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Overview

• Context: autonomous coordination in large networks of simple sensors
– scalable, robust, decentralized, adaptive

• Approach:
– scheduling of sensor actions
– locally computable metrics on schedules as basis for optimization
– stochastic, distributed hill climbing to optimize schedules

• Abstract problem for investigation of algorithm dynamics
– distributed, approximate graph coloring

• Summary of experimental results
• Conclusions

• Details of experimental results
– if time permits



Large Networks of Simple Sensors

• Scenario: thousands of small, cheap sensors scattered over terrain
• Sensors equipped with low-power radio transmitters & receivers

– permit broadcast communication between geographically close sensors
• every node within range of a transmitting node may receive a message

– communication should be minimized to reduce interference
– latency is high enough that data/control variables are essentially distributed

• Autonomous coordination is required
– sensors must be activated & deactivated appropriately to allow long periods 

of unattended operation with limited energy
– the quality of data from a single sensor is low so multiple sensors must 

collaborate to acquire complimentary data
• Emphasis is on attaining good coordination quickly

– soft real time adaptivity
– long-term quality is secondary, though important for stable conditions
– network load may vary dramatically



Example Application: Target Tracking

• Multiple targets moving through field of radars
• Each radar is capable of scanning in one of three 

directions at a time
– a single scan requires 1 to 2 seconds
– signal strength depends on distance and angle to target

• About three scans from different radars is required 
to accurately locate a target
– scans should be approximately simultaneous
– a given target should be rescanned every 2 seconds, 

approximately
• Coordination is required to ensure:

– most radars can deactivate but targets are still detected
– each target gets scanned adequately
– radars scanning the same target do so approximately 

simultaneously to enhance data quality



Abstract Approach: Scan Scheduling

• Each radar’s actions are scheduled over a reasonable period 
– targets are reasonably predictable for ~15 seconds
– rescheduling allows radars to adapt to changes (e.g., a target turning)

• Metrics quantify schedule quality w.r.t. target behavior
– high scores when targets are scanned simultaneously by about three radars
– also take into account cost of scanning and constraint violations

• Objective is to determine scan schedules that optimize overall metric
– an overall metric can be defined in terms of expected values
– in practice, need simplifying assumptions to reduce computations



Distributed Computation of Scan Schedules

• Define a local, per-radar version of the quality metric
– assume that each radar knows about targets in its vicinity
– assume that each radar knows the scan schedules of nearby radars
– then each radar can compute the quality of its scan schedule based on local 

information
• Each radar optimizes its own schedule w.r.t. its local quality metric

– assume that a stable set of locally-good schedules is computed
• given stable target behavior

– then overall quality is expectedexpected to be good for practical sensor applications
• can not in general make claims about true optimality

– there may be pathological metrics for which achieving everywhere locally-
good quality results in overall poor quality

• probably will not occur in sensor domain

– more practical concern is rate of convergence and stability
• how to validate assumptions …



Continual Data Push

• Assumption: each radar knows about targets in its vicinity
– when a radar acquires data, it broadcasts it to nearby radars
– each radar can combine data to produce local target estimates

• Assumption: each radar knows the scan schedules of nearby radars
– when a radar computes its own scan schedule, it broadcasts the new 

schedule to nearby radars



Distributed Hill Climbing

• Assumption: a stable set of locally-good schedules is computed
– if schedules are recomputed too frequently, then incoherence results

• because of communication latency, each radar is using out-of-date information in 
making its own decisions

• some out-of-date information can be tolerated, but there is a limit

– if schedules are recomputed too infrequently, then radars cannot keep pace 
with changes in target behavior

– need to balance coherence against adaptivity
• Stabilization technique: stochastic activation

– each radar is periodically given a chance to reschedule
– but it reschedules only if a random number falls below some fixed, uniform 

activation probability
• The activation probability allows coherence and adaptivity to be

balanced
– it was expected that the ideal activation probability would depend on, e.g., 

density of the network
– but so far a value of ~0.3 has worked well for sparse networks



Experimental Results with Simulator

• Visualization shows two targets being tracked simultaneously
• Radars adapt to target positions

– middle radars multi-task between targets
• Proof of concept demonstration

– large scale, quantitative experiments planned
– meanwhile …

• each blob is an estimated target position
- green indicates a good estimate

• each target follows an oval track
- just visible under estimated positions



Distributed, Anytime, Approximate Graph Coloring

• Want an abstract problem with similar properties to sensor coordination
– for experimental investigation of dynamics without details of scanning

• Distributed, approximate k-coloring of a graph’s nodes:
– each node in a given graph is to be assigned one of k colors
– such that the fraction of conflicts is minimized

