
Plan Execution and Coordination

Pedro Szekely
Robert Neches

University of Southern California

Marcel Becker
Stephen Fitzpatrick

Kestrel Institute

Chris van Buskirk
Doug Fisher

Gabor Karsai
Vanderbilt University

Abstract

We investigate the problem of keeping the plans of mul-
tiple agents synchronized during execution. We assume
that agents only have a partial view of the overall plan.
They know the tasks they must perform, and know the
tasks of other agents with whom they have direct depen-
dencies. Initially, agents are given a schedule of tasks to
perform together with a collection of contingency plans
that they can engage during execution in case execu-
tion deviates from the plan. During execution, agents
monitor the status of their tasks, adjusting their local
schedules as necessary and informing dependent agents
about the changes. When agents determine that their
schedule is broken or that a contingency schedule may
be better, they engage in coordinating plan changes with
other agents. We present a ”dynamic partial central-
ization” approach to coordination. When a unit detects
a problem (task delay, inability to perform a task), it
will dynamically form a cluster of the critically affected
agents (a subset of all potentially affected agents). The
cluster will elect a leader, who will retrieve all task and
contingency plan information from the cluster members
and compute a solution depending on the situation.

Introduction
Plan execution often involves a collection of agents, such
that each agent gets a copy of its own plan, but does not
know the overall plan, for all the agents. This is a very com-
mon situation in the military, where fielded human units do
not have access to the full plan. Equally often, plan execu-
tion fails and there is a need for repairing the plans of the
individual agents such that the overall goals of the agent en-
semble are achieved. In the case of human agents this repair
is facilitated by a coordination process that includes rapid
communication and ad-hoc adaptation of plans by humans.
In our work, we are looking at computational approaches
that tie monitored plan execution to rapid plan repair and
coordination among autonomous executor/planning agents.

We assume that an active component: a coordinator agent,
is monitoring the execution of its plan. It receives notifica-
tions from its external world about events that could indicate
the success or failure of plan execution. When the execution

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of its plan fails at a specific point in time, it goes into a co-
ordination mode, where it computes changes to its plan such
that the overall goals of the plan are achieved. The problem
is that the plans of the individual coordinators were created
dependencies among them, and failure in one plan step may
impact the agent but also other, dependent agent’s plans as
well. Our interest is to develop distributed algorithms that
facilitate rapid coordination: plan repair across a multitude
of related and dependent coordinator agents.

Our approach to coordination is ”dynamic partial central-
ization”. When a unit detects a problem (task delay, inability
to perform a task), it will initiate a process that will dynam-
ically form a cluster of the critically affected units (a subset
of all potentially affected units). We believe this cluster for-
mation is crucial for improved performance. The problem
of coordination can be solved in a fully centralized or in a
fully distributed way. In the first case, a central server is
needed (organizationally unacceptable for our domain), in
the second case a distributed constraint solving process can
be used (which has performance problems). The cluster so-
lution combines the advantages of the centralized approach
(better performance) without the problems of the fully dis-
tributed solution (using too much communication).

Modeling
Our work utilizes the TAEMS modeling framework (Decker
and Lesser 1993). TAEMS models plans hierarchically: the
leaves of the tree are called methods, and represent activi-
ties that agents can perform directly. The internal nodes are
called tasks, and represent procedures to combine multiple
activities (tasks or methods) to achieve higher level goals.

The TAEMS formalism offers several features appropri-
ate for modeling the dynamics of a real world execution
environments. We present the main concepts here (formal
specifications are described in (Decker and Lesser 1993),
details of the TAEMS framework are described in (Lesser
et al. 2004)).

1. Quality: methods define a probability distribution for the
quality that results when a method is executed.

2. Duration: methods define a probability distribution for
the amount of time it takes to perform a method.

3. Cost: methods define a probability distribution of the cost
that will be incurred when executing a method.



Each task defines a quality accumulation function (qaf)
that specifies how the quality of the task is computed based
on the quality of the children. TAEMS offers a collection of
about 20 qafs. The most relevant to our work are:
• Min: the quality of a task is the minimum of the quality of

the children. Min corresponds to the traditional And logi-
cal operator given that unattempted or failed tasks receive
quality zero.

