, it must occur the same number of times
in the output. For example, if the input is {{4, 2, 4}} and the sorting relation is ≤, the
output should be [2, 4, 4]. Note that we do not specify the input to be a sequence,

ONE-SORT

SEQ-OF-SET

SET

ONE-SORT

SEQ

BIT-VECTOR-FIXED

ARRAY-OF-BIT-VECTOR-FIXED

p
ar

al
le

l

co
m

p
o
si

ti
o
n

ARRAY

5 INTERPRETATIONS AND THEIR COMPOSITION

96 Specware

because the order in which the input elements appear is irrelevant.

The specification for sorting is given in Figure 18.

spec SORTING is
import colimit of
diagram
nodes ONE-SORT, BAG, SEQ, SORTING-RELATION
arcs ONE-SORT -> BAG : {X -> E},

ONE-SORT -> SEQ : {X -> E},
ONE-SORT -> SORTING-RELATION : {X -> E}

end-diagram

op ordered : Seq -> Boolean
op elements : Seq -> Bag
op sorted : Bag, Seq -> Boolean

definition of ordered is
axiom (ordered empty-seq)

axiom (ordered (prepend e empty-seq))

axiom (iff (ordered (prepend d (prepend e s)))
(and (rel-sort d e)

(ordered (prepend e s))))
end-definition

definition of elements is
axiom (equal (elements empty-seq) empty-bag)

axiom (equal (elements (prepend e s))
(insert-bag e (elements s)))

end-definition

definition of sorted is
axiom (iff (sorted b s)

(and (equal b (elements s))
(ordered s)))

end-definition
end-spec

Figure 18: Specification for Sorting

Note that the specification refers to another specification, SORTING-RELATION, given
subsequently—this is the transitive, total relation. This and the specifications for bags
and sequences are glued together by the specification ONE-SORT, to ensure that they
are all defined over elements of the same sort, to yield a colimit S1. The three

Language Manual 97

5.4.4 Interpretation Diagrams and Shape Mappings

operations, ordered, elements, and sorted, are specified by definitions—thus the
specification SORTING is a definitional extension of the colimit S1.

The predicate ordered determines whether a given sequence is in increasing order,
according to the relation rel-sort, which is declared by the imported specification
SORTING-RELATION. The axioms assert that any sequence of zero or one element is
ordered. A longer sequence is ordered if its first two elements are in order, according
to the relation rel-sort, and if the sequence of all but the first element is ordered.
These axioms define the predicate ordered recursively.

The function elements yields the bag of elements of a given sequence. Finally, we
define the predicate (sorted b s) to hold if the input bag b is the bag of the elements
of the output sequence s and the output sequence is in increasing order.

The sorting relation rel-sort is specified to be a transitive, total relation, as follows:

spec SORTING-RELATION is
translate
colimit of
diagram
nodes
BINARY-RELATION, TRANSITIVE-RELATION, TOTAL-RELATION

arcs BINARY-RELATION -> TRANSITIVE-RELATION :
{br -> tr},
BINARY-RELATION -> TOTAL-RELATION :

{br -> tr}
end-diagram

by {tr -> rel-sort}

Note that, although sorting relations are typically required to be orderings, the
reflexivity property is implied by totality and the antisymmetry property is not
actually necessary.

The specification for transitive relations appears in Section 3.4, page 47. The
specification for total relations is as follows:

spec TOTAL-RELATION is
import
translate BINARY-RELATION by
{br -> tr}

axiom total is
(or (tr x y)(tr y x))

end-spec

We shall not develop a sorting algorithm—we focus on the implementation of the
data structures for the program. We shall use parallel refinement to implement the
input bags themselves as sequences. If we took the shape mapping to be the identity,

5 INTERPRETATIONS AND THEIR COMPOSITION

98 Specware

the target diagram would have two nodes labeled SEQ; this means that the target
colimit theory would have two copies of the theory of sequences. This might be useful
if we wanted to employ different representations for the input sequence (which
represents a bag) and the output sequence. In subsequent refinements, we could
implement these two sequences differently. It is wasteful, however, if we decide to
use the same implementation for both sequences, because we would be constructing
two copies of the same set of programs. Therefore, in this example we shall use a
shape mapping that merges the two sequences into one.

Let us focus on the refinement of the diagram d1 from the sorting specification, before
taking the colimit S1. This diagram is as follows:

We may regard this diagram as a mapping from the shape I1 to the category Spec of
specifications. We assign an interpretation to each node of I1. To the node labeled BAG
in the diagram, we assign the interpretation BAG-TO-SEQ from bags into sequences. To
the other nodes, we assign the identity interpretation. We also assign an appropriate
interpretation morphism to each of the three arrows. The result is an interpretation
diagram δ, a morphism from the shape I1 into the category Interp of interpretations.

To define a diagram refinement, we must also provide a shape mapping σ. Before we
decide what σ should be, let us begin the construction of the parallel composition.

We first form the colimit ρ1 of the diagram of interpretations δ. This is itself an
interpretation. Its source is the colimit S1, which specifies bags, sequences, and a
sorting relation over elements of the same sort. The target of ρ1 is a specification of a
theory that has two distinct versions of the theory of sequences, one to implement the
input bags and the other to implement the output sequences. It is the colimit S′2 of an
intermediate diagram with shape I1:

If we were to take σ to be the identity, ρ1 would be our parallel composition and the
colimit S′2 of the above diagram would be our target theory. Since we have decided to

ONE-SORT

SEQ SORTING-RELATIONSEQ

ONE-SORT

BAG SORTING-RELATIONSEQ

Language Manual 99

5.4.4 Interpretation Diagrams and Shape Mappings

use the same implementation for the input and output sequences, we employ a shape
mapping that merges the two nodes labeled SEQ. This is the shape mapping σ:

The left shape is I1 and the new right shape is I2. In this mapping, the two selected
nodes of I1, and the corresponding two arrows, have been merged to form I2.

We are now ready to conclude constructing the parallel composition of the diagram
refinement 〈δ, σ〉. The theory we want is the colimit S2 of the corresponding diagram
d2 with shape I2, illustrated as follows: The colimit process allows us to define a
morphism ρ2, which maps S′2 into S2. When we compose ρ1 with ρ2, we obtain the
parallel composition of the diagram refinement. The target of this parallel
composition is the desired colimit S2. This is the intended target theory for the
representation of bags, sequences, and sorting relations—it contains a single copy of
the theory of sequences to serve as the implementation of both the input bag and the
output sequence.

The entire parallel-composition construction is illustrated in Figure 19:

ONE-SORT

SEQ SORTING-RELATION

5 INTERPRETATIONS AND THEIR COMPOSITION

100 Specware

Figure 19: Sorting Refinement

We have obtained a parallel refinement of the colimit S1 from the sorting
specification. Note that the sorting specification is not identical to the colimit—it is a
definitional extension of that colimit. However if we construct a refinement of a
specification, we can extend the refinement automatically to a definitional extension
of that specification. That will be the subject of the next subsection. Afterwards, we
shall discuss the sequential composition of parallel refinements.

5.5 Interpretation of Definitional Extensions

As we have remarked, if a specification S′ is a definitional extension of a specification
S, we can extend an interpretation of S automatically into an interpretation of S′. (This
is not true of an arbitrary specification S′ that imports S—an axiom of S′ may be
inconsistent with the interpretation.)

ONE-SORT

S2' : SORTING-
 DISTINCT

SEQ SORTING-RELATIONSEQ

S2: SORTING-
 IDENTIFIED

SORTING-RELATIONSEQ

ONE-SORT

ONE-SORT

S1: SORTING-
 COLIMIT

SEQ SORTING-RELATIONBAG

1

2

Language Manual 101

5.6 Composing Diagram Refinements

A graphical rendering of the extension of the interpretation is as follows:

Here we have an interpretation of S into T and a definitional extension S′ of S. The
specification S′-as-T, constructed as a pushout of the morphisms s and m, is a
definitional extension of S-as-T (because pushouts preserve definitional extension).
We may think of S′-as-T as the extension of S-as-T obtained by introducing the
images under s of the new definitions of S′. The morphism t′ is the composition of t
and m′. Because the target morphism t of an interpretation is a definitional extension,
and because composition preserves definitional extension, t′ is also a definitional
extension. Hence t′ is the target morphism and S′-as-T is the mediator of an
interpretation from S′ into T.

Example 5.22 Sorting, Continued.

In Example 5.21, we used parallel composition to obtain a refinement of part of the
sorting specification, the colimit S1, into the new theory S2 of sequences and sorting
relations over elements of the same sort. We remarked that the entire sorting
specification is a definitional extension of the colimit, obtained by introducing
definitions for the operations ordered, elements, and sorted. Therefore we may
automatically extend our refinement to obtain a refinement from the entire sorting
specification into the theory of sequences and sorting relations. In the general
discussion, S and T play the role of S1 and S2, respectively, in the sorting example; S′
corresponds to the sorting specification.

5.6 Composing Diagram Refinements

Often we want to follow one parallel refinement with another. Diagram refinements
can be composed sequentially by composing the individual interpretations which
they comprise. This is illustrated in the following figure:

S S-as-T
s Tt

d

S′ S′-as-T
s

dm dm′
d

t ′
po

5 INTERPRETATIONS AND THEIR COMPOSITION

102 Specware

Let 〈δ1, σ1〉 : d1 → d2 and 〈δ2, σ2〉 : d2 → d3 be two diagram refinements. We can
juxtapose these as shown below:

In this figure, we get two diagrams of interpretations with shape I1, namely δ1 and σ1
; δ2, such that the codomains of the interpretations in the first diagram match the
domains of the interpretations in the second diagram. By composing the individual
interpretations sequentially, we get another interpretation diagram with shape I1. We
will denote this horizontally composed diagram of interpretations by δ1• (σ1 ; δ2).
The shape mapping for the composed diagram refinement is obtained by composing
the individual shapemappings, σ1 ; σ2:I1 → I2→I3. Thus, 〈δ1• (σ1 ; δ2) , σ1 ; σ2〉 : d1 →
d3 is the composition of the two diagram refinements we started with. The
composition is indicated in the following figure:

Thus the composition of two diagram refinements, indicated with dotted arrows, is
also a diagram refinement, indicated with solid arrows.

The Interchangeability of Sequential and Parallel Composition. Sequential and
parallel composition of interpretations satisfy the following interchange law: If ∆1:

d1 → d2 and ∆2: d2 → d3are two diagram refinements which can be composed, then

 ∆1  ;  ∆2  =  ∆1 ; ∆2 

In other words, the result of computing the parallel compositions of the two diagrams
separately and then composing the results sequentially is the same as the result of
composing the many separate components sequentially and then computing the
parallel composition of the resulting diagram.

I1 I2

InterpSpec Spec

d1 d2

dom cod

I3

Interp Spec

d3

coddom

σ1 σ2

δ2δ1

I1 I2

InterpSpec Spec

d1

dom cod

I3

Interp Spec

d3

coddom

σ1 σ2

δ2δ1

Interp

coddom (σ1 ; δ2) • δ1

σ1 ; σ2

Language Manual 103

5.6 Composing Diagram Refinements

 The following example will illustrate the sequential composition of two parallel
compositions and the interchange law. It will also bring up some compatibility issues.

Example 5.23 Bags of Bags.

