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Abstract

Specware is a tool that supports the modular construction of formal specifications

and the stepwise and componentwise refinement of such specifications into executable

code. Specware may be viewed as a visual interface to an abstract data type pro-

viding a suite of composition and transformation operators for building specifications,

refinements, code modules, etc. This view has been realized in the system by directly

implementing the formal foundations of Specware: category theory, sheaf theory, al-

gebraic specification and general logics. The language of category theory results in a

highly parameterized, robust, and extensible architecture that can scale to system-level

software construction.

Keywords: Formal methods, software architectures, category theory implementa-
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1 Formal Software Composition

Specware is an attempt to realize the best of formal methods research in a software devel-
opment environment. It represents a synergy of decades of research in formal specifications—
algebraic specification and general logics—and abstract mathematical theories originally in-
vented for dealing with complex structures—category theory and sheaf theory.

Software development in Specware is characterized by two tenets:

Description: We always deal with descriptions, i.e., a collection of properties, of the artifact
that we ultimately wish to build. These descriptions are progressively refined by adding
more properties, until we can exhibit a model or witness (usually a program) which
satisfies these properties. Descriptions in Specware are written in one of several
logics.

Composition: We handle complexity and scale by providing composition operators which
allow bigger descriptions to be put together from smaller ones. The colimit operation
from category theory is pervasively used for composing structures of various kinds
in Specware. Besides composition operators, one needs bookkeeping facilities and
information presentation at various abstraction levels. Specware uses category theory
for bookkeeping and abstraction.

1.1 Composition with Overlaps

Interesting interconnections of parts have overlaps. In Specware, interconnections of com-
ponents are represented by diagrams (a formal notion in category theory) of objects related
by arrows which indicate the overlaps. The colimit operation produces a single object from
the diagram by “gluing” the parts together along the indicated overlaps. Conversely, the
diagram may be construed as a “covering” (a formal notion in topology) of the colimit
object by parts. A composed object can be transformed or refined using transformations
of the parts, provided these are “compatible” (a formal notion in sheaf theory), i.e., the
sub-transformations agree where the parts overlap.

In Figure 1, we attempt to illustrate these concepts using geometrical figures. In the left
half of the figure, two ellipses are glued along the shaded portions. Note that the composition
inherits the shading of both parts. In the right half of the figure, the ellipses are transformed
into other shapes, such that there is agreement on the overlap.

1.2 The Importance of Arrows

Arrows are fundamental in category theory and are used to represent the preservation of
structure. An arrow indicates that the structure of the source object is also present in the
target object, perhaps in a different form. In Specware, arrows play a dual role. First,
arrows are used to indicate how one object is a part of another in interconnection diagrams
(see Figure 1). Second, they are used to indicate that the semantic properties of the source
are preserved in the target. In the latter sense, arrows are used to represent refinement. The
explicit use of arrows differentiates the composition mechanisms in Specware from those
used, for example, in object-oriented techniques.
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Figure 1: Composition and Refinement with Overlaps

2 The Specware Process Model

Specware is a tool that supports the modular construction of formal specifications and
the stepwise and componentwise refinement of such specifications into executable code. Of
course, this is an idealistic process; real software processes are usually iterative and evolution-
ary. However, all these processes require some basic infrastructure, and stepwise refinement
already encompasses a significant portion of this infrastructure. Specware may be viewed
as an extensible data type offering formal support for such processes.

2.1 Specifications and Refinement

Specifications in Specware are theories in a variant of higher-order logic called Slang
[Srinivas and Jüllig 95, Lambek and Scott 86]. Specifications can be built modularly via
specification-building operations such as import, translate and colimit. One specification
can be refined into another (the latter being less abstract or more concrete) via an interpre-
tation [Lambek and Scott 86, Turski and Maibaum 87]. An interpretation formally indicates
how the types and operations of one specification are realized in terms of the types and
operations of another specification.

Interpretations can be cascaded, thus resulting in stepwise refinement. Formally, speci-
fications and interpretations form a category. Moreover, interpretations interact gracefully
with the specification-building operations: a specification built from parts can be refined by
refining its parts in a compatible way. Formally, interpretations form a sheaf with respect to
the specification-building operations. We thus have a two-dimensional space of specifications
related by the “part-of” relation in one dimension and the refinement relation in the other
dimension.
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spec SEQ is

sorts E, Seq

const empty-seq : Seq

op prepend : E, Seq -> Seq

axiom (not (equal (prepend e S) empty-seq))

axiom (implies (equal (prepend a S) (prepend b T))