• Max: the quality of a task is the maximum of the quality of
the children. Max corresponds to the traditional Or logical
operator given that the quality of the task will correspond
to the best quality of any attempted subtask.

• Sum, Xor, Sequence, etc. enable modeling of other situa-
tions that arise in real world applications.
TAEMS also provides a capability to define inter-

relationships among tasks:
• Enables, Disables: these are hard constraints among tasks

or methods. If A enables B, then attempting to perform B
before A completes will result in B failing and accumu-
lating zero quality. Disables is defined similarly.

• Facilitates, Hinders: these are soft constraints. If A fa-
cilitates B, then when B is executed, its quality will be
multiplied by a facilitation factor that depends both on a
power factor defined in the Facilitates relation and the per-
centage of maximum quality that A obtained. Hinders is
defined similarly.
The TAEMS model of agents is very simple. Methods

and Tasks can be associated with a collection of agents
that can perform it. During execution, methods can only
be performed by a single agent, so part of the plan-
ning/coordination process involves selecting a single agent
from the collection of possible agents.

TAEMS distinguishes between subjective and objective
views of the world. The subjective view of the world is a
TAEMS structure that defines the portion of plans that an
agent knows about. Initially, agents are given a TAEMS
structure containing the tasks and methods where the agent
is listed, as well as all tasks an methods of other agents
directly linked to the agent’s tasks and methods (via En-
ables, Disables, Facilitates, Hinders and Parent relation-
ships). During execution agents may communicate their
subjective structures to other agents. The objective view is
a conceptual entity containing all TAEMS structures of all
agents. It may not be known to any agent, but for experi-
mentation, the objective view is known to a simulator.

Plan Execution
The main objective of our work is to build agents that rea-
son in real-time about the outcomes of method execution
(quality, duration and cost) and adjust their plans in order to
optimize the quality of the root level goal of the plan while
staying within cost deadline and cost constraints.

Our work does not assume that execution follows the fol-
lows the subjective models faithfully. Our system is reactive
and will always attempt to optimize the final outcome with
respect to the current state, irrespective of how the current
state came to be.

Figure 1: Architecture

Assumptions
The main assumption of our work is that the agents model
human activities, whose duration is typically measured in
minutes. This is in contrast to sensor network domains
where time frames are in the order of seconds or less (e.g.,
react to an incoming missile).

The human activity assumption means that response times
for adjusting plans can often be in the order of tens of sec-
onds. For example, if I miss my flight at the airport, it is OK
to wait 10 or 30 seconds for a new plan that directs me to
take an alternative flight, redirects me to a new city, etc.

Architecture
Figure 1 shows the main components of an individual agent.
The architecture builds upon an Interface that links the agent
to the external world. The agent receives events in the Event
Manager and sends and receives messages via the Message
Manager. Events inform the agent about the success or fail-
ure of the execution of plan steps, while messages are used
to communicate (and coordinate) with other agents. These
managers convert events and messages into the internal rep-
resentations of our system and give control to the Controller
for further processing.

Events trigger Event Analysis to determine if there is a
potential impact of the event on the plan of the agent. For
example, the event may indicate that a method that a task
depends on has not finished on time as expected. In such
cases Event Analysis produces a task impact report and gives
control back to the Controller.

Task impact reports are processed in the Task Analysis
component. This component uses a low cost distributed con-
straint propagation algorithm to repair the schedule when
execution deviates from the plan scheduled. When a task
or method slips, this algorithm will tighten the start window
for dependent tasks and methods. When the window of a
task or method owned by a different agent is tightened, then
a message is sent to the other agent to force it to tighten
its representation of the time window. The effects on time
windows are propagated as necessary. If the schedule has



enough slack to absorb the delay, then the propagation will
die out. If a start window becomes empty (i.e., a task or
method should finish before it starts), then the impact of the
triggering event cannot be absorbed by simply adjusting the
start time of the methods in the current schedule. At this
point the impacted agent must engage a more sophisticated
search algorithm that will change the methods for achieving
the current goals. This search is started by the producing a
clustering report and returning control to the Controller.

The clustering reports are first processed in the Cluster
Manager, which initiates the cluster formation processes, by
defining a new cluster that initially contains just the task
whose start window is empty. A search report is produced
and control returns to the Controller.