In Example 5.20, we used parallel refinement to develop an implementation for
sequences of sets, where the elements of the sets were of a finite sort E. In this
example, we shall develop a refinement of a specification that describes bags whose
elements are themselves bags of sort E, where E is not necessarily finite. We shall
represent both sorts of bags as sequences; the target theory will be sequences of
sequences. Unlike in the sorting refinement (Example 5.21), we shall be forced to have
two copies of the sequence specification, not one, in the target theory.

In the previous examples, Sequences of Sets and Sorting, we were able to refine
components in parallel because the refinements did not interfere with each other. For
instance, the refinement of sets into fixed bit vectors did not collide with the
refinement of sequences into arrays—sets and sequences were not identified in the
colimit.

 In this example, we start with two copies of the specification for bags, an “outer”
copy and an “inner” copy. The two copies are not independent; the elements of the
outer copy are identified via a colimit with the bags of the inner copy. For example,
the bag {{ {{X, Y, Y}}, {{Y, Y, Z}} }} is a bag of the outer copy—its two elements are both
bags of the inner copy.

To specify bags of bags, we form the following colimit:

spec BAG-OF-BAGS is
colimit of
diagram
nodes ONE-SORT, OUTER : BAG, INNER : BAG
arcs
ONE-SORT -> OUTER : {X -> E},
ONE-SORT -> INNER : {X -> Bag}

end-diagram

The diagram of this colimit is presented graphically as follows:

OUTER.BAG

sorts

Bag

E

ONE-SORT

sort

X

INNER.BAG

sorts

Bag

E

5 INTERPRETATIONS AND THEIR COMPOSITION

104 Specware

Note that the two copies of the bag specification are glued together by morphisms
from the specification ONE-SORT. The sort X of that specification is mapped into the
elements of the outer bag specification and the bags of the inner bag specification; that
is, these three sorts are identified. In a parallel refinement, when any of them is
mapped into another by an interpretation, the other two must be mapped in such a
way as to avoid incompatibility. In this case, it turns out that we cannot perform these
two refinements in parallel. Instead we perform the refinement in two stages, as a
sequential composition of two parallel refinements. In a subsequent note, we explore
what mishaps occur if we attempt to perform both refinements at the same stage.

Stage One: Inner Bags into Sequences. At the first stage of the refinement process,
we refine the inner copy of BAG into SEQ, by applying the interpretation BAG-TO-SEQ
we developed in Example 5.3, page 68. This refinement represents the bags by a
quotient of sequences modulo the permutation relation; in other words, each bag is
mapped into an equivalence class of several finite sequences, all of them
permutations of each other.

We refine the specification ONE-SORT to itself by applying the interpretation scheme
ONE-SORT-VIA-QUOTIENT we introduced in Example 5.10, (Interpretation Morphism),
page 82. This ip-scheme maps a sort into the quotient of a sort modulo an equivalence
relation.

To maintain compatibility, our refinement of the outer copy of BAG must be
analogous; otherwise we couldn’t construct an interpretation-scheme morphism into
the refinement from ONE-SORT-VIA-QUOTIENT. We therefore represent the bag
elements as the quotient of other elements modulo some relation. For this purpose,
we introduce a specification that describes two sorts of bags B.Bag and Q.Bag, over
elements of sort B and Q respectively, where Q is a quotient sort of B. The specification
BAG-QUOTIENT, which appears in part as follows, will serve as the mediator for the
interpretation. The sort E of elements of the outer copy of bags will be mapped into
the quotient sort Q in the mediator.

Language Manual 105

5.6 Composing Diagram Refinements

spec BAG-QUOTIENT is
import
translate
colimit of
diagram
nodes B : BAG, Q : BAG

end-diagram
by{B.E -> B,

Q.E -> Q}
op r? : B, B -> Boolean
sort-axiom Q = B/r?

<axioms omitted>

end-spec

The axioms, which we omit here, define the Q-operations in terms of the B-operations.
This specification is discussed in the next subsection and appears in full in the
appendix (Section G, page 159).

The interpretation scheme that maps bags into bags via the quotient sort is as follows:

interpretation BAG-VIA-QUOTIENT : BAG => BAG is
mediator BAG-QUOTIENT
dom-to-med BAG-TO-Q-BAG
cod-to-med BAG-TO-B-BAG

Here BAG-TO-Q-BAG and BAG-TO-B-BAG are morphisms that map the usual bag sorts
and operations into those for bags of elements of sorts Q and B, respectively, in BAG-
QUOTIENT. For example, the source morphism is

morphism BAG-TO-Q-BAG : BAG -> BAG-QUOTIENT is
{Bag -> Q.Bag,
E -> Q,
empty-bag -> Q.empty-bag,
insert-bag -> Q.insert-bag,
in-bag? -> Q.in-bag?}

The target morphism, BAG-TO-B-BAG, is analogous.

In the interpretation scheme BAG-VIA-QUOTIENT, the sort E of elements of the domain
bags is mapped into the quotient sort Q in the mediator; the sort E of elements in the
codomain bags is mapped into the sort B of basic elements in the mediator. Because
the relation r? remains undefined, this is an interpretation scheme, not an
interpretation.

We have defined three interpretations (including the interpretation scheme), which
constitute the three nodes of a diagram of interpretations δ. The two arrows of the

5 INTERPRETATIONS AND THEIR COMPOSITION

106 Specware

diagram correspond to two interpretation morphisms. One of these morphisms was
presented in Example 5.10 (Interpretation Morphism), page 83; the other is analogous.

Figure 20: First Diagram of Interpretations for Bags of Bags

We may summarize this first diagram of interpretations in Figure 20. Here, single
arrows indicate morphisms, double arrows indicate interpretations, and triple arrows
indicate interpretation morphisms. The left part of the diagram, before the colons,
gives a high-level view; the right part gives the details. We show only how the shared
sorts are mapped.

Recall that the target morphisms of our interpretation schemes are not definitional
extensions only because the relation r? is undefined in the mediators BAG-QUOTIENT
and TWO-SORT-QUOTIENT. These relations are identified by morphisms with the
relation perm? in the mediator BAG-AS-SEQ. Because this relation is defined, the target
morphism of the parallel composition is a definitional extension. Thus the parallel
composition will be an interpretation, even though two of its components are only
interpretation schemes.

It may seem as if we are doing a lot of work for this particular refinement. However,
the ip-schemes of bags into bags via the bag of quotients and of ONE-SORT-VIA-
QUOTIENT are library refinements and are reused in any parallel refinement of this
kind.

We do not change the shape of our diagram; the shape mapping σ is the identity. If
we take the parallel composition of this diagram refinement, we obtain a new
interpretation, from the first colimit, which specifies bags of bags, to a new colimit,

ONE-SORT

sort

X

INNER.BAG

sort

Bag

ONE-SORT

sort

X

BAG-AS-SEQ

sorts
SEQ

sort

Seq

OUTER.BAG

sort

E

BAG

sort

E

Bag-as-Seq = seq/perm?

TWO-SORT-QUOTIENT

sorts

B
Q = B /r?

BAG-QUOTIENT

sorts

B
Q = C /r?

BAG-

VIA-QUOTIENT
:

ONE-SORT-
:

BAG-TO-SEQ
:

VIA-QUOTIENT

d

d

d

op

op

op

r?

perm?

r?

z

Seq

Language Manual 107

5.6 Composing Diagram Refinements

which specifies bags of sequences. The parallel composition is illustrated in Figure 21.

Figure 21: Stage One: Inner Bags into Sequences

In our next subsection, we give more details about the mediator for the refinement of
bags into bags via the quotient; in a subsequent subsection, we continue with the
parallel refinement of the specification BAG-OF-BAGS.

The mediator BAG-QUOTIENT. Although the mediator BAG-QUOTIENT in not a
definitional extension of the codomain, because r? is undefined, all the sorts and
operations of the Q-copy of the bag theory are defined in terms of the sorts and
operations of the B-copy. In particular, the Q-bags are intuitively regarded as bags
whose elements are equivalence classes of elements of sort B, modulo the
equivalence relation r?. It is more convenient, however, to regard the Q-bags as
equivalence classes of B-bags under a new equivalence relation eq-bag-mod-r?,
called equality modulo r?. Two B-bags are equal modulo r? if we can establish a
one-to-one correspondence between the elements of the two bags such that
corresponding elements are equivalent under r?.

For example, consider the Q-bag intuitively regarded as {{ {B1, B2}, {B, B} }}. The
elements of this bag are equivalence classes of elements of sort B modulo r?; thus B1
and B2 are equivalent under r?. The mediator will actually regard this as an
equivalence class of two equivalent B-bags, {{B1, BB}}and {{B2, BB}}, modulo eq-bag-
mod-r?.

All the operations on Q-bags are defined in terms of operations on B-bags. Thus, the
mediator contains the following definition of Q.empty-bag in terms of B.empty-bag:

definition of Q.empty-bag is
axiom (equal Q.empty-bag ((quotient eq-bag-mod-r?) B.empty-bag))

end-definition

ONE-SORT

BAG-OF-BAGS

BAGBAG

ONE-SORT

BAG-OF-SEQS

SEQBAG

5 INTERPRETATIONS AND THEIR COMPOSITION

108 Specware

Note that the definition is expressed in terms of the quotient function modulo the new
equivalence relation—that is the motivation for representing the Q-bags in this
unintuitive way.

The mediator also contains definitions for the function Q.insert-bag and the
predicate Q.in-bag?. These are given in the full specification of the mediator, on
page 160. We now resume our discussion of the refinement of the specification for
bags of bags.

Stage Two: Outer Bags into Sequences. In the simpler second stage of the
refinement process, we refine the outer copy of BAG into SEQ, again by applying the
interpretation BAG-TO-SEQ. This interpretation will represent the bags by a quotient,
but will simply map the elements of the bags into the elements of the sequences. The
corresponding sorts of elements (of ONE-SORT) and sequences (of the inner copy of
SEQ) will be mapped into elements and sequences, respectively; we refine these
nodes via the identity interpretations.

We can then map the identity interpretation on ONE-SORT into the other two
interpretations, via two interpretation morphisms. The outer interpretation morphism
maps the sort X (in the domain, mediator, and codomain copies of ONE-SORT) into the
sort E; the inner interpretation morphism maps the sort

X into the sort Seq each time. This gives us our second diagram of interpretations δ
which is summarized in Figure 22.

Figure 22: Second Diagram of Interpretations for Bags of Bags

If we attempted to identify our two copies of sequences, as we did in the refinement
of sorting, we would obtain a theory in which the elements of the inner sequences
were identified with the sequences themselves. This is not inconsistent but it isn’t

ONE-SORT

sort

X

SEQ

sort

Seq

ONE-SORT

sort

X

SEQ

sort

SEQ

sort

Seq

BAG

sort

E

SEQ

sort

E

Seq

ONE-SORT

sort

X

BAG-AS-SEQ

sort

E

BAG-TO-SEQ
:

identity
:

identity
:

d

d

d

Language Manual 109

5.6 Composing Diagram Refinements

what we intend; we might want the elements to be of another sort, such as the
nonnegative integers. Instead we take the shape mapping σ to be the identity, and
obtain a theory with two copies of the theory of sequences.

The parallel composition of the diagram refinement 〈δ, σ〉 composed with the parallel
refinement from the first stage is illustrated in Figure 23.

