
The Construction of Numerical Mathematical Software for the
AMT DAP by Program Transformation.

James M. Boyle z1, Maurice Clint, Stephen Fitzpatrick 2, Terence J. Harmer

The Queen’s University of Belfast zMathematics and Computer Science Division
Department of Computer Science Argonne National Laboratory
Belfast BT7 1NN Argonne IL60439
Northern Ireland USA

1 Introduction

The general advantages of functional programming - naturalness of expression (in some
problem areas), ease of proof, and clarity - are well known. In the field of numerical
mathematical computation, however, these advantages are normally outweighed by
functional programming’s main disadvantage - inefficient execution. In this paper,
we show how a functional style can be used for the elegant specification of numerical
algorithms while still obtaining highly efficient implementations through the application
of program transformations.

2 Notation: A Functional Specification Language

For our functional specification language we use a (very) small subset of the language
constructs available in Standard ML (SML) [9]. The specifications that we express in
this language are high-level. They are, however, algorithmic and, in fact, executable.
Indeed, we occasionally execute them in specification form in order to carry out rapid
prototyping.

We provide a standard library of vector/matrix operations to facilitate the speci-
fication of numerical mathematical algorithms. The transformational derivation must
provide an implementation for each primitive operation tailored for the hardware archi-
tecture in use. In addition, a numerical mathematical algorithm is expressed using the
following general-purpose vector/matrix functions.

Generate :shape � �Index� ���Matrix�shape� ��
where shape is a descriptor of vector/matrix of � type elements and Index is po-
sition in that vector/matrix shape. The generate function returns a vector/matrix
with shape given by its shape argument and where each element of the vec-
tor/matrix is defined by the function that is an argument to the generate function.

Map :Matrix�shape� ��� ��� ���Matrix�shape� ��

map�V� �x�B�
def
� generate�Shape�V �� �k���x�B��element�V� k���

1This work was supported by the Applied mathematical sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

2This work is supported by a research studentship from Department of Education, Northern Ireland.

Reduce :Shape � �Index� ��� ��� �� �� � �� �

A reduce function combines the elements of a vector/matrix by means of a binary
function to produce a single value.

3 The Parallel Orthogonal Transformation(POT) Algo-
rithm

The POT algorithm calculates the eigenvectors,Q, and eigenvalues,Λ of a real symmetric
matrix A. The algorithm is based on the construction of a sequence of symmetric
matrices as shown below:

1. U0 � I

2. Uk�1 � ortho�A�Uk�transform�Bk�� diagonal�Bk��� k � 0� where the se-
quence Bk is constructed as follows:

3. B0 � A

4. Bk � UT

k
�A�Uk

Then limk��Uk � Q and limk��Bk � Λ [7]. The function ortho orthonormalizes
the columns of its non-singular matrix argument using the standard Gram-Schmidt
method. An SML function Pot may be defined thus:

fun Pot(A: real Array, U: real Array) : real Array * real Array =
let B = multiplymatrix(transpose(U), multiplymatrix(A, U))
in
if (is_satisfactory(B))
then (U, B)
else
Pot(A,
orthogonalize(multiplymatrix(A, multiplymatrix(U, transform(B))),

diagonal(B))
end;

The operation transform produces from its matrix argument a matrix, Tk, each column
of which is an approximation to an eigenvector of Bk. The components of Tk are
computed by an SML function thus:

fun Transform(M : real Array) : real Array
= let
fun Calculate(M: real Array, i: int, j: int) : real
= let val d = M@[j, j] - M@[i, i]
in
2*M@[i,j]/(d+sign(d)*sqrt(sqr(d)+4*sqr(M@[i,j])))
end

in
generate(Shape(M), fn(i, j)=>
if (i > j) then Calculate(M, i, j)
else if i = j then 1.0
else ˜Calculate(M, j, i))

end;

A generate function is used to construct the transformation matrix from its argument
matrix, M . A local function Calculate defines the value of the �i� j�th element of
the transformation matrix. The generating function embodies the cases required by the
algorithm specification.

A similar development may be used for the ortho function. We claim that we have
not intentionally biased these definitions. Indeed, we would further claim that they
represent a natural SML formulation of the algorithm specification.

4 Deriving Efficient Programs from Functional Specifica-
tions

Of course, our goal is not simply to execute our functional specifications as ML
programs, where execution can often be excruciatingly slow. POT has been designed
with large matrices in mind and is interesting because it permits implementations tailored
for execution on computers having novel advanced architectures [6, 10, 11, 7]. Efficient
ML implementations are not likely to be available for such computers.