(and (equal a b) (equal S T)))

constructors {empty-seq, prepend} construct Seq

sort NE-Seq

sort-axiom NE-Seq = Seq | non-empty?

op empty? : Seq -> Boolean

definition of empty? is

axiom (empty? empty-seq)

axiom (not (empty? (prepend e S)))

end-definition

...

end-spec

Figure 2: A Specification in Specware

2.1.1 Example

Figure 2 shows a fragment of the specification for sequences. A specification consists of a
set of sorts (or types), a set of operations on these sorts, and a set of axioms which specify
properties of the operations. Figure 3 shows an interpretation from total-orders to natural
numbers. The mediating specification (NAT-with-lt) extends the target specification with a
new operation and a definition for this new operation. The interpretation consists of the im-
port morphism from NAT to NAT-with-lt together with the morphism fromTOTAL-ORDER
to NAT-with-lt. The latter morphism maps sorts to sorts and operations to operations such
that the axioms of TOTAL-ORDER are satisfied (i.e., are theorems) in NAT-with-lt. Thus,
this pair of morphisms builds a realization of the specification for total-orders in terms of
the specification for natural numbers.

Figure 4 shows the piecewise refinement of a modularly built specification. The specifi-
cation being refined describes the ingredients required for sorting: bags and sequences over
elements which have a total ordering.
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interpretation TOTAL-ORDER-to-NAT is

mediator NAT-with-LT

domain-to-mediator {Tot -> Nat,

lt -> nat-lt}

codomain-to-mediator import-morphism

spec TOTAL-ORDER is

sort Tot

op lt : Tot, Tot -> Boolean

axiom irreflexive is

(not (lt x x))

axiom transitive is

(implies (and (lt x y) (lt y z)) (lt x z))

end-spec

|

| Tot -> Nat, lt -> nat-lt

V

spec NAT-with-LT is

import NAT

op nat-lt : Nat, Nat -> Boolean

definition of nat-lt is

axiom lt-zero is

(not (nat-lt x zero))

axiom lt-succ is

(iff (nat-lt x (succ y))

(or (nat-lt x y) (equal x y)))

end-definition

end-spec

^

| import morphism

|

spec NAT is

sort Nat

const zero : Nat

op succ : Nat -> Nat

constructors {zero, succ} construct Nat

axiom succ-and-zero-are-disjoint is

(not (equal (succ x) zero))

axiom succ-is-injective is

(implies (equal (succ x) (succ y)) (equal x y))

end-spec

Figure 3: An Interpretation in Specware
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Figure 4: Diagram Refinement and Parallel Composition

2.2 Code Generation

A sufficiently refined specification can be transformed into executable code in programming
languages such as Lisp and C++. This process is represented in Specware as refinement
into a different logic, i.e., programs are specifications too! Again, such inter-logic refinements
can be composed. Figure 5 shows a fragment of the Lisp code in which bags (of bit-vectors)
are represented as (equivalence classes of) lists.

2.3 Reasoning

Perhaps the main purpose of formality in software is to permit reasoning about specifications
and their implementations. Specware permits the use of multiple provers via the same
mechanism of inter-logic refinements that is used for code generation. Reasoning within a
specification requires a proof theory. A proof theory is a specification in the logic of a prover,
a logic which is typically weaker than the higher-order logic that is used for specification.
In a proof theory, axioms can be annotated with usage directives, e.g., left-to-right rewrite,
and auxiliary information needed to control the prover, e.g., depth bounds, can be specified.

2.4 Logics and Morphisms

As observed above, one can write specifications in several different logics in Specware.
Abstractly, a logic consists of syntax and semantics. The syntax is usually given as a col-
lection of signatures (sorts and operations) and a collection of formulas that are generated
by the signatures. The semantics consists of a deduction relation between formulas (proof
theory) and a collection of models and a satisfaction relation between formulas and models
(model theory). The representation of logics and morphisms in Specware is based on the
description in [Meseguer 89].

Logic morphisms relate one logic to another by mapping the syntax while preserving
provability and satisfaction. Specware extends this notion to include modular construction
of inter-logic refinements.
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(in-package "CODE")

(load "/specware/2-0/library/lisp-code/list.lisp")

(load "/specware/2-0/library/lisp-code/slang-base.lisp")

(load "/specware/2-0/library/lisp-code/nat.lisp")

(load "/specware/2-0/library/lisp-code/char.lisp")

(load "/specware/2-0/library/lisp-code/string.lisp")

(load "/specware/2-0/library/lisp-code/seq.lisp")

(load "/specware/2-0/library/lisp-code/simple-vector.lisp")

(defun list-equal (l1 l2) (every #’sv-equal l1 l2))

(defun sl-remove (e l) (remove e l :test #’sv-equal))

(defun sl-remove-n (e l n) (remove e l :test #’sv-equal :count n))

...