Figure 23: Refinement of Bags of Bags

Incompatibility. The example Bags of Bags allows us to illustrate how

incompatibilities might arise in building a parallel composition of refinements.
Suppose we attempted to refine both copies of bags into sequences at the same stage.
When we refine the outer copy of the bags, the elements are represented by the
elements of the outer copy of the sequences in the target. When we refine the inner
copy of the bags, the bags are represented as a quotient of sequences modulo the
permutation relation. But in the source, the elements of the outer bags are identified
with the inner bags; in the target, the elements of the outer sequences are identified
with the inner sequences. If all these sorts are to be identified, the sequences will be
identified with the quotient of the sequences modulo the permutation relation,
which would violate the freeness restriction (page 17).

ONE-SORT

BAG-OF-BAGS

BAGBAG

ONE-SORT

BAG-OF-SEQS

SEQBAG

ONE-SORT

SEQSEQ

SEQ-OF-SEQS

5 INTERPRETATIONS AND THEIR COMPOSITION

110 Specware

More precisely, our problem is one of filling in the missing pieces of the diagram in
Figure 24.

Figure 24: Incompatibility

‘However we fill in the mystery specification ?,we can see by following arrows
around the diagram that two sorts in the inner mediator, Bag-as-Seq and Seq, will be
identified, even though one is a quotient of the other, violating freeness.

Example 5.24 Bags of Bags, Continued.

In the example Bags of Bags, we formed a diagram of three interpretations and
constructed their parallel composition. We then formed a diagram of three
subsequent interpretations and again constructed their parallel composition. Finally,
we took the sequential composition of the two resulting interpretations.

According to the interchange law, we could instead have separately composed the
three interpretations from the first stage with the corresponding three interpretations,
respectively, from the second stage. Then we could have taken the parallel
composition of the three resulting interpretations. The final refinement would have
been the same. We illustrate this process in Figure 25.

ONE-SORT

sort

X

INNER.BAG

sort

Bag

ONE-SORT

sort

X

BAG-AS-SEQ

sorts

SEQ

sort

Seq

OUTER.BAG

sort

E

SEQ

sort

E

Seq

Bag-as-Seq (= Seq/perm?)

BAG-AS-SEQ

sort

E

? ?
?

?

? ?

d

d

d

Language Manual 111

5.6 Composing Diagram Refinements

Figure 25: Alternative Refinement of Bags of Bag

ONE-SORT

BAG-OF-BAGS

BAGBAG

ONE-SORT

SEQBAG

SEQSEQ

SEQ-OF-SEQS-
 DISTINCT

ONE-SORT

5 INTERPRETATIONS AND THEIR COMPOSITION

112 Specware

Language Manual 113

6 Code Generation

6 Code Generation

When specifications are sufficiently refined, we may use them to generate programs
that satisfy them. The programs will have implementations, in a desired target
language, for all the operations in the given specification.

Roughly speaking, this is done by constructing interpretations into theories that
describe the target programming languages, such as Lisp, C, or Ada. However, there
are differences between the logic of specifications and the logics of programming
languages; the notion of entailment, which describes logical deduction, may be
different. For example, while our specification logic is strongly typed and all
operations are completely defined on their types, the language Lisp is not strongly
typed and functions may not be defined and may not terminate for some legal inputs.
For this reason, generating programs requires some loosening of the notion of a
specification and an interpretation to encompass multiple logics.

We describe target languages not only with SPECWARE specifications but also with
entailment systems, which are like specifications but which may employ a different
logic. Rather than constructing an ordinary interpretation into an entailment system,
we construct an entailment-system morphism (or es-morphism), a mapping that
preserves logical entailment even though the source logic is different from the target
logic. Such a mapping will map theorems into theorems though the notion of
theorem-hood may be different. If we ignore some details, we can think of an es-
morphism as a kind of interpretation. For a more exact description of entailment
systems, see Meseguer’s paper General Logics [Meseguer 89].The language of
SPECWARE is Slang; for each target programming language, there is a sublogic of
Slang, called an abstract target language, that describes the constructs of the target
language. For instance, there is an abstract target language SlangLisp that describes
the constructs of Lisp.

The abstract target language is still a subset of Slang and employs SPECWARE logic
and syntax. For each target language, there is also an entailment system that describes
the language in its own logic and syntax. For instance, in the entailment system
EsLisp, which describes the language Lisp, operations are untyped. Sentences are
function definitions, of the form

defun f (x)
(cond ((p x) (g x))
...))

and conditional equations, of the form

if (p x) (equal (f x) (g x))).

6 CODE GENERATION

114 Specware

The entailment relation is one appropriate for reasoning about equations. Definitions
in EsLisp are directly executable as programs.

There is a built-in entailment-system morphism from SlangLisp to EsLisp. Therefore,
to translate the operations of any SPECWARE specification into Lisp code, it suffices to
build an interpretation from that specification into SlangLisp; that interpretation can
then be composed with the built-in es-morphism. To translate into another target
language, we construct an interpretation into another abstract target language, for
which there exists an es-morphism into an appropriate entailment system.

6.1 Restrictions on the Abstract Target Language

We probably will not find the built-in abstract target language sufficient to represent
all the operations in our specification; for instance, the abstract target language
SlangLisp contains realizations only for integers and lists. When we build an
interpretation into the abstract target language, however, we have a morphism into a
definitional extension of that language; that is, we have enlarged the language with
new definitions. Also, we may use the SPECWARE specification-building operations
explicitly to enlarge the abstract target language. For the system to generate code,
these extensions and enlargements must satisfy a number of restrictions.

Colimit Independence. For a colimit specification, each component must have an
implementation independently of the others.

Colimit Uniqueness. Each element in any of the components of a colimit may be the
image of at most one element of another component. (Otherwise, elements would
have more than one implementation.) Therefore, morphisms must be injective; they
cannot map two distinct elements into the same element. Also, we cannot include
diagrams such as the following, in which f is the image of both g and h; otherwise
we would have two definitions for f.

Constructiveness. Definitions must be constructive—that is, they must indicate a
method of computing the corresponding operation. They may be either explicit, of
the form

g h

f

Language Manual 115

6.1 Restrictions on the Abstract Target Language

definition of f is
axiom (equal (f x) E)

end-definition

as in

(equal (square x) (times x x))

or conditional, of the form

definition of f is
axiom (implies (P1 x)

(equal (f x) E1))

axiom (implies (P2 x)
(equal (f x) E2))

end-definition

The antecedent conditions(P1 x)and(P2 x)must cover all possibilities; if both
conditions hold, the values of E1 and E2 must agree. Of course the operation f may
have more than one argument, or none, or it may be a constant. There may be more
than two clauses in the definition and it may be recursive—occurrences of f may
occur in E1 or E2. For a boolean operation f we may use iff instead of equal.

Note that, in the abstract target language, the operation f must be applied directly to
variable arguments, not constants or complex terms. Thus the following definition for
the length function, which is legal in Slang, is not constructive and is not allowed in
SlangLisp:

definition of length is
axiom (equal (length nil) 0)

axiom (equal (length (cons x l))
((relax nonzero?)(succ (length l))))

end-definition

Here the arguments of length are a constant and a term, not variables. Definitions of
this style in Slang specifications must be mapped by the interpretation into
constructive definitions if we are to generate code from them.

We must rephrase definitions in terms of the “destructors”, such as head and tail or
pred, rather than the “constructors”, such as nil and cons or succ.

No other operation may surround the operation f being defined. For example, a
constructive definition for a function ncons may not contain the axiom

axiom (equal (head (ncons x)) x)

because a function symbol head surrounds the function ncons being defined.

6 CODE GENERATION

116 Specware

An exception to these rules is that the built-in operations relax, quotient, and embed
may surround the arguments or the defined function symbol in the definition. Special
mechanisms in the es-morphism can translate such definitions into code. For example,
in refining sets into bags, we have represented sets as a subsort of bags, those without
duplicated elements. In the specification SET-AS-BAG, we define the sort Set-as-Bag
by

sort-axiom Set-as-Bag = Bag | no-dup-bag?

We then have the following definition for the representation empty-s-as-b of the
empty set:

definition of empty-s-as-b is
axiom (equal ((relax no-dup-bag?) empty-s-as-b) empty-bag)

end-definition

In other words, the empty set in the subsort is represented by the empty bag in the
supersort. This is regarded as a constructive definition even though the defined
constant empty-s-as-b is surrounded by a relax function.

Similarly, in refining bags into sequences, we have represented bags as the quotient of
sequences modulo the permutation relation. In the specification for BAG-AS-SEQ, we
have the following definition for the function insert-b-as-s, which represents the
bag insertion function:

definition of insert-b-as-s is
axiom (equal (insert-b-as-s e ((quotient perm?) s))

((quotient perm?)
((relax nonempty?) (prepend e s))))

end-definition

In other words, the insertion function for bags is represented by the prepend function
on sequences. This is regarded as a constructive definition even though argument s of
the defined function insert-b-as-s is surrounded by a quotient function.

We have said that when a constructive definition is expressed as a set of implications,
the antecedent conditions of the implications must cover all possibilities. This rule
takes into account the following convention: a definition on a subsort is thought of as
an implicit implication, with the condition that defines the subsort as its antecedent.

For example, the following is regarded as a constructive definition of the length
function.

definition of length is
axiom (implies (null? nl)

(equal (length nl) zero))

axiom (equal (length ((relax nonnull?) nnl))

Language Manual 117

6.2 The Entailment-System Morphism

((relax nonzero?)(succ (length (tail nnl)))))
end-definition

The second axiom is thought of as an implication like the first, with the invisible,
redundant antecedent (nonnull? ((relax nonnull?) nnl). Hence the antecedent
conditions do cover all possibilities, if we consider the invisible ones. (Note that nl
and nnl are variables, with implicit universal (fa) quantification.)

Living with these restrictions forces us to revise some of our specifications. For
example, our original specification for sequences had a sort Seq of sequences but no
separate sort of nonempty sequences. However, because we cannot give constructive
definitions in terms of the constructors empty-seq and prepend, we must introduce
destructors first-seq and rest-seq for sequences, to yield the first element of a
nonempty sequence and the sequence of all the rest of the elements, respectively.
Because the functions are not defined on the empty sequence, we introduce a sort NE-
Seq of nonempty sequences and declare

op first-seq : NE-Seq -> E
op rest-seq : NE-Seq -> Seq

These operations will be mapped by an interpretation into the corresponding
SlangLisp operations head and tail. The function prepend will now yield a
nonempty sequence, not a sequence. (This explains why, in the definition for insert-
b-as-s, the occurrence of (prepend e s) is surrounded by the operator (relax
nonempty?)).

Sort Restrictions. Various restrictions may apply to the sort mechanism in the
abstract target language. For instance, in SlangLisp, the only sort constructors
allowed are -> and the product sort. A product sort cannot be the codomain of any
operation.

In the refinement process, we map our given specification, which probably does not
satisfy the preceding restrictions, into a definitional extension of the abstract target
language that does. Although the definition of an operation in the source specification
need not itself be constructive, to generate code for it we must map it into a definition
that is constructive and expressed in terms of operations from the abstract target
language.