We use the TAMPR program transformation system [3, 4] to apply a sequence of
sets of program transformations that produce an efficient Fortran or C program from
the higher-order functional specification. Most of the transformations are basic; that is,
they can be employed in the efficient implementation of any functional specification.
These transformations form the framework for the derivation. (Used alone, they are
highly effective [4].) We intersperse the basic set of transformation with a few sets
of other transformations that perform either problem-domain-oriented or hardware-
oriented optimizations. These transformations, few in number but powerful in effect,
guide the derivation in the direction of producing code that will exploit the specialized
hardware of the ADT DAP.

4.1 DAP-Specific Transformations

Earlier we defined two primitive vector/matrix functions: generate and reduce. These
functions do not have equivalents in DAP Fortran: in order to implement an arbitrary
generate or reduce in DAP Fortran we must use an explicit loop where expressions
involve manipulations of individual matrix elements. However, certain simple forms of
generate and reduce do have equivalents in DAP Fortran (and in other languages for
array processors). Also, to make the most effective use of the processor array the aim is
to produce an implementation where whole vector/matrix manipulations are used rather
than giving alternative manipulations expressed as a sequence of simple vector/matrix
element operations.

The strategy that the transformation set for the DAP adopts is to propagate generate
functions into expressions until the function argument of each generate is a value that
is either independent of the generation index, or is a vector/matrix element operation.
This strategy aims to remove occurrences of vector/matrix element operations and arises
from the desire to realize computations as whole vector/matrix operations.

The strategy requires an algebra that defines how a generate may be propagated
into expressions. This propagation algebra has 5 rules:

1. A generate applied to a function the value of which is the vector/matrix element at the
generating index is replaced by the vector/matrix - the identity generate;
generate�Shape�M�� ���i� j��M@�i� j����� M .

2. A generate applied to a function the value of which is independent of the generating index
is replaced by an expand function that creates a vector/matrix in which all the elements
have that independent value; e.g.,
generate�Shape�M�� ���i� j��2�� �� expand�2� n� n�, where matrix M is of shape
n� n.

3. A generate with a scalar generating function that has a componental equivalent is con-
verted to that componental equivalent. The arguments to which the componental function
is applied must be vectors/matrices, so the generate is propagated inward and applied to
the arguments of the componental function; e.g.,
generate�Shape�A�� ���i� j��A@�i� j� �A@�i� j��� ��
generate�Shape�A�� ���i� j��A@�i� j��� � generate�Shape�A�� ���i� j��A@�i� j���

4. A generate of a conditional expression becomes an application of a data-parallel condi-
tional - a join function. The generate is propagated inwards to the limbs of the conditional
and applied to the conditional guards and the guarded results. The join function combines
(joins) the results to form a single composite result for the conditional expression.

5. A reduce for which an aggregate function is defined is replaced by an application of that
aggregate function.

The transformation strategy uses the a number simplification/optimization trans-
formations that remove duplicate computation and to make use of standard arrange-
ment/rearrangement being performed to the vector/matrix elements (- the interested
reader is referred to [5]).

The transformations outlined above are not specific to the DAP or any other array
processor architecture: they target the set of operations that may be implemented
efficiently on architectures of this kind. Thus, most of the transformations above may
be used in a derivation aimed at deriving efficient code for the Cray X-MP.

5 Derived DAP Code

Space does not permit us to trace the operations of the transformations that implement
this algebra - the interested reader is referred to [5]. The derived DAP code for the
Transform function given above that is the result of their application is given in
Figure 1. The variable g22 contains the transformation matrix. The resulting program
may appear to be rather ugly, but it is not intended that this form should be read.
The identifier names are chosen for convenience rather than for understandability or
readability.

6 Comparison with Hand-Crafted Versions of POT

There are two versions of DAP Fortran: Fortran-Plus [1] and Fortran-Plus Enhanced
[2]. The former requires all arrays to be the size of the processor grid (32 by 32); the
latter allows any size of array to be used, with the compiler automatically sectioning
arrays into 32 by 32 arrays.

g371598 = patlowertri(n) .and. .not. patunitdiag(n)
g371651 = patlowertri(n)
g371652 = patunitdiag(n)
g22(g371651 .and. g371652) = 1
g371651(g371652) = .false.
g371652 = g371598
g371597 = matr(g371600 , n) - matc(g371600 , n)
g371629 = 1
g371629(g371597 .lt. 0) = - 1
g22(g371651 .and. g371652) = (- 2 * b) / (

& g371597 + g371629 * sqrt(g371597 * g371597 +
& 4 * (b * b)))
g22(.not. patlowertri(n)) = - tran(g22)

Figure 1: Derived DAP Code for the Transform Function.