(defun in-bag? (x s) (in x s))

(defun insert-bag (x s) (cons x s))

(defconstant empty-bag nil)

(defun remove-1 (x s)

(cases

(if (consp s)

(if (not (sv-equal x (first s)))

(return (cons (first s) (remove-1 x (rest s))))))

(if (consp s) (if (sv-equal x (first s)) (return (rest s))))

(if (endp s) (return s))))

(defun perm? (s1 s2)

(cases

(if (consp s1)

(return (and (in (first s1) s2) (perm? (rest s1) (remove-1 (first s1) s2)))))

(if (endp s1) (return (endp s2)))))

(defun in (x s)

(cases

(if (consp s) (return (or (sv-equal x (first s)) (in x (rest s)))))

(if (endp s) (return nil))))

...

;;; Renamings

;;; equal_E -> Sv-Equal

;;; equal_Bag -> Perm?

Figure 5: Fragment of Lisp Code Generated by Specware
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Figure 6: The Architecture of Specware

3 Architectural Support

Semantically, the Specware workspace consists of a collection of logics related by inter-logic
refinements (Figure 6). The logics supported by the current version of the system are the
specification logic Slang, logics for (functional subsets of) Lisp and C++, and the logic of
Kitp, a first-order resolution prover [Wang and Goldberg 94].

One of the goals of Specware is extensibility. Rather than implement a specific set of
logics, we chose to implement a generic set of capabilities that enables the addition of other
provers, code generation for other languages, etc.

This generic set of capabilities forms a layered architecture consisting of

Implementation language: The language currently used in the Specware implementa-
tion is an augmented version of Refine [REF85]. Other languages may be substituted
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here, provided the features used by the other layers are available: a frame-like object
representation with simple inheritance, constraint maintenance, and graphics.

Category theory kernel: This layer implements basic structures from category theory,
including categories, functors, natural transformations, diagrams, and operations such
as arrow composition and colimit.

Sites, sheaves, and refinement: This layers represents the notions of composition and
refinement with overlaps. Sites augment categories with topologies which define the
notion of covering an object by parts. Sheaves describe how a transformation of an
object can be built from compatible transformations of its parts.

Logics and logic morphisms: This layer builds the structures necessary to represent dif-
ferent logics and refinements which span logics. Included here are generic facilities for
handling syntax (parsing, printing, linking) and efficient representations of specifica-
tions, specification morphisms, and terms. Also included is an abstract representation
of refinements from specifications in one logic to those in another.

The core of Specware consists of a collection of abstract data types (e.g., categories,
sheaves, etc.) organized via inheritance. A constraint maintenance system ensures syntactic
and semantic well-formedness of instances of these data types.

3.1 Category Theory Kernel

Category theory was invented as an abstract language for describing certain structures and
constructions which repeatedly occur in many branches of mathematics, such as topology,
algebra, and logic. As opposed to set theory which is based on the membership relation and
thus leads to the study of the internal structure of abstract entities, category theory takes
morphisms or arrows as fundamental. Thus, in category theory, one studies the external
properties of objects. To define an object, it is necessary and sufficient to describe its
interaction (via morphisms) with all other objects.

The use of category theory results in parsimonious descriptions of entities, because of
its abstract nature, and its focus on essential external properties. In recent years, it has
found several applications in computer science, e.g., algebraic specification, type theory,
programming language semantics, graph rewriting, automata theory, and even abstract ma-
chines based on categorical primitives. Introductions to category theory can be found in
[Mac Lane 71, Pierce 91, Barr and Wells 90].

In Specware, we exploit the ability of category theory to represent nested structures at
multiple abstraction levels without losing the details. Specware contains an extensive col-
lection of basic structures used in category theory: categories, functors, natural transforma-
tions, shape categories, diagrams, diagram categories, internal categories, double categories,
2-categories, arrow categories, slice categories and functor categories. The implementation is
derived from the presentation in [Freyd and Scedrov 90]: the somewhat formalist approach
adopted in this presentation is ideally suited for an implementation.