6.2 The Entailment-System Morphism

The built-in es-morphism translates Slang constructs from the abstract target
language into the corresponding programming-language constructs. For example,
here is the SlangLisp definition for absolute value:

6 CODE GENERATION

118 Specware

spec Slang-ABS is
import INTEGER
op abs : Int -> Int
definition of abs is
axiom (implies (ge x zero)

(equal (abs x) x))

axiom (implies (lt x zero)
(equal (abs x) (minus zero x)))

end-definition
end-spec

The es-morphism from SlangLisp to EsLisp translates it into the corresponding EsLisp
version:

spec ES-ABS is
import SLANG-BASE
op abs
(defun abs (x)
(cond ((>= x 0) x)

((< x 0) (- 0 x))))
end-spec

Note that the SlangLisp version of the definition of abs consists of a set of
complementary axioms; the EsLisp version consists of a single conditional equation—
sets of complementary axioms are not legal in EsLisp, while conditional equations are
not legal in Slang. Also note that the SlangLisp version imports the specification for
integers. The EsLisp version does not include definitions for integer operations,
because these operations are built-in Lisp primitives. It does, however, import a
specification Slang-BASE, which defines logical operations that are in SPECWARE but
are not primitive in Lisp. The specification SLANG-BASE is as follows:

spec SLANG-BASE is
ops implies, iff
(defun implies (x y)

(or (not x) y))
(defun iff (x y)

(or (and x y)
(and (not x) (not y))))

end-spec

6.2.1 The Specifications LIST-PRIM, INTEGER, and LIST

The following specification in the abstract target language SlangLisp describes lists of
elements of sort List-Elem.

Language Manual 119

6.2.1 The Specifications LIST-PRIM, INTEGER, and LIST

Spec LIST-PRIM is
Sorts List-Elem, List

op nil : List
op null? : List -> Boolean
op cons : List-Elem, List -> List
op head : List -> List-Elem
op tail : List -> List

constructors {nil, cons} construct List

<axioms for primitives omitted>

end-spec

This specification describes a small fragment of Lisp. It does not describe Lisp atoms
and it does not say what List-Elem is. Thus, although the es-morphism maps this
specification into EsLisp, it does not have an independent implementation. It may be
used as part of a diagram in which the meaning of List-Elem is specified; the colimit
of the entire diagram may be specified using the “instantiation” mechanism,
described subsequently, instead of the usual colimit mechanism.

The SlangLisp specification INTEGER, in contrast to our specifications NAT-BASIC and
Nat, describes both nonnegative and negative integers.

Spec INTEGER is
Sort Integer

op less-than : Integer, Integer -> Boolean
op greater-than : Integer, Integer -> Boolean
op less-than-or-equal : Integer, Integer -> Boolean
op greater-than-or-equal : Integer, Integer -> Boolean
op iplus : Integer, Integer -> Integer
op minus : Integer, Integer -> Integer
op times : Integer, Integer -> Integer
op min : Integer, Integer -> Integer
op max : Integer, Integer -> Integer

constructors {zero, one, iplus, minus} construct integer

%% axioms omitted
end-spec

The axioms provide constructive definitions of these elements. In addition, there are
declared the constants one, two, …, ten, which denote the integers 1 through 10.
There is an es-morphsim from this theory into EsLisp. Therefore, if we can refine a

6 CODE GENERATION

120 Specware

theory constructively into INTEGER, we can compose that interpretation with the es-
morphism to generate LISP code for the theory.

There is a specification for a larger theory LIST, which imports both LIST-PRIM and
INTEGER, that constructively defines additional Lisp functions, such as concat (the
append function), sublist, and remove. Since this theory is a definitional extension
of LIST-PRIM and INTEGER, if we can refine a theory constructively into LIST, we can
generate Lisp code for the theory.

We may develop other constructive definitional extensions of LIST-PRIM and
INTEGER. We can then create LISP code for a theory if we can refine it constructively
into the extension.

6.2.2 Translating Constructed Sorts

There are numerous details in es-morphisms such as that from SlangLisp to EsLisp.
We shall briefly consider the translation of constructed sorts.

Each element of a subsort is represented by the corresponding element of the
supersort. For example, the element empty-s-as-b in the subsort of bags with no
duplicated elements is represented by the bag((relax no-dup-bag?) empty-s-as-
b) in the supersort of bags. (As we have seen, this is defined to be equal to the empty
bag.) Similarly, quotient sorts can be handled by representing an equivalence class by
one of its elements. For example, the bag {{4,2,4}} might be represented by the
sequence [2,4,4].

Sentences are translated consistently with these representations. For example, the
functions (relax p?) and (quotient r?), associated with the subsorts and quotient
sorts respectively, are dropped. For functions that are defined on a subsort, however,
an explicit runtime check on the argument is inserted into the code; if the argument
does not satisfy the predicate p?, an error message is produced. For instance, before
applying a function to a set represented as a bag with no duplicated elements, the
implemented code would ensure that no-dup-bag? was true of the bag. Also, the
equality on a quotient sort E/r? is replaced by the equivalence relation r? that defines
the quotient sort; thus the equality relation on bags will be replaced by the
permutation relation on sequences; for example, two bags represented by the
sequences [2,4,4] and [4,4,2] would be judged to be equal.

Coproduct sorts are translated into covariant records. For example, consider the
following fragment of a SlangLisp specification for a stack—the size of a stack is the
number of items it contains

Language Manual 121

6.2.3 Translating Colimits

sort-axiom Stack = E-Stack + NE-Stack
...

op size : Stack -> Int
definition of size is
axiom (equal (size ((embed 1) es))

zero)

axiom (equal (size ((embed 2) nes)) (
succ (size (pop nes))))

end-definition

This fragment is translated into the following piece of EsLisp:

op size, E-Stack?, NE-Stack?
(defun E-Stack? (s)
(= (car s) 1))

(defun NE-Stack? (s)
(= (car s) 2))

...
(defun size (s)
(cond
((E-Stack? s) 0)
((NE-Stack? s)
(1+ (size (pop (cdr s)))))))

Thus the empty stack is represented by a list whose car is 1, a nonempty stack by a
list whose car is 2.

This translation exploits the generality of entailment-system morphisms. Note, for
instance, that the sorts E-stack and NE-stack, that is, empty stack and nonempty
stack, in the SlangLisp version, are translated into functions E-Stack? and NE-Stack?
in EsLisp. This would be impossible for an ordinary refinement, in which sorts can
only be mapped into sorts, not functions.

6.2.3 Translating Colimits

For suitable entailment-system morphisms, such as that from SlangLisp to EsLisp, we
obtain a recursive procedure for code generation; code for the colimit is obtained by
combining the code for its component specifications. Thus, if we can constructively
refine each component of a diagram into a specification for which we have a
realization in the target language, we can obtain a realization for the colimit of the
diagram.

6 CODE GENERATION

122 Specware

6.2.4 Translation by Instantiation

A special mechanism exists for translating diagrams of the following form:

Here we assume that some es-morphism exists from FOO into EsLisp. Recall that no
translation exists from LIST-PRIM into EsLisp; this is because we need a separate
specification to describe the elements of the lists in LIST-PRIM. However, the entire
configuration can be translated into EsLisp by the instantiation mechanism. The lists
of LIST-PRIM will be translated into Lisp lists, and the elements of the list will be
translated into the same Lisp objects as the elements of sort E from the specification
FOO.

6.3 Refinement for Code Generation

Although the following example illustrates many aspects of refinement that we have
seen before, we use it to emphasize that special requirements are imposed on a
refinement if we wish to use it to generate code.

Example 6.1 Sets of Nonnegative Integers.

We assume we want to generate Lisp code for a specification for sets of nonnegative
integers. As we have already seen, we can implement sets in terms of bags and, in
turn, implement bags in terms of sequences. Sequences can then be implemented as
lists, which exist in the abstract target language for Lisp. Furthermore, we can
implement nonnegative integers in terms of Lisp integers—they are the subsort of the
integers satisfying the nonnegative predicate. That is the basis for the proposed
implementation. We give highlights of the refinement here.

The specification for sets of nonnegative integers is as follows:

LIST-PRIM

List-Elem

FOO

E

TRIV

X

Language Manual 123

6.3 Refinement for Code Generation

spec SET-OF-NAT-BASIC is
colimit of diagram
nodes ONE-SORT, SET, NAT-BASIC
arcs ONE-SORT -> SET : {X -> E},

ONE-SORT -> NAT-BASIC : {X -> Nat}
end-diagram

Here is a graphical presentation of the diagram for the colimit in the specification:

The specification SET is given in Section 3.3, page 43. The specification NAT-BASIC is
the basic specification for the nonnegative integers given in Figure 1, in Section 1,
page 6.

We employ a sequential composition of parallel refinements; thus at each stage we
refine SET, ONE-SORT, and NAT-BASIC separately.

Stage One: Sets into Bags. At the first stage, we refine sets into bags. For this
refinement, we have previously (in Example 5.2, page 65) introduced a mediator
SET-AS-BAG, in which sets are regarded as a subsort of bags, those with no
duplicated elements; thus the set {2,4} is represented by the bag {{2,4}}, and no set is
represented by the bag {{2, 2, 4}}. To define the appropriate subsort of the bags, we
defined in the mediator a predicate no-dup-bag?, which holds if a bag has no
duplicated elements; we could then define the subsort Set-as-Bag by

sort-axiom Set-as-Bag = Bag | no-dup-bag?

Because we were not concerned with code generation, the definition of no-dup-bag?
did not have to be constructive.

Now that we are considering code generation, we must be more careful. In generating
a function defined on sets, the system will insert a runtime check to ensure that the
bag that represents it satisfies the no-dup-bag? predicate. Therefore, the definition of
no-dup-bag? must either be constructive itself or be mapped under refinement into a
constructive definition.

We cannot formulate a constructive definition of no-dup-bag? because, in our theory,
bags have no “deconstructors” analogous to head and tail in Lisp. We cannot map
the definition of no-dup-bag? into a constructive definition because it occurs in the

SET

E

NAT-BASIC

Nat

ONE-SORT

X
Sort

Sort Sort

6 CODE GENERATION

124 Specware

mediator SET-AS-BAG, not in the specification BAG, and is not influenced by the
refinement process.

To get around this problem, we move the definition of no-dup-bag? from the
mediator into the specification BAG itself. The resulting specification is called BAG-
EXTEND. The definition will then be mapped under refinement into the predicate no-
dup-seq? in the specification SEQ-EXTEND, which is in turn mapped into the predicate
no-dup-list? in the specification LIST-EXTEND, a definitional extension of LIST-
PRIM. Only this last definition is constructive. LIST-EXTEND serves as the mediator of
the interpretation from sequences into lists.

Also, in the previous refinement, we introduced an abbreviation in the mediator: to
simplify the reading, the function (relax no-dup-bag?) was abbreviated as bag-
of-s-as-b. However, as we indicated, in code generation the relax function is given
special treatment. Many of our axioms using the abbreviation bag-of-s-as-b are not
regarded as constructive, even though they are constructive when we replace them by
the corresponding axiom that uses relax explicitly. Therefore, when we are
concerned about code generation, we sometimes need to use the relax operation
explicitly, instead of abbreviations such as bag-of-s-as-b.

Because we are doing a parallel refinement, we must make corresponding
refinements to the other two components, ONE-SORT and NAT-BASIC; at this stage, we
apply the identity interpretation to these specifications.

The resulting configuration is illustrated in Figure 26:

Figure 26: Stage One: Sets into Bags

SET

E

NAT-BASIC

Nat

ONE-SORT

X

BAG-EXTEND

E

NAT-BASIC

Nat

ONE-SORT

X

Sort

Sort Sort

Sort

Sort

Sort

Language Manual 125

6.3 Refinement for Code Generation

Stage Two: Bags into Sequences. In the second stage of the refinement, we
implement bags in terms of sequences as in Example 5.3, page 68; for code
generation, however, we use a constructive mediator BAG-AS-SEQ-EXTEND instead of
the original mediator BAG-AS-SEQ. Bags are regarded as a quotient sort, of sequences
modulo the permutation relation. Each bag is mapped into an equivalence class of
sequences; thus the bag {{2,4}} is mapped into the class of two sequences, [2,4] and
[4,2]. According to the way quotient sorts are implemented, either of these sequences
will stand for the bag. The equality relation on bags will be implemented as the
permutation relation perm? on sequences. Therefore we must have a constructive
definition for perm?.