In Table 1 the execution time (for each approximation) 3 for the implementation
of POT derived by automatic program transformation is shown together with times for
two hand-crafted versions - the first is written in Fortran-Plus and the other written in
Fortran Plus Enhanced. These hand-crafted versions have been analysed in [8, 11].
A hand-crafted Fortran-Plus version of POT is between 12% and 13% faster than a
hand-crafted Fortran-Plus Enhanced version. As reported in [8] the code produced by
the Fortran-Plus Enhanced compiler for frequently occurring linear algebra operations
(e.g. matrix product) is very efficient but it is less so on more specialized operations
(e.g. Gram-Schmidt orthogonalization).

The hand-crafted and automatically derived versions have execution times that are
almost identical. For the large matrix examples the derived implementation is marginally
slower than the time for the hand crafted version (between 0.1% and 0.6%). This
discrepancy arises from a minor optimization made possible by the particular way the
hand-crafted version produces the transformmatrix. We could write a transformation
that could perform this optimization, but it appears to be too special-purpose to be of
general use.

Matrix Size Time per iteration (sec)
Hand Crafted Hand Crafted Automatically Derived
Fortran Plus Fortran Plus Enhanced Fortran Plus Enhanced

64 1.2 1.35 1.35
128 8.23 9.30 9.31
256 60.92 69.86 70.30

Table 1: Hand-Crafted POT versus Mechnically Derived POT

3The time is constant for generation of each approximation

7 Conclusion

We have shown that it is possible mechanically to produce a highly efficient implementa-
tion tailored for execution on the AMT DAP 510 of a high-level functional specification.
The functional specification is not biased in ways that would permit its efficient execu-
tion on a particular machine architecture, but is expressed in a way that gives a clear
statement of the algorithm. Indeed, the functional specification may be used as the
starting point for producing implementations tailored for execution on other machines
(and will be used in this way in future investigations).

The transformations used to produce the implementation discussed in this paper are
not particular to this problem and are currently being applied in the transformation of
functional specification for other algorithms where an implementation tailored for the
DAP processor is required. However, there is still development work to be undertaken
for these derivations. This includes tailoring the generated code for the compiler (for
example, producing sectioned array operations) and tailoring for particular data sets (for
example, sparse matrices or banded matrices).

References
[1] Fortran-Plus Language, AMT, man 00202, 1988.

[2] Fortran-Plus Language Enhanced, AMT, man 102.01, 1988.

[3] A Transformational Component for Programming Language Grammar, J. M. Boyle, ANL-
7690 Argonne National Laboratory, July 1970, Argonne, Illinois.

[4] Abstract programming and program transformations - An approach to reusing programs.
James M. Boyle, Editors Ted J. Biggerstaff and Alan J. Perlis in Software Reusability,
Volume I, Pages 361-413, ACM Press (Addison-Wesley Publishing Company), New York,
NY, 1989

[5] Deriving efficient programs for the AMT DAP 510 using Program transformation, J.M.
Boyle, M. Clint, S. Fitzpatrick and T.J. Harmer, QUB Techical Report, June 1992.

[6] Towards the construction of an eigenvalue engine, Clint M. et al, Parallel Computing, 8,
127-132, 1988.

[7] A Comparison of two Parallel Algorithms for the Symmetric Eigenproblem, Clint M. et al,
Intern’l Journal of Computer mathematics, 15, 291-302, 1984.

[8] Fortran-Plus v. Fortran-Plus Enhanced: A comparison for an Application in Linear Algebra,
M. Clint et al, QUB Technical Report, 1991 (submitted for publication).

[9] Functional Programming using Standard ML, Wilstöm, A, Prentice Hall, London 1987.

[10] The parallel computation of eigenvalues and eigenvectors of large hermitian marices using
the AMT DAP 510, Weston J. et al, Concurrency Practice and Experience, Vol 3(3), 179-185,
June 1991.

[11] Two algorithms for the parallel computation of eigenvalues and eigenvectors of large sym-
metric matrices using the ICL DAP, Weston J., Clint M., Parallel Computing, 13, 281-288,
1990.