To give a flavor of the implementation, we briefly describe the representation of categories.
A category consists of a set of objects and a set of arrows connecting the objects, together
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type category is

objects : set(c-object)

arrows : set(c-arrow)

identity-fn : c-object -> c-arrow

composition-fn : seq(c-arrow) -> c-arrow

colimit-fn : diagram -> cocone

...

end

type c-object is

proto-object : specware-object

parent-category : category

identity-arrow : c-arrow

end

type c-arrow is

proto-arrow : specware-object

parent-category : category

domain : c-object

codomain : c-object

end

Figure 7: Representation of categories

with methods for composing arrows, building identity arrows, computing colimits, etc. Thus,
a category is a structure with the signature shown in Figure 7. The objects and arrows in
a category are themselves structured; the prefix “c-” is used to avoid confusion with the
notion of “object” in the implementation language. Each object and arrow has a pointer
to the parent category. The content of an object is contained in the proto-object slot (the
content of an arrow is represented similarly); this allows Specware entities to participate in
several categories in different roles. For example, in the category of (Slang) specifications and
morphisms, the proto-objects are specifications. The same proto-objects participate in the
category of specifications and interpretations. On the other hand, the arrows in this category
(interpretations) are the proto-objects in the category of interpretations and interpretation
morphisms.

3.2 Semantic Constraints

Most Specware entities, in addition to satisfying the types specified for their slots, must
also satisfy semantic well-formedness constraints. For example, the parent-category of every
c-arrow must be the same as the parent-category of its domain and codomain c-objects.
Similarly, the sets of objects and arrows in a category must be compatible with the parent-
category attribute. In Specware, such semantic constraints are declaratively specified as
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fa (arr : c-arrow)

parent-category(arr)

= parent-category(domain(arr))

fa (cat : category, obj : c-object)

obj in objects(cat)

<=> parent-category(obj) = cat

Figure 8: Example Semantic Constraints

shown in Figure 8. Simple constraints are automatically maintained by the system; for other
constraints, repair actions must be explicitly indicated.

3.3 Building up Structure

To illustrate the use of category theory in building up complex nested structures, we describe
the representation of diagrams and diagram refinements. These are defined generically, with
an underlying category of specifications serving as the parameter. The composition operation
for diagram refinements has a generic shell which invokes methods specific to the underlying
category.

3.3.1 Diagrams as Functors

A diagram over a category is a directed multigraph whose nodes are labeled by objects in
that category and whose arcs are labeled by arrows in that category. In other words, a
diagram is a functor from a “shape category” (a category consisting of abstract nodes and
arcs) to some other category.

For example, consider the left-half of Figure 4. The domain diagram has four nodes and
three arcs; the nodes are labeled by specifications and the arcs by specification morphisms.
The refinement diagram has the same shape, but now the nodes are labeled by interpretations
and the arcs by interpretation morphisms (these indicate how one interpretation is a part of
another).

3.3.2 Diagram Refinements

A diagram refinement is used to represent the piecewise refinement of an object. It is a
compatible collection of refinements connecting a source diagram to a target diagram. Thus,
a diagram refinement is an arrow, with the proto-arrow being a pair comprising a diagram of
refinements and a shape morphism; the former has the same shape as the domain diagram,
the latter relates the shape of the domain diagram to the shape of the codomain diagram.

The technical details of diagram refinements are presented in [Srinivas and Jüllig 95];
here, we just want highlight the nested structure. At the most abstract level, a diagram
refinement is an arrow in the category of diagrams. The objects in this category are diagrams,
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which are themselves arrows. Inside a diagram refinement is a refinement diagram and a
shape morphism (again arrows). The refinement diagram is typically a diagram in a functor
category. The objects in a functor category are again diagrams, and so on.

The parallel composition operator which glues together the component refinements in
a diagram refinement recursively calls the colimit operation for these nested structures.
This genericity allows a single mechanism to be used for the refinement of specifications to
specifications, the refinement of specifications to Lisp, the refinement of specifications to
C++, etc.

3.4 User Interface Design

The graphics for Specware are designed as a visual interface to the abstract data type
provided by the core of Specware, which includes general structures from category theory
such as objects, arrows, diagrams, etc., plus specific structures for specs, spec morphisms,
etc. The operations in this abstract data type are the building blocks of the Specware
software process described previously: arrow composition, colimit, refinement via a cover,
etc., hence we can capture not only a semantic design record but also a process record, both
of which can be evolved.

The graphics interface is implemented using the triangle model described in [Coutaz 85].
An abstract structure sits at the apex of a (logical) triangle, whose left leg is a view mapping
that structure into an object being presented, and whose right leg is a depiction rendering
the abstract structure as graphical objects. This triangle induces a isomorphism carrying
the abstracted structure back and forth between the internal object and its depiction on the
screen. The advantage is modularization: the same abstract structure can be used to view
many different kinds of objects, and the choice of depiction can be varied for a fixed view.