The original definition we gave for perm? was as follows:

op perm? : Seq, Seq -> Boolean
definition of perm? is
axiom (iff (perm? s t)

(fa (e) (equal (count e s) (count e t))))
end-definition

This definition is not constructive: it contains a quantifier (fa (e) ...). To evaluate
this quantifier and check if the counts are equal for all elements e of E would require
an infinite computation if E is infinite; instead we replace it by a constructive
definition, in which we test if the counts are equal only for those elements e that
actually occur in s or in t:

definition of perm? is
axiom (iff (perm? s t)

(and (eqcount-seq? s s t)
(eqcount-seq? t s t)))

end-definition

Here (eqcount-seq? r s t) is defined constructively to hold if every element of the
sequence r occurs equally often in s and t. This describes a finite computation
because there are only a finite number of elements in r

At this second stage of the parallel refinement, as in the first, we apply the identity
refinements to the other components of the diagram, ONE-SORT and NAT-BASIC. The
resulting configuration is as given in Figure 27.

6 CODE GENERATION

126 Specware

Figure 27: .Sets into Sequences of Nonnegative Numbers

Stage Three: Nonnegative Integers into Integers. In the third stage, we refine NAT-
BASIC, our specification for the nonnegative integers, into INTEGER, the SlangLisp
specification for all the integers, including the negative integers, via a mediator NAT-
BASIC-AS-INTEGER. In this refinement, the nonnegative integers are mapped into a
subsort of the integers, those that satisfy the predicate nonnegative?. More
precisely, the sort Nat in the nonnegative integers is mapped into the sort Nat-as-
Int in the mediator, defined by

sort-axiom Nat-as-Int = Integer | nonnegative?

As in Bag of Bags (Example 5.23), to maintain compatibility we must perform
analogous refinements on the other two components of the diagram, ONE-SORT and
SEQ-EXTEND. This is because the three components share structure that is being
altered by the refinement; because Nat is altered in NAT-BASIC, we must make
corresponding alterations to X in ONE-SORT and E in SEQ-EXTEND; these three sorts are
linked together by morphisms in the diagram.

The specification ONE-SORT is mapped into itself, not by the identity interpretation but
via a mediator TWO-SORT-SUBSORT:

NAT-BASIC

Nat

ONE-SORT

X

BAG-EXTEND

E

ONE-SORT

X

no-dup-bag?

ONE-SORT

X

SET

E

Sort

Sort Sort

Sorts

Sort

Sort

SEQ-EXTEND

E

no-dup-seq?

Sorts

NAT-BASIC

Nat

Sort

NAT-BASIC

Nat

Sort

Language Manual 127

6.3 Refinement for Code Generation

spec TWO-SORT-SUBSORT is
sorts Y, Z
op p? : Z -> Boolean
sort-axiom Y = Z | p?

end-spec

The sort X in ONE-SORT is mapped into the subsort Y in the mediator. An
interpretation morphism (See Section 5.4.2) will map p? in this mediator into
nonnegative? in the mediator NAT-BASIC-AS-INTEGER. The sorts Y and Z correspond
to Nat and Integer respectively

The specification SEQ-EXTEND is also mapped into itself, via a mediator SEQ-EXTEND-
SUBSORT, just as in refining bags of bags (Example 5.23, page 103) we mapped BAG
into itself via a mediator BAG-QUOTIENT. The mediator imports the colimit of two
copies of the sequence specification, over elements of sort C and D respectively. Sorts C
and D are related in the mediator as follows:

op p? : D -> Boolean
sort-axiom C = D | p?

That is, C is the subsort of D containing those elements that satisfy p?.

The interpretation will map the domain sequences into the C-sequences (the
sequences of elements of sort C in the mediator) and the codomain sequences into the
D-sequences. The C-sequences are related to the D-sequences as follows:

sort-axiom C.Seq = D.Seq | all-p?

Here the predicate (all-p? ds) is defined (constructively) to hold if every element of
a D-sequence ds satisfies the condition p?. Thus, if p? is the predicate nonnegative?,
(all-p? ds) will hold if ds is the sequence [1,2,3] but not the sequence [-1,2,3]. The
C-sequences are a subsort of the D-sequences—those whose elements all satisfy the
condition p?.

Because we are interested in code generation, we must provide implementations for
the sequence operations in the source specification SEQ-EXTEND in terms of the
sequence operations in the target specification SEQ-EXTEND; this means that we must
define the operations of the C--sequences constructively in terms of the operations of
the D--sequences. For instance, we say

definition of C.empty-seq is
axiom (equal ((relax all-p?) C.empty-seq) D.empty-seq)

end-definition

Recall that (relax all-p?) maps a C--sequence into the same sequence regarded as
a D--sequence. The definition then means that the empty C--sequence is the sequence

6 CODE GENERATION

128 Specware

that, regarded as a D--sequence, is the empty D--sequence. This is a constructive
definition only because of the special treatment of the relax operator.

Because we have introduced functions first-seq and rest-seq into SEQ-EXTEND,
we must relate the C--version of these functions with the corresponding D--versions.
For example, we have

axiom (equal ((relax p?)
(C.first-seq cnes))

(D.first-seq
(d-of-c-ne-seq cnes)))

Here (d-of-c-ne-seq cnes) is a function defined in the mediator to map a
nonempty C--sequence cnes into the same sequence viewed as a nonempty D--
sequence.

This axiom corresponds to the following commutative figure:

Figure 28 illustrates this stage of the refinement process, including the mediators.

C.NE-Seq
cnes:

D.NE-Seq
d-of-c-ne-seq

C D

D.first-seqC.first-seq

(relax p?)

Language Manual 129

6.3 Refinement for Code Generation

Figure 28: Third Stage: Nonnegative Integers to Integers

Stage Four: Sequences into Lists. In the fourth stage, we refine SEQ-EXTEND into
LIST-PRIM, the SlangLisp specification for a fragment of Lisp. The interpretation is
via a mediator LIST-EXTEND, which enriches LIST-PRIM with constructive
definitions of operations, such as no-dup-list?, that are necessary for the
representation of sets. In this representation, empty-seq is represented by nil, in-
seq? by member, prepend by cons, and so forth.

At the same stage, we refine ONE-SORT into TRIV, which is actually identical to ONE-
SORT except that TRIV is in SlangLisp and ONE-SORT is not. We also refine INTEGER
into itself via the identity. These refinements can be performed in parallel, without
causing incompatibilities. To see this, observe that the diagram in Figure 29
commutes—it illustrates just this last stage of the refinement process.

NAT-BASIC

Nat

ONE-SORT

X

SEQ-EXTEND-
SUBSORT

C,
Nonnegative?

TWO-SORT-
SUBSORT

P?

SEQ-EXTEND

E

INTEGER

Integer

ONE-SORT

X

SEQ-EXTEND

E

D,

Y, Z,

NAT-AS-
INTEGER

Nat, Integer,

P?

Sort

SortSort

Sort

Sort Sort

Sort Sort

Sort

6 CODE GENERATION

130 Specware

Figure 29: Stage Four: Sequences into Lists

Code Generation. We have constructed an interpretation from our initial
specification for sets of nonnegative integers into a colimit of a diagram whose
components are all SlangLisp specifications. Furthermore, all the operations of our
initial specification have been mapped into constructive definitions based on
SlangLisp primitives. Let us examine our final colimit diagram:

This diagram is of a form that can be translated by the instantiation mechanism.
Therefore we can use the entire refinement to generate code for our original
specification for sets of nonnegative integers. An es-morphism is constructed from

INTEGER

Integer

ONE-SORT

X

LIST-EXTEND

E,

INTEGER

Integer

TRIV

X

no-dup-list?

LIST-PRIM

List-Elem

INTEGER

Integer

TRIV

X

SEQ-EXTEND

E,

no-dup-seq?

Sort

Sorts
Sort

Sorts

Sort

Sort

SortSort

Sort

LIST-PRIM

List-Elem

INTEGER

Integer

TRIV

X

Language Manual 131

6.3 Refinement for Code Generation

SET-OF-NAT-BASIC into EsLisp. The target of this es-morphism, an EsLisp
specification, will contain Lisp definitions that implement all the set operations of
SET, as applied to elements that are nonnegative integers. It will also contain Lisp
implementations of all the numerical operations in NAT-BASIC.

For instance, here is a sample of some of the generated code:

DEFUN INSERT-SET (X SB)
(IF (IN-BAG? X SB) SB

(IF (NOT (IN-BAG? X SB))
(INSERT-BAG X SB)
(CASE-ERROR))))

.

.

.

(DEFUN INSERT-BAG (E S)
(PREPEND E S))

Machine-generated function names have been simplified. Note that the programs
implement, in Lisp syntax, the algorithms suggested by the appropriate constructive
definitions from the specifications.

6 CODE GENERATION

132 Specware

Language Manual 133

Part III Appendices

PART III APPENDICES

134 Specware

Language Manual 135

A Names

Specifications, morphisms and diagrams can each be named, as can many of their
components, such as nodes and arcs of diagrams. There is a consistent syntax for
introducing names, illustrated as follows:1

NAMED NOT NAMED
spec <name> is spec

<development-element>* <development-element>*
end-spec end-spec

morphism m : <name> -> <name> { <sm-rules> }
is { <sm-rules> }

diagram <name> is diagram
<nodes-and-arcs> <nodes-and-arcs>

end-diagram end-diagram

The keyword is may be replaced by the symbol =.Names are used in the usual way
to denote the objects to which they are bound. Thus, for example, in any syntactic
context in which a specification is required, a name of a specification may be
substituted.

A.1 Naming and Scoping Rules

Specifications, diagrams, and morphisms each have their own individual, global
namespace. Thus the same name may be used to denote, say, a specification and a
morphism. Because these namespaces are global, two different specifications
(respectively, morphisms, diagrams) must have different names—there is no context
that can disambiguate which specification a name refers to.

If a specification, diagram or morphism appears as a top-level expression, i.e., not as a
subexpression of a diagram-, morphism- or specification-returning expression, it
must be named. Otherwise, there is no way to refer to such an object.

On the other hand, a new name cannot be introduced in a lower-level subexpression.
For example,

1.In this discussion and in others throughout the manual, a BNF syntax description lan-
guage is used. See Section B.1 in the appendix containing the BNF for Slang. Note that, as in
the syntax for diagrams in the example, some small liberties are taken in the interest of brev-
ity.

A NAMES

136 Specware

diagram FOO is
nodes X: spec Y is ... end-spec

end-diagram

is illegal since the specification at the lower-level node X cannot introduce the name Y.

The names of nodes and arcs are local to a diagram and have their own namespaces.
This means that two diagrams may use the same name as a node name, and within
the same diagram a node and an arc may have the same name.

Similarly the names used in a specification are local to the specification. Sorts,
operations, definitions, and theorems all have distinct namespaces. It is not an error,
however, for two operations to have the same name if type inference can be used to
disambiguate references.

A.2 Lexical Conventions

Valid names start with either an upper- or lower-case letter or an asterisk (*), and are
followed by any letter or digit or an asterisk (*), exclamation point (!), hyphen (-), or
question mark (?). (Also, see Section B.2 in the BNF appendix.) Names are not case
sensitive: all names are converted to uppercase internally.

