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• Motivation: large coordination problems in soft real time
• Framework: distributed constraint optimization

– specialized to distributed, approximate graph coloring

• Normalized metric: degree of conflict
• Algorithm: peer-to-peer constraint maximization
• Experimental resultsO
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Motivation: Large Networks of Simple Sensors

• Scenario: many small, cheap sensors scattered over terrain
• Sensors equipped with low-power radio transmitters & receivers

– permit broadcast communication between geographically close sensors
• every sensor within range of a transmitting sensor may receive a message

– latency is high enough that data/control variables are essentially distributed

• Autonomous coordination is required
– sensors must be activated & deactivated appropriately to allow long periods 

of unattended operation with limited energy
– the quality of data from a single sensor is low so multiple sensors must 

collaborate to acquire complimentary data



Challenges

• Scalability
– up to 105 sensors

• Real-time adaptivity
– sensor coordination must keep pace with target behavior
– good collaboration soon is better than excellent collaboration eventually
– 5 seconds

• Wide load range
– number of targets may quickly change from none to many

• Robustness
– failure of even a significant fraction of the sensors must not cause 

catastrophic failure of the whole system

• Communication efficiency
– transmission consumes energy and reveals location
– 1 message per sensor per second



Distributed Constraint Optimization

• Set of labeled vertices vi

– domains ∆vi

• Set of labeled hyper-edges E ≡ { j → ej }

– a hyper-edge is an order sequence of vertices
• or their labels

– ej ≡ (vj1, vj2, …, vjr)

– where jr is the edge’s rank

• Each edge is labeled with a penalty function
– fj: ∆vj1 × ∆vj2 × … × ∆vjr → [0,1]

• Each vertex is to choose a value to minimize 
the mean penalty (“degree of conflict”)
– γ ≡ Σj fj/|E|
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Examples

• Vertex k-Coloring
– ∆vi ≡ {1 … k}
– rank of each edge is 2
– penalty functions are all the equality function

δk(x,y) ≡ if x=y then 1 else 0
– penalty functions are symmetric

• Leader election under broadcast communication
– ∆vi ≡ {Off, On}
– a hyper-edge connects each vertex to all other vertices within a given 

distance
– penalty function: let n be number of vertices with value On in edge j

• fj(n=0) = 1

• fj(n=1) = 0

• fj(n>1) = 1-1/n2

– penalty functions are symmetric



Normalized Metric

• Expected value of γ over random 
assignments
– [γ] = Σj[fj]/|E|
– related to the tightness of the constraint

• Normalize: Γ ≡ γ/[γ]
– Γ=0 is typically perfect

• not achievable in over-constrained 
systems

– Γ=1 is as good/bad as random
• in a distributed system, a random 

assignment requires no coordination or 
communication

– Γ>1 is worse than random
• indicates a problem with coordination
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Vertex k-Coloring
[δk] = 1/k
[γ]= 1/k

loose constraint
independent of graph density

Γ = kγ



Algorithm Overview

• Local degree of conflict γi ≡ Σj∈∆E(i) fj /|E(i)|
–where E(i) is the subset of the hyper-edges involving vertex i

• Main idea: each vertex continually adjusts its own value to 
minimize its own γi
–each vertex communicates changes to its neighbors
–per vertex costs vary with number of neighbors (for bounded domain)
– robust due to highly distribution and local interaction
–anytime algorithm generically suited to soft real time
–convergence to stable solution rather than termination

• Assumption: if every vertex minimizes γi then overall 
solution will be good
–good enough for sensor coordination
– though probably not a true minimum



Fixed Probability Algorithm
(synchronous, conservative version)

• The vertices repeatedly execute the following steps in lockstep
• Every vertex determines simultaneously whether or not to activate

– it activates iff γi>0 and random[0,1) < p
• where the activation probability p is a fixed number in [0,1]

• If a vertex activates, it attempts to minimize its local degree of conflict
– according to what it believes are the values of adjacent vertices
– the method of minimization depends on the nature of the domain

• All vertices that have changed value inform adjacent vertices
– communication latency is always 1

Vertex k-Coloring
Vertex computes a histogram of 
neighbors’ colors and chooses a 
minimum



Effect of Activation Probability

• Activation probability p can be adjusted to balance speed of adaptation 
against coherence

• High p causes simultaneous changes by neighbors
– incoherence due to outdated information

• Low p causes slow adaptation

CFP 0.1 (bottom) & CFP 0.9 (top)

• 500 vertices
• mean degree 14.0
• 4-colorable graphs in 2-D space
randomly partition the vertices into 4 
equivalence classes
randomly add edges between 
vertices in different classes (that are 
sufficiently close)



Effect of Density

• For sparse graphs, regions of agreement quickly grow
– but may not entirely reconcile with each other
– most easily seen in 2-colorings of regular graphs

• As the density increases, the coupling between regions increases
– initially, reconciling regions becomes more difficult so conflicts increase
– eventually, the graphs have a small diameter so everything is local and 

proper colorings crystallize

Γ vs. time

• 900 vertices
• 10-colorable graphs (no spatial aspect)
• edge density varying from ~0.01 to 
~0.89

• CFP 0.2



Effect of Density (cont.)

total Γ (summed over 10000 steps)
vs. mean degree

• Can summarize results for a given run by summing Γ
– equivalent to area under curves in preceding plots

• Moderate activation probabilities (~0.25) provide good overall 
performance
– even for high density graphs

• 900 vertices
• 10-colorable graphs (no spatial aspect)



Communication Costs

• Single-step communication cost: fraction of vertices that change color
– in a distributed system, each color change must be communicated

• For low density, costs vary linearly (approx.) with activation probability
– more activity leads to more change

• For high density, costs increase more rapidly with activation probability
– can be viewed as overhead caused by incoherence

• 900 vertices
• 10-colorable graphs (no spatial aspect)

total communication cost
(summed over 10000 steps)



Comparison with Sequential Algorithms

• Non-strict sequential hill-climber
– 5% tolerance

• Greedy heuristic
– order vertices by decreasing degree

• 900 vertices
• 4-colorable graphs (no 
spatial aspect)



Conclusions

• CFP coordination is simple to implement and cheap to use
– random number generator probably does not need to be high quality

• Challenge is to adjust the activation probability
– for many problems, an experimental approach is probably feasible
– but ideally an optimal probability would be computed from graph 

characteristics

• Quality of solutions obtained by local optimization can be good
– for sparse graphs, quality rapidly increases towards optimal

• well suited to real-time systems

– for dense graphs, final quality is optimal but initial improvement is poor
• typically not well suited to real-time systems

• More complex algorithms?
– could probably do better by coercing larger regions
– would be difficult to achieve scalable, real-time results