For example, a diagram or category can be viewed as a graph, and this graph could
be depicted as boxes and arrows, a table of connections, etc. A diagram could also be
viewed as a function from a shape category, and this function could be depicted as as a
table of the pointwise mappings (essentially a view at right angles to the table above). A
diagram refinement could be viewed as a prism depicted in three dimensions, with a view
of the domain diagram in a foreground plane, and the codomain in a background plane (see
Figure 4). As part of a larger structure, it could be viewed as an arrow and be depicted by
a single line.

4 Parameterization and Extensibility

The combination of a frame-based representation and semantic constraints means the entities
in Specware are direct realizations of abstract data types for categories, functors, etc. Since
the formal basis of Specware is in terms of these data types, the result is an implementation
which is surprisingly robust and extensible. To illustrate the abstractness and flexibility of
the architecture, we briefly outline a few possible extensions to Specware.
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4.0.1 Addition of new back-ends

To add a code generation facility to another language (e.g., Ada), one needs to add the
components which make up the new logic and the logic morphism from Slang to the new
logic. This would include syntax (parser, printer, linker), a category of specifications and
specification morphisms (generic representations of terms, morphisms, etc., can be reused
here), a sheaf of inter-logic refinements. The graphics interface is completely reusable because
it is based directly on the underlying categorical representation rather than on the specific
logic.

The addition of new provers is similar.

4.0.2 Support for evolution

To support an evolutionary software process, one needs to capture design and process records.
Specware implicitly provides a design record in the form of a collection of refinements which
relate the original specification to the final code. This implicit design record can be made
explicit by adding a category of such objects to Specware. By imposing structure on this
category, the composition operators of Specware become available.

Similarly, a process record can be captured. As observed above, the core of Specware is
an abstract data type whose operations are the building-blocks of the software development
process. By formalizing and representing this data type within Specware (i.e., a meta-
theory of Specware), this process becomes manipulatable (see, e.g., [Baxter 92]).

4.0.3 Software architectures

Specware provides a rich vocabulary for describing components and interconnections, so
it would be easy to add a category of architectures and their refinements. Although this
category may have slightly different characteristics than categories of specifications, the
composition and refinement machinery of Specware is general enough to accommodate
such new categories.

5 Lessons Learned

Over the past 4 years, Specware has gone through several major revisions, with three
significant beneficial events along the way.

The original version attempted (in retrospect too ambitiously) to implement a system for
algorithm design based on category theory. That implementation, essentially a prototype,
suffered from insufficient design and modularization. For example, a colimit operation was
implemented, but the code was specific and ad hoc for one kind of colimit (specs and spec-
morphisms). Furthermore, it conflated the notions of importation and parameterization, and
included inessential and poorly characterized routines, e.g. code designed to choose names
that would appeal to user’s intuitions. Too much time was spent on “user-friendly” syntax
and grammars. The net result was a system that was hard to understand, and hard to
maintain or extend.
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As a reaction to those problems, a “core” Specware implementation was launched that
attempted to build a clear, robust kernel one layer at a time, with each successive layer
based on a clear design, and as simple and general as possible. Concomitantly, efforts to
explicate the design of Specware were accelerated. This radical change of course reduced
the likelihood of immediate demonstration prototypes, but created the context for more
stable and progressive long-term development.

The first implementation that followed was more modest in scope but much cleaner in
design, and gave us confidence that a maintainable system could be built.

The second major event occurred a few months later when, as a result of continually
modifying the core system to make it simpler and cleaner, it suddenly became apparent
that a layer of “pure” category theory itself could be implemented on top of Refine and
below the rest of Specware. Since category theory is so well defined and documented, the
implementation of that layer happened within days, and subsequently provided a excellent
substratum for organizing and implementing what had been a diverse collection of objects
and actions. It was at this point that the general design for Specware really clicked into
place.

For example, specification diagrams, which had been ad hoc data structures labeling
nodes and arcs with specifications and morphisms, became functors from a shape category
to the category of specifications and specification morphisms. Slight variations on that
construction then gave us several other kinds of diagrams, and all of these were able to share
the same graphics interface, for a large reduction in code size.

A third event occurred several months later when, based on the insights gained above,
the entire system was adjusted to make the category/sheaf theory layers even more explicit
and more complete. Since then, the core of Specware has been exceptionally stable and
robust.

Subsequently we have discovered that more peripheral aspects of Specware benefit
from the organizing principles given by category theory and sheaf theory. As we write, the
connections of provers and graphics to the core are being reviewed and redesigned to clarify
and capture as categorical constructions the essential structures that are preserved in passing
from one domain to another. We hope to achieve a tight, natural, and extensible coupling
that would be difficult to achieve by traditional software development.
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