The keywords in Slang are:

arcs embed mediator-sm

axiom end-definition morphism

body-ip end-diagram nodes

by end-spec of

cocone-morphism ex op

cod-to-med fa project

codomain-sm from quotient

codomain-to-mediator identity-morphism relax

colimit import sort

const import-morphism sort-axiom

construct instantiate sorts

constructors interpretation spec

definition ip-scheme spec-interpretation

diagram ip-scheme-morphism theorem

dom-to-med is translate

domain-sm lambda translation-morphism

domain-to-mediator mediator

The following characters have special meaning depending upon the context:

() -> , | : = . < > { } [] / +

Language Manual 137

B Syntax

In this appendix, we define the syntax of Slang. Readers familiar with REFINE may
also wish to consult the file

<slang-top-level>/core4/code/language/spec-grammar.re.

B.1 Notation

To describe the syntax, we use BNF augmented with regular expression constructs.
Non-terminals are enclosed in angle brackets, “ 〈…〉”. Terminals are indicated by
typewriter font. Syntax alternatives are separated by “”. Parentheses, “(…)”, are
used for grouping, e.g., for inline alternatives. Optional entities are enclosed in square
brackets, “[…]”. Writing a “*” after a syntactic element indicates zero or more
repetitions of that element; a “+” indicates one or more repetitions.

B.2 Grammar

Top-Level Objects

The top-level objects of Slang are specifications, morphisms, and diagrams. Each such
object class appears twice in the grammar, once with the prefix “global-” and once
with the prefix “local-”. Global objects must be named; local objects must not be
named. Global objects can appear only at the top-level; local objects can appear only
within other expressions.

〈top-level-slang-object〉 →
〈global-spec〉  〈global-sm-diagram〉

Specifications

〈global-spec〉 →
spec 〈symbol〉 (is=)

[〈import-declaration〉]
〈development-element〉*

end-spec

spec 〈symbol〉 (is=) 〈spec-operation〉

B SYNTAX

138 Specware

Import Declarations

〈import-declaration〉 →
import 〈spec-term〉 (, 〈spec-term〉)∗ 
import 〈diagram-term〉

Specification Elements

〈development-element〉 →
〈sort-declaration〉  〈sort-axiom〉  〈op-declaration〉 
〈constructor-set〉  〈theorem〉  〈definition〉

〈sort-declaration〉 → (sorts  sort) 〈spec-sort〉 (, 〈spec-sort〉)*

〈spec-sort〉 → 〈symbol〉

〈sort-axiom〉 → sort-axiom 〈spec-sort-ref〉 = 〈spec-sort-term〉

〈op-declaration〉 → (op  const) 〈symbol〉 : 〈spec-sort-term〉

〈constructor-set〉 →
constructors { 〈spec-op-ref〉 (, 〈spec-op-ref〉)*} construct 〈spec-sort-term〉

〈theorem〉 → (axiom  theorem) [〈symbol〉 (is  =)] 〈spec-op-term〉

〈definition〉 →
definition [〈symbol〉 [of 〈spec-op-ref〉] (is  =)]

〈definition-clause〉 +
end-definition

〈definition-clause〉 → 〈theorem〉

Sort Terms

〈spec-sort-term〉 →
〈spec-sort-ref〉  〈spec-sort-function〉  〈spec-sort-subsort〉 
〈spec-sort-quotient〉  〈spec-sort-coproduct〉  〈spec-sort-product〉

〈spec-sort-ref〉 → 〈qualified-name〉

〈spec-sort-function〉 → [〈spec-sort-term〉] -> 〈spec-sort-term〉

〈spec-sort-subsort〉 → 〈spec-sort-term〉 | 〈spec-op-term〉

Language Manual 139

B.2 Grammar

〈spec-sort-quotient〉 → 〈spec-sort-term〉 / 〈spec-op-term〉

〈spec-sort-coproduct〉 → []  〈spec-sort-term〉 (+ 〈spec-sort-term〉)+

〈spec-sort-product〉 → ()  〈spec-sort-term〉 (, 〈spec-sort-term〉)+

Precedence and Associativity for Sort Terms. The different operators for
constructing sort terms are listed as follows in order of increasing precedence.
Precedence can be overridden with parentheses.

precedence for 〈spec-sort-term〉
brackets (matching)
same-level -> associativity right
same-level ,+ associativity none
same-level |/

Terms and Formulas

〈spec-op-term〉 →
〈spec-op-ref〉  〈spec-op-operation〉  〈spec-op-binding-operation〉 
〈spec-op-product〉

〈spec-op-ref〉 → 〈qualified-name〉 [: 〈spec-sort-term〉]

〈spec-op-operation〉 →
(〈spec-op-term〉 〈spec-op-term〉 *) 
((project  embed) 〈positive-integer〉)

〈spec-op-binding-operation〉 →
(〈spec-op-binding-rator〉 (〈bound-var〉 *) 〈spec-op-term〉)

〈spec-op-binding-rator〉 → (fa  ex lambda)

〈bound-var〉 → 〈symbol〉 [: 〈spec-sort-term〉]

〈spec-op-product〉 → < 〈spec-op-term〉 * >

B SYNTAX

140 Specware

Specification Terms

Specification terms are terms that denote specifications. Generally terms are of three
kinds: references to named objects, operations, and explicit terms for anonymous (or
local) objects.

〈spec-term〉 → 〈spec-ref〉  〈local-spec〉  〈spec-operation〉

〈spec-ref〉 → 〈symbol〉

〈local-spec〉 →
spec

[〈import-declaration〉]
〈development-element〉 *

end-spec

〈spec-operation〉 → 〈spec-translation〉  〈spec-colimit〉

〈spec-translation〉 → translate 〈spec-term〉 by { [〈sm-rules〉] }

〈spec-colimit〉 → colimit of 〈diagram-term〉

Specification Morphisms

〈global-signature-morphism〉 →
morphism 〈symbol〉 : 〈spec-term〉 -> 〈spec-term〉 (is  =)
{ [〈sm-rules〉] }

〈sm-rules〉 → 〈sm-rule〉 (, 〈sm-rule〉)*

〈sm-rule〉 → 〈sort-or-op-ref〉 -> 〈sort-or-op-ref〉

〈sort-or-op-ref〉 → 〈qualified-name〉  (〈qualified-name〉 : 〈spec-sort-term〉)

Specification Morphism Terms

〈sm-term〉 → 〈sm-ref〉  〈local-signature-morphism〉  〈sm-operation〉

〈sm-ref〉 → 〈symbol〉

〈local-signature-morphism〉 →
[morphism 〈spec-term〉 -> 〈spec-term〉] { [〈sm-rules〉] }

〈sm-operation〉 →
identity-morphism  translation-morphism 

Language Manual 141

import-morphism  cocone-morphism from 〈symbol〉

Diagrams

〈global-sm-diagram〉 →
diagram 〈symbol〉 (is  =)

[nodes 〈sm-node〉 (, 〈sm-node〉) *]
[arcs 〈sm-arc〉 (, 〈sm-arc〉)*]

end-diagram

Diagram Terms

〈diagram-term〉 → 〈diagram-ref〉  〈local-sm-diagram〉

〈diagram-ref〉 → 〈symbol〉

〈local-sm-diagram〉 →
diagram

[nodes 〈sm-node〉 (, 〈sm-node〉)*]
[arcs 〈sm-arc〉 (, 〈sm-arc〉)*]

end-diagram

Diagram Elements

〈sm-node〉 → [〈symbol〉 :] 〈spec-term〉

〈sm-arc〉 → [〈symbol〉 :] 〈sm-node-ref〉 -> 〈sm-node-ref〉 : 〈sm-term〉

〈sm-node-ref〉 → 〈symbol〉

Qualified Names

〈qualified-name〉 → (〈node-name〉 .)* 〈sort-or-op-name〉

〈node-name〉 → 〈symbol〉

〈sort-or-op-name〉 → 〈symbol〉

Simple Name

〈symbol〉 → 〈symbol-start-char〉 〈symbol-continue-char〉 *

〈symbol-start-char〉 ∈
*abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

〈symbol-continue-char〉 ∈

B SYNTAX

142 Specware

-*abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890?!

Comments

The character “%” indicates the start of a comment; everything which follows until the
end of the line is ignored. Larger pieces of text can be commented out by enclosing
them in “#||...||#”; these characters function as brackets and can be nested.

B.3 Refinement Constructs

In addition to specifications, morphisms, and diagrams, there are two additional top-
level constructs in Slang: interpretation schemes and interpretation scheme
morphisms.

〈top-level-slang-object〉 → 〈global-ip-scheme〉  〈global-ips-morphism〉

Interpretations and Interpretation Schemes

〈global-ip-scheme〉 →
(interpretation  ip-scheme) 〈symbol〉 : 〈spec-term〉=> 〈spec-term〉 (is=)

mediator 〈spec-term〉
(dom-to-med  domain-to-mediator) 〈sm-term〉
(cod-to-med  codomain-to-mediator) 〈sm-term〉

Interpretation (Scheme) Terms

〈ips-term〉 → 〈ips-ref〉  〈local-ip-scheme〉

〈ips-ref〉 → 〈symbol〉

〈local-ip-scheme〉 →
(interpretation  ip-scheme) [〈spec-term〉 = 〈spec-term〉]

mediator 〈spec-term〉
(dom-to-med  domain-to-mediator) 〈sm-term〉
(cod-to-med  codomain-to-mediator) 〈sm-term〉

Interpretation (Scheme) Morphisms

〈global-ips-morphism〉 →
ip-scheme-morphism 〈symbol〉 : 〈ips-term〉 -> 〈ips-term〉 (is =)

domain-sm 〈sm-term〉
mediator-sm 〈sm-term〉

Language Manual 143

B.3 Refinement Constructs

codomain-sm 〈sm-term〉

Interpretation (Scheme) Morphism Terms

〈ipsm-term〉 → 〈ipsm-ref〉 〈local-ips-morphism〉

〈ipsm-ref〉 → 〈symbol〉

〈local-ips-morphism〉 →
ip-scheme-morphism

domain-sm 〈sm-term〉
mediator-sm 〈sm-term〉
codomain-sm 〈sm-term〉

B SYNTAX

144 Specware

Language Manual 145

C Table of Terms

The following table summarizes the construction of terms in Slang, and their sorts.

Given sorted terms - - is a term of sort -

Constants

c:s c s

<> ()

Products

a1:s1,a2:s2 <a1 a2> s1,s2

a1:s1,...,an:sn <a1 ... an> s1,...,sn

a:s1,s2 ((project 1)a) s1

a:s1,s2 ((project 2)a) s2

a1:s1,...,sn ((project i)a) si

Functions and Application

f:-> s (f) s1

f:s -> t, a:s (f a) t

f:s1,...,sn->t, a:s1,...sn (f a) t

f:s1,...,sn>t,a1:s1,...an:s
n

(f a1 ... an) t

v:s, e:t (lambda (v:s) e) s -> t

v1:s1,...,vn:sn, e:t (lambda(v1:s1...vn:
sn) e)

s1,...,sn
-> t

Coproducts

a1:s1 ((embed 1) a1) s1+s2

a2:s2 ((embed 2) a2) s1+s2

C TABLE OF TERMS

146 Specware

Subsorts and Quotient Sorts

a:s|p ((relax p) a) s

a:s ((quotient e) a) s/e

Quantifiers

v:s, e:Boolean (fa (v:s) e) Boolean

v1:s1,...,vn:sn,
e:Boolean

(fa
(v1:s1...vn:sn) e)

Boolean

v:s, e:Boolean (ex (v:s) e) Boolean

v1:s1,...,vn:sn,
e:Boolean

(ex
(v1:s1...vn:sn) e)

Boolean

Language Manual 147

D Example: Nonnegative Integers

In Section 1, page 6, we saw a basic specification NAT-BASIC for the nonnegative
integers. While that specification does describe the set of nonnegative integers, it does
not provide definitions for many of the functions and relations we would expect in
such a theory, such as addition, multiplication, and the ordering relations.