• where a conflict is an edge that connects nodes of the same color

• Clean metric: (normalized) degree of conflict
Γ ≡ k × |{{u,v} | {u,v} ∈ E ∧ Cu=Cv}| / |E|

where u,v are nodes, E is the set of undirected edges and Cu is u’s color
– for a proper coloring Γ=0; for a random coloring Γ=1

• Same basic algorithm as for sensor coordination
– called Fixed Probability (FP)
– each node undergoes periodic-stochastic activation
– when activated, a node chooses an optimal color for itself

• based on what it knows of its neighbors’ colors

– when a node changes color, it broadcasts its new color to adjacent nodes



Summary of Experimental Results

• Activation probabilities of around 0.2 to 0.3 are typically good for sparse 
graphs
– higher probabilities lead to incoherence

• The algorithm is scalable in costs and quality of solution
– per-node, per-step costs depend on edge density

• The algorithm is robust against topological changes and message noise 
and loss

• Execution does not need to be strictly synchronous
– the communication latency determines an upper bound on the activation 

probability
• For very high density graphs, a phase transition is observed

– proper colorings quickly obtained



Conclusion

• Sensor coordination and graph coloring can both be viewed as 
distributed constraint optimization
– where a constraint exists between variables that can influence each other

• The FP algorithm can be view as distributed hill climbing
– where the variables are essentially distributed (not parallel hill climbing)
– and where the hill climbing metric can be decomposed into local terms

• This problem class and algorithm seem well suited to soft-real-time 
applications in which approximate solutions are OK
– most of the computational cost of combinatorial problems is typically incurred 

in obtaining the last 5% of a solution
• Ongoing research:

– formally specifying problems as soft, global constraints
– refining soft, global constraints into soft, local constraints

• automated support

– synthesizing executable code from soft, local constraints
• automated support



Related Work

• Stochastic activation is a simple technique to enhance coherency of 
distributed solutions
– more sophisticated techniques may produce better results
– but would need to show they are worth the effort/cost
– of interest: locally adapting the activation probability for highly irregular 

networks
• Washington University at St. Louis (Zhang et al.) is conducting 

experiments comparing the FP algorithm with Distributed Breakout
(Yokoo et al.)
– http://www.cs.wustl.edu/~zhang/projects/dcmp/index.html

• A deterministic FP algorithm was published by Fabiunke
– deterministic version can cause short-term increases in conflicts
– when combined with randomization, can reach proper colorings



Extra Slides

Details of Experimental Results



Experimental Results: Activation Probability

• Synchronous execution
• As expected, high activation probabilities result in incoherence

– in extreme cases, thrashing results: constant change with no improvement

• plot shows effect of various 
activation probabilities

• results are for regular 2D grids
– edges along x & y axes and 

diagonals
– number of colours

= chromatic number
= 4

– 500-5000 nodes
• experiments also performed with 

random graphs having higher, 
known chromatic numbers



Scalability

• Per-node, per-step costs are independent of the number of nodes
– for a given edge density

• Quality of solution is independent of the number of nodes

• results shown are for FP(0.3) on 2D grids
• 6 graphs of different sizes (500-5000 nodes)

– each graph has chromatic number 4
– each was coloured using 2, 3, 4 & 5 colours



Robustness against Node “Failure”

• Maintain a pool of R randomly selected nodes that have been removed 
from the graph
– with period P, restore half of the removed nodes and remove others
– also remove/restore edges incident to removed/restored nodes

• If the fraction of edges removed is small, the chromatic number of the 
graph probably does not change
– changing the chromatic number might cause effects unrelated to robustness

continuous change: P=1, small R
little effect

intermittent change: P=30, large R
spikes in the number of conflicts



Robust Against Communication Noise

• Subject each color-change message to a probabilistic process that may
– randomize the color (noise)
– discard the message (loss)
– pass the message through unchanged

• Small amounts of noise/loss cause small increases in conflicts

• results shown are for FP(0.3) on 2D grids 
with 4 colours subject to various amounts of 
message randomization

• similar results were obtained for small 
amounts of message loss



Effect of Asynchronous Execution/Latency

• Periodic but asynchronous coloring
– simplifies implementation on distributed hardware

• Asynchronous execution is OK provided that the activation probability α
is low with respect to communication latency L
– “collision probability” along an edge = 1-(1-α)L < threshold

• Academic interest: extremely high communication latencies cause a 
“resonance” effect
– each color is adopted in turn by almost every node simultaneously

very high latency



Possible Phase Transition w.r.t. Network Density

• For high-density graphs, the degree of conflict increases with the 
density for a while

• For very-high-density graphs, all conflicts are rapidly eliminated
– presumably due to large number of backbone variables that implicitly guide 

the search

• random 20-colorable graphs
• size ~ 2000 nodes
• d is the mean degree