The Search Strategy initiates the cluster-based search al-
gorithm by first expanding the cluster to contain the neigh-
bors of the seed element of the cluster, and then selects a
COA Search (Course of Action Search) algorithm to try to
find a feasible schedule within the elements of the cluster,
but without changing the time windows or dependencies for
any of the tasks or methods in the boundary of the cluster.
If such a solution exists it a search report is produced con-
taining the new solution. If no solution is found or a given
time threshold is exceeded, then a failure search report is
produced requesting cluster expansion.

The Cluster Manager expands clusters following depen-
dency links on the tasks and methods already in the clus-
ter and sending messages to their agents to query the corre-
sponding TAEMS structures. The Cluster Manager ensures
that no task or method belongs to more than one cluster.

When the request to grow a cluster fails (clusters collide)
the Search Strategy decides whether to merge clusters, nom-
inating one of the leaders as the leaders of the new merged
cluster, or whether to stop centralization and engage in dis-
tributed constraint satisfaction between the leaders of the
colliding clusters. These interactions are governed by the
Negotiation Manager that implements a negotiation protocol
among cluster leaders.

When the COA Search algorithms stop, producing a new
schedule (even if it is only a partial schedule), the leader
will distribute the new COA to all the cluster members, who
will incorporate it into their subjective view. The receiv-
ing agents will apply all events that have arrived since the
cluster-based search process started.

Given the human activity assumption, it is expected that
in the majority of cases cluster sizes can be kept small en-
abling the use of fast, centralized solutions techniques that
enable leaders to quickly compute high quality solutions be-
fore the world changes in a significant way. As a last resort,
if merging of clusters would result in large clusters, lead-
ers will negotiate using slower, less optimal distributed con-
straint satisfaction techniques.

Depending on circumstances, human users may need to
approve these plans. For this reason, plan choices are pre-
sented in a ranked order of utilities to a human, who can then
approve the chosen plan.

Conclusions and Status
The approach presented here represents an interesting com-
promise between approaches based on traditional planning
representations (e.g., PDDL 2.2) and an approaches based
on a task-oriented representation such as TAEMS. TAEMS
is not a planning language: preconditions and effects of
methods are not defined explicitly . The effects are encoded
implicitly in the inter-relationships among tasks and meth-
ods. TAEMS is expressive enough to encode contingency
plans, i.e., alternative ways to accomplish goals. Each of
the contingency plans is a fragment of a larger plan and they
must be combined into a consistent plan. However, TAEMS
provides a good model of task and method execution.

The partial centralization approach for distributed coordi-
nation has been explored before (Scerri et al. 2004). Our
approach is more closely related to Mailler’s work on co-
operative mediation of distributed constraint optimization
(Mailler and Lesser 2004).

This paper presents the approach for a new system. We
have designed the system architecture, have high level ideas
for the search algorithms involving centralized search over
TAEMS structures. We plan to demonstrate the system cre-
ated on small scale, abstract examples by the end of the cur-
rent year (Nov 2005).

Acknowledgments
The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032.
The U.S.Government is authorized to reproduce and distrib-
ute reports for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
Keith S. Decker and Victor R. Lesser. Quantitative mod-
eling of complex environments. International Journal of
Intelligent Systems in Accounting, Finance, and Manage-
ment, 2(4):215–234, 1993.
V. Lesser, K. Decker, T. Wagner, N. Carver, A. Gar-
vey, B. Horling, D. Neiman, R. Podorozhny, M. Nagen-
draPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang.
Evolution of the GPGP/TAEMS Domain-Independent Co-
ordination Framework. Autonomous Agents and Multi-
Agent Systems, 9(1):87–143, July 2004.
Roger Mailler and Victor Lesser. Solving Distributed Con-
straint Optimization Problems Using Cooperative Media-
tion. In Proceedings of Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pages 438–445. IEEE Computer Society,
2004.
Paul Scerri, Regis Vincent, and Roger Mailler. Comparing
Three Approaches to Large Scale Coordination. Proceed-
ings of the First Workshop on the Challenges in the Coor-
dination of Large Scale Multi-agent Systems, July 2004.