The following specification NAT, a definitional extension of NAT-BASIC, introduces
some of the operations we need, including a predecessor function, addition, and the
less-than and less-than-or-equal-to relations.

spec NAT is
import NAT-BASIC

op pred : Pos -> Nat
definition of pred is
axiom (equal (pred (succ x)) x)

end-definition

op plus : Nat, Nat -> Nat
definition of plus is
axiom (equal (plus zero y) y)
axiom (equal (plus (nat-of-pos (succ x)) y)

(nat-of-pos (succ (plus x y))))
end-definition

op leq : Nat, Nat -> Boolean
definition of leq is
axiom (iff (leq x zero) (equal x zero))

axiom (iff (leq x ((relax nonzero?) (succ y)))
(or (leq x y)

(equal x ((relax nonzero?) (succ y)))))
end-definition

op lt : Nat, Nat -> Boolean
definition of lt is
axiom (iff (lt x y)

(and (leq x y)
(not (equal x y))))

end-definition

theorem (equal (plus zero y) y)
theorem associativity-of-plus is

D EXAMPLE: NONNEGATIVE INTEGERS

148 Specware

(equal (plus x (plus y z)) (plus (plus x y) z))
theorem commutativity-of-plus is
(equal (plus x y) (plus y x))

end-spec

This specification does define a predecessor function pred, the addition function
plus, and the ordering relations leq and lt. This is enough to participate in the
specification for arrays, which appears in the following section. It still does not define
such common operations as multiplication, exponentiation, the divides relation, or
the constant one, which are in the library version of the specification for the
nonnegative integers.

Language Manual 149

E Example: Sequences into Arrays

In this appendix we present full specifications for arrays and describe the refinement
from basic sequences into arrays. These were discussed in Example 5.4, page 71. We
build on the more complete specification NAT from the previous appendix (Section D),
rather than the basic specification NAT-BASIC given in Section 1. This is because we
need the less-than relation lt, which is only defined in NAT.

We distinguish between static and dynamic arrays.

E.1 Static Arrays

The specification for static arrays is as follows:

spec ARRAY is
import NAT
sorts E, Array, Array-and-Interval

op make-array : Nat, E -> Array
op size-array : Array -> Nat
op in-bounds? : Array, Nat -> Boolean

definition of in-bounds? is
axiom (iff (in-bounds? a i) (lt i (size-array a)))

end-definition

sort-axiom Array-and-Interval = (Array, Nat) | in-bounds?

op access-array : Array-and-Interval -> E

axiom access-of-make-array is
(implies (and (equal a (make-array n e))

(equal ((relax in-bounds?) a-and-i) <a i>))
(equal (access-array a-and-i) e))

axiom size-of-make-array is
(equal (size-array (make-array n e)) n)

op update-array : Array-and-Interval, E -> Array

axiom access-of-update-same is
(implies
(and (equal ((relax in-bounds?) a-and-i) <a i>)

E EXAMPLE: SEQUENCES INTO ARRAYS

150 Specware

(equal ((relax in-bounds?) upi-and-i)
<(update-array a-and-i e) i>))

(equal (access-array upi-and-i) e))

axiom access-of-update-distinct is
(implies
(and (not (equal i j))

(and (equal ((relax in-bounds?) a-and-i) <a i>)
(and (equal ((relax in-bounds?) a-and-j) <a j>)

(equal ((relax in-bounds?) upi-and-j)
<(update-array a-and-i e) j>))))

(equal (access-array upi-and-j)
(access-array a-and-j)))

axiom size-of-update-array is
(implies
(equal ((relax in-bounds?) a-and-i) <a i>)
(equal (size-array (update-array a-and-i e))

(size-array a)))

axiom equal-array is
(iff (equal a1 a2)

(and (equal (size-array a1) (size-array a2))
(fa (i)

(implies
(and (equal ((relax in-bounds?) a1-and-i) <a1 i>)

(equal ((relax in-bounds?) a2-and-i) <a2 i>))
(equal (access-array a1-and-i)

(access-array a2-and-i))))))
constructors {make-array, update-array} construct Array

end-spec

Note that certain array operations are defined only for indices that are within the
bounds of the array. For instance, access-array, the function that returns the ith
element of the array a, is not defined on all arrays and nonnegative integers, but only
on a pair a-and-i consisting of an array a and a nonnegative index i less than the size
of a. The domain of this operation is thus a subsort of the product sort (Array, Nat),
those pairs that satisfy a predicate in-bounds?. Applying the operator (relax in-
bounds?) to the subsort element a-and-i yields the corresponding pair <a i>.
Therefore, a statement such as

(equal ((relax in-bounds?) a-and-i) <a i>)

can be understood to say that i is a nonnegative index within the bounds of the array
a, and that a-and-i is the element of the domain subsort corresponding to the pair <a
i>.

Language Manual 151

E.2 Dynamic Arrays

The function (make-array n e) constructs an initial array of size n, each of whose
elements is initialized to e. According to the axiom access-of-make-array, the ith
element of this array must be e, for any index i that is within bounds. According to
the axiom size-of-make-array, the size of this array is indeed n.

The function (update-array a-and-i e) assigns the ith element of array a to be e,
where i is within bounds and a-and-i is the element of the domain subsort
corresponding to a and i. The axiom access-of-update-same says that the ith
element of the updated array will be e. The axiom access-of-update-distinct says
that the jth element of the updated array will be the same as the jth element of the
original array a, if j is within bounds and is distinct from i.

The equality axiom equal-array asserts that two arrays are equal if they have the
same size and their corresponding elements are equal. The constructor set, which
corresponds to an induction axiom, says that any array can be constructed by first
making an initial array (all of whose elements are the same) and then applying a
series of update operations.

E.2 Dynamic Arrays

Dynamic arrays are a definitional extension of static arrays that allow an array to be
enlarged so that a new element can be introduced at the end.

spec DYNAMIC-ARRAY is

import ARRAY

const empty-array : Array

definition of empty-array is
axiom (equal empty-array (make-array zero e))

end-definition

op extend-array : Array, E -> Array

definition of extend-array is
axiom access-of-extend-array-last is
(implies
(equal ((relax in-bounds?) exa-and-s)

<(extend-array a e) (size-array a)>)
(equal (access-array exa-and-s)

e))

axiom access-of-extend-array is

E EXAMPLE: SEQUENCES INTO ARRAYS

152 Specware

(implies
(and (equal ((relax in-bounds?) a-and-i) <a i>)

(equal ((relax in-bounds?) exa-and-i)
<(extend-array a e) i>))

(equal (access-array exa-and-i)
(access-array a-and-i)))

axiom size-of-extend-array is
(equal (size-array (extend-array a e))

((relax nonzero?) (succ (size-array a))))
end-definition

constructors {empty-array, extend-array} construct Array
end-spec

The constant empty-array is the array of size 0, with no elements. According to its
definition, it is equal to the result of constructing an initial array of size 0; it doesn’t
matter what element e the array elements are initialized to, since there are none. This
constant could have been defined for the static arrays, but we didn’t need it there;
here it is part of the constructor set. It will also serve as the implementation for the
empty sequence.

The function (extend-array a e) adds a new element e to the end of the array a.
According to the axiom access-of-extend-array-last, the last element of this
extended array will be e. According to the axiom access-of-extend-array, the ith
element of the extended array will be the same as the ith element of the original array
a, if i is within the bounds of a. Finally, according to the axiom size-of-extend-
array, the size of the extended array is one greater than the size of the original array.

The constructor set, which corresponds to an induction axiom, says that any array can
be constructed by successively extending the empty array. This axiom is logically
redundant—it follows from the induction axiom corresponding to the constructor set
for static arrays. Many proofs, however, are significantly easier using the new
induction axiom.

E.3 Sequences as Arrays

The specification SEQ-AS-ARRAY is a definitional extension of DYNAMIC-ARRAY that
contains implementations for the basic sequence specification. It serves as the
mediator for the interpretation of basic sequences as arrays.

spec SEQ-AS-ARRAY is
import translate DYNAMIC-ARRAY

by {empty-array -> empty-s-as-a}

Language Manual 153

E.4 Sequences into Arrays

op prepend-s-as-a : E, Array -> Array
definition of prepend-s-as-a is
axiom (equal

(prepend-s-as-a e a)
(extend-array a e))

end-definition

constructors {empty-s-as-a, prepend-s-as-a} construct Array
end-spec

E.4 Sequences into Arrays

The interpretation from basic sequences into arrays is as follows:

interpretation SEQ-BASIC-TO-ARRAY : SEQ-BASIC => ARRAY is
mediator SEQ-AS-ARRAY
dom-to-med {Seq -> Array,

empty-seq -> empty-s-as-a,
prepend -> prepend-s-as-a}

cod-to-med import-morphism

The empty sequence is represented as the empty array. The function prepend for
sequences is defined in terms of the function extend-array of dynamic arrays.

E EXAMPLE: SEQUENCES INTO ARRAYS

154 Specware

Language Manual 155

F Example: Finite Sets into Fixed Bit Vectors

In this appendix we present the full specification for fixed bit vectors and describe the
refinement of finite sets into fixed bit vectors. These were discussed in Example 5.20.

F.1 Bits, Bit Vectors, and Fixed Bit Vectors

Here is the specification for bits:

spec BIT is
sort Bit
op zero : Bit
op one : Bit
axiom (not (equal zero one))
constructors {zero, one} construct Bit

end-spec

Bit vectors are arrays of bits:

spec BIT-VECTOR is
colimit of
diagram
nodes ONE-SORT, ARRAY, BIT
arcs ONE-SORT -> ARRAY : {X -> E},

ONE-SORT -> BIT : {X -> Bit}
end-diagram

We augment the specification for bit vectors to describe bit vectors all of the same
size, size-vector.

spec BIT-VECTOR-FIXED is
import BIT-VECTOR

const size-vector : Nat

sort Interval

sort-axiom Interval = Nat | in-interval?

op in-interval? : Nat -> Boolean
definition of in-interval? is
axiom (iff (in-interval? i)

(lt i size-vector))
end-definition

F EXAMPLE: FINITE SETS INTO FIXED BIT VECTORS

156 Specware

sort Bit-Vector-Fixed
sort-axiom Bit-Vector-Fixed = Array | of-given-size?

op of-given-size? : Array -> Boolean
definition of of-given-size? is
axiom (iff (of-given-size? a)

(equal (size-array a) size-vector))
end-definition

op make-bvf : Bit -> Bit-Vector-Fixed
definition of make-bvf is
axiom (equal ((relax of-given-size?) (make-bvf b))

(make-array size-vector b))
end-definition

op update-bvf : Bit-Vector-Fixed, Interval, Bit
-> Bit-Vector-Fixed

definition of update-bvf is
axiom (implies

(equal ((relax in-bounds?) v-and-i)
< ((relax of-given-size?) v)
((relax in-interval?) i)>)

(equal
((relax of-given-size?) (update-bvf v i b))
(update-array v-and-i b)))

end-definition

op access-bvf : Bit-Vector-Fixed, Interval -> Bit
definition of access-bvf is
axiom (implies

(equal ((relax in-bounds?) v-and-i)
< ((relax of-given-size?) v)

((relax in-interval?) i)>)
(equal
(access-bvf v i)
(access-array v-and-i)))

end-definition
end-spec

Because in this specification all bit vectors are the same length, we do not have to have
to introduce a subsort of the pairs to serve as the domain for the vector operations
access-bvf and update-bvf. We introduce a subsort Interval of the nonnegative
integers, those less than size-vector, to serve as the sort for the indices. The fixed bit

Language Manual 157

F.2 Sets as Fixed Bit Vectors

vectors themselves are a subsort Bit-Vector-Fixed of the arrays, those of size equal
to size-vector. Thus, access-bvf is defined over the entire product

(Bit-Vector-Fixed, Interval)

The axioms relate the functions on fixed bit vectors with the corresponding functions
on arrays. The relax operator is used to map objects in subsorts with their
counterparts in the corresponding supersorts.

F.2 Sets as Fixed Bit Vectors

This specification augments fixed bit vectors to mimic set operations. It serves as the
mediator of the interpretation from finite sets into fixed bit vectors.

spec SET-AS-BIT-VECTOR-FIXED is
import BIT-VECTOR-FIXED

const empty-s-as-bvf : Bit-Vector-Fixed
definition of empty-s-as-bvf is
axiom (equal empty-s-as-bvf (make-bvf BIT.zero))

end-definition

op insert-s-as-bvf : Interval, Bit-Vector-Fixed
-> Bit-Vector-Fixed

definition of insert-s-as-bvf is
axiom (equal (insert-s-as-bvf i v)

(update-bvf v i BIT.one))
end-definition

op in-s-as-bvf? : Interval, Bit-Vector-Fixed -> Boolean
definition of in-s-as-bvf? is
axiom (iff (in-s-as-bvf? i v)

(equal (access-bvf v i) BIT.one))
end-definition

constructors {empty-s-as-bvf, insert-s-as-bvf} construct
Bit-Vector-Fixed

end-spec

It is described on page 74.

F EXAMPLE: FINITE SETS INTO FIXED BIT VECTORS

158 Specware

F.3 Finite Sets into Fixed Bit Vectors

Here is the interpretation of finite sets into fixed bit vectors.

interpretation SET-TO-BIT-VECTOR-FIXED :
SET => BIT-VECTOR-FIXED is

mediator SET-AS-BIT-VECTOR-FIXED
dom-to-med
{E -> Interval,
Set -> Bit-Vector-Fixed,
empty-set -> empty-s-as-bvf,
insert-set -> insert-s-as-bvf,
in-set? -> in-s-as-bvf?}

cod-to-med import-morphism

Language Manual 159

G Example: Bags into Bags via a Quotient

In this appendix we present an interpretation scheme of bags into bags. This scheme
is intended to be applied as one component of a parallel refinement. The sort of the
elements of the bags in this component is identified with a sort in another component,
and that sort is mapped into a quotient modulo an undefined equivalence relation.
For instance, in the example Bags of Bags (Example 5.23), the elements of the bags in
this component are identified with the inner bags in another component, and the
inner bags are mapped into a quotient of sequences modulo the permutation relation.

The interpretation scheme that fulfills this role is as follows:

interpretation BAG-VIA-QUOTIENT : BAG => BAG is
mediator BAG-QUOTIENT
dom-to-med BAG-TO-Q-BAG
cod-to-med BAG-TO-B-BAG

Here the source morphism is

morphism BAG-TO-Q-BAG : BAG -> BAG-QUOTIENT is
{Bag -> Q.Bag,
E -> Q,
empty-bag -> Q.empty-bag,
insert-bag -> Q.insert-bag,
in-bag? -> Q.in-bag?}

The mediator BAG-QUOTIENT has two copies of the theory of bags, the B-bags and the
Q-bags, with elements of sorts B and Q respectively. The sort Q is a quotient of B
modulo r?, where r? is an equivalence relation on B.

The source morphism BAG-TO-Q-BAG maps the element sort E in the domain bag into
the sort Q in the mediator. The bag sorts and operations in the domain are mapped
into sorts and operations on Q-bags in the mediator. The target morphism BAG-TO-B-
BAG is analogous—it maps sorts and operations on bags in the codomain into sorts
and operations on B-bags in the mediator.

Because the equivalence relation r? is not defined, the target morphism is not a
definitional extension, and the ip-scheme fails to be a full-fledged interpretation.
Definitions in the mediator express the other operations on Q-bags in terms of
operations on B-bags.

The mediator BAG-QUOTIENT is as follows:

G EXAMPLE: BAGS INTO BAGS VIA A QUOTIENT

160 Specware

spec BAG-QUOTIENT is
import
translate
colimit of
diagram
nodes B : BAG, Q : BAG

end-diagram
by {B.E -> B,

Q.E -> Q}

op r? : B, B -> Boolean
sort-axiom Q = B/r?

op subbag-mod-r? : B.Bag, B.Bag -> Boolean
definition of subbag-mod-r? is
axiom (subbag-mod-r? B.empty-bag bb2)

axiom (iff (subbag-mod-r? (B.insert-bag b1 bb1) b2-bb2)
(ex (b2 bb2)
(and (equal b2-bb2 (B.insert-bag b2 bb2))
(and (r? b1 b2)

(subbag-mod-r? bb1 bb2)))))
end-definition

op eq-bag-mod-r? : B.Bag, B.Bag -> Boolean
definition of eq-bag-mod-r? is
axiom (iff (eq-bag-mod-r? bb1 bb2)

(and (subbag-mod-r? bb1 bb2)
(subbag-mod-r? bb2 bb1)))

end-definition

sort-axiom Q.Bag = B.Bag/eq-bag-mod-r?

definition of Q.empty-bag is
axiom (equal Q.empty-bag ((quotient eq-bag-mod-r?) B.empty-bag))

end-definition

definition of Q.insert-bag is
axiom (equal (Q.insert-bag ((quotient r?) b)

((quotient eq-bag-mod-r?) bb))
((quotient eq-bag-mod-r?) (B.insert-bag b bb)))

end-definition

definition of Q.in-bag? is
axiom (iff (Q.in-bag? ((quotient r?) b)

(quotient eq-bag-mod-r?) bb))

Language Manual 161

G Example: Bags into Bags via a Quotient

(B.in-bag? b bb))
end-definition

constructors {B.empty-bag, B.insert-bag} construct B.Bag
constructors {Q.empty-bag, Q.insert-bag} construct Q.Bag

end-spec

The mediator provides auxiliary operations that allow us to define the Q-bag
operations in terms of the B-bag operations. The predicate subbag-mod-r?(bb1,bb2)
tests whether the B-bag bb1 is a subbag modulo r? of the bag bb2, i.e., whether there
is a one-to-one mapping from bb1 into bb2 under which each element of bb1
corresponds to an equivalent element of bb2, where the equivalence is under the
equivalence relation r?. For example, if B1 is equivalent to B2 modulo r?, the bag {{B1,
B1}} is a subbag modulo r? of the bag {{B1, B2, B3}} but not of the bag {{B1, B3}}.

Note that the definition of subbag-mod-r? is not constructive (see Section 6.1). Not
only is its format unacceptable for SPECWARE’s code generation, but also the
existential quantifier does not in general describe a finite computation. If we were
intending to generate code, we would have to rewrite it.

 The predicate eq-bag-mod-r?(bb1,bb2} tests whether two B-bags are equal modulo
r?, i.e., whether there exists a one-to-one correspondence between the two bags such
that corresponding elements are equivalent modulo r?. For example, if B1 and B2 are
equivalent modulo r?, the bag {{B1, B1, B3}} is equal modulo r? to the bag {{B1, B2,
B3}} but not necessarily to the bag {{B1, B3, B3}}. In the definition, two B-bags are said
to be equal modulo r? if each is a subbag of the other modulo r?.

The Q-bags, then, are defined to be the quotient of the B-bags modulo the relation eq-
bag-mod-r?. The operations on Q-bags can then be defined in terms of the operations
on B-bags, using the quotient function on the new relation eq-bag-mod-r?. Only r? is
undefined.

G EXAMPLE: BAGS INTO BAGS VIA A QUOTIENT

162 Specware

Index

Language Manual 171

A
axiom 28

B
bound-variable 26

C
character

special 144
character, allowed in names. See name, allowed character
cocone

cocone morphism 54, 57, 58
cocone-morphism.See morphism term
codomain

of a morphism 40
colimit 54

algorithm 58
apex 54
cocone. See cocone
equivalence class 63
example 54, 58, 63
sort-axiom 58
spec building operation

arg is a diagram 54
value is a spec 54

constructors 31
freeness 32
induction-axiom 31

D
definition 30

name 30
definitional extension

of specs 47
diagram 41

arcs labeled with morphisms 41
nodes labeled with specs 41

domain
of a morphism 40

Index

172 Specware

E

F
formula 28

quantified 26
function 28

arguments
0-ary 28
n-ary 28
unary 28

value
multi-valued 28
single-valued 28

G

H

I
image

of a morphism 40
import-morphism.See morphism term
interchange law 110
interpretation 72

codomain 72
composition

horizontal. See interpretation, composition, parallel
parallel 86
sequential 72, 83
vertical. See interpretation, composition, sequential

generalizes morphisms 69
interpretation diagram 95
interpretation morphism 89
source morphism 72
source spec 72
target morphism 72

is a defn extn 72
ip-scheme. See interpretation scheme

Language Manual 173

Index

J

K
keywords

list of keywords 144

L

M
model

of specs 29
models

of specs 47
morphism 11, 33

definitional extension 72
local 40
source specification 33
target specification 33
translation of built-ins 39
translation of constructed sorts 40

morphism term 40
constructed by spec-building ops 40
identity-morphism 40

N
name 143

allowed character 144, 149
bnf 149
case insensitive 144
disambiguate 143, 144
global 143
local 144
qualified. See qualified name

namespace 143

O
one-to-one

morphism 40
operation 25

built-in

Index

174 Specware

Boolean 26
embed 20
projection 19
quotient 22
relax 23
tuple 19

const 25
constants 26
constructors 31
nullary 26
op 25
rank 25
within specifications 25

P

Q
qualified name 63

example 63

R
refinement

composition
parallel 67
sequential 67

development by 67
of structured specifications

colimit 70
import 70
translate 70

of structured specs 69
problem reduction as 67

renaming map. See translate, renaming map

S
shape mappings 95
signature 13
sort 13, 16

built-in 18
constructor 18

Language Manual 175

Index

coproduct 20
empty 20

declaration 16
precedence 24
product 19
quotient 22
sort-algebra is free 58
sort-axiom 25
sort-term 18
subsort 23

specification 13
basic 13
definitional extension 71
specification-building operations 13

specification building operation
colimit. See colimit
import. See import
translate. See translate

T
term 28

examples 153
theorem 13, 28
top-level 143
translate

morphism constructed by 46
renaming map

can create ambiguity 46
cannot rename axioms 46

translate
keyword 45

translation-morphism.See morphism term
tuple

for multi-valued returns 28

U

V

Index

176 Specware

W

X

Y

Z

