
SCHARP Scenario Planning Algorithms

Marcel Becker
becker@kestrel.edu

Stephen Fitzpatrick
fitzpatrick@kestrel.edu

Douglas R. Smith
smith@kestrel.edu

Abstract

SCHARP is a planning and execution monitoring system for air campaigns de-
veloped under the DARPA Resilient Synchronized Planning and Assessment for the
Contested Environment (RSPACE) program. This report details its architecture and
algorithms.

The results described in this document were supported by DARPA Resilient Synchronized Planning
and Assessment for the Contested Environment (RSPACE) Program under Air Force Research Laboratory
(AFRL) contract HR0011-15-C-0138.

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S. Government.

In the event permission is required, DARPA is authorized to reproduce the copyrighted material for use
as an exhibit or handout at DARPA-sponsored events and/or to post the material on the DARPA website.

DISTRIBUTION STATEMENT A. Approved for public release.

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Planner Overview 4

3 Distributed Control Architecture 5

4 Planning Agents 7

5 The Distributed Planning Control and Message Flow 9

6 The Messaging Infrastructure 13

7 Mission Planning Algorithms 14
7.1 Planning Strike Packages . 17
7.2 Planning Orbit Missions . 21
7.3 Planning Support Missions . 22
7.4 Planning Air Refueling Missions . 23

8 Commander’s Guidance 25
8.1 The Allocation Algorithm . 26

9 Conclusions 27

DISTRIBUTION STATEMENT A. Approved for public release.

1 INTRODUCTION

Introduction

SCHARP is a planning and execution monitoring system for air operations developed under
the DARPA RSPACE program. The planning component takes as input a scenario that
defines the objectives of the air campaign (e.g., prioritized targets), the resources available
(e.g., aircraft and munitions), and constraints (e.g., airspace restrictions). SCHARP pro-
duces an Air Tasking Order (ATO) that defines the missions the resource will execute to
achieve the objectives subject to the constraints. The ATO can be serialized into standard
formats — United States Message Text Format (USMTF) plain text or Air Operations Com-
munity of Interest (AOCOI) XML — or a custom JSON format. The data can be obtained
from files or from web services.

The primary components of a scenario are:

Air Bases: The physical locations where air units and aircraft are located.

Aircraft Models: The set of parameters defining the available resources used by the plan-
ner (e.g., fuel capacity and burn rates).

Standard Configuration Loads (SCLs): Each aircraft type is capable of carrying cer-
tain combinations of munitions and equipment (e.g., sensors and external fuel taks).
A specific combination is defined by an SCL — e.g., 4 GBUs, 4 AIMs and 2 external
fuel tanks.

Air Units: An air unit maintains a group of aircraft — of the same type — at an air base.
Multiple units may be located at the same base.

Unit Contracts: Each air unit has a unit contract that defines how many sorties it will
provide each day using its available aircraft. (Not all aircraft are always available due
to maintenance requirements.) The unit contract also defines time windows during
which the sorties can occur, and other constraints.

Airspace Points and Orbits: The geographical coordinates of relevant air space regions
like orbits, air refueling tracks, battlespace boundaries, etc.

Targets and Target-Weapon Pairings: The prioritized list of targets (with location, de-
scription, etc) and the munitions (type and quantity) recommended for use against
them.

Non-Strike Mission Requests: Additional requests for orbit missions (e.g., XATK, FAC,
DCA), ground alert (e.g., GATK), or other types of missions (e.g., CAS, ISR).

The planning algorithms in SCHARP use the input data to create a set of air missions
to engage targets and to protect air bases and friendly assets. This document describes the
algorithms used to create the different types of missions supported by SCHARP.

DISTRIBUTION STATEMENT A. Approved for public release.

2 PLANNER OVERVIEW

Planner Overview

The SCHARP Planning Engine, or simply the Planner, is a high-performance software sys-
tem capable of computing a full Air Tasking Order (ATO) comprising hundreds of Air Strike
Packages and Missions in a matter of seconds.

The two key components of the Planner implementation are a Distributed Control Archi-
tecture that orchestrates a decentralized planning process, and a collection of special-purpose
planning algorithms that provide the functionality needed to compute the different types of
strike, support, and non-strike missions required to satisfy the tactical objectives defined by
the AOD and Joint Integrated Prioritized Target List (JIPTL).

One of the key goals of the DARPA RSPACE program was to support a distributed
planning process in which several planning cells, co-located or geographically dispersed,
collaborate to generate a plan or Air Tasking Order. To accomplish this, the planner was
designed to work with network topologies (e.g., number of planning cells) ranging from a fully
centralized to a fully distributed model. A fully centralized planning process is one in which a
single human planner using a single computer generates a complete ATO. A fully distributed
planning process is one in which the authority for making different planning decisions are
assigned to different human planners, using multiple computers. We usually refer to the
planning system configuration supporting a centralized planning process as a single node
configuration. We call the configuration used to support the distributed planning process, a
multi-node configuration.

A Planning Node is an executing instance of the SCHARP Planning Engine, configured
with a well-defined set of planning authorities. To be more precise, since the Planner is
implemented in Java, a Planning Node is just a Java process running on a single Java
Virtual Machine instance. Although it is possible to run several Planning Nodes in the same
computer, or even several planning nodes in the same Java Virtual Machine, for presentation
purposes, let’s assume there is just one Planning Node per physical workstation, and one
human planner interacting with each Planning Node via the Graphical User Interface.

Each Planning Node hosts multiple Planning Agents. Planning Agents implement the
computational logic that creates the missions and packages that get executed, in order to
achieve the desired tactical objectives. The Planning Agents orchestrate the execution of
special-purpose planning algorithms to create the strike packages and associated support
missions. The different Planning Agents communicate with each other, and with the other
components of the SCHARP platform, via a message passing mechanism implemented using
the Apache ActiveMQ message broker.

The Planning Node configuration defines what Planning Agents will be hosted in what
physical nodes. Planning Agents have different planning authorities and capabilities. They
interact with each other to create the different types of missions that will be in the Air
Tasking Order.

In the next sections we will provide more details about the Distributed Control Architec-
ture, precisely define what a Planning Agent is, discuss the different types of algorithms used
for planning air missions, and describe the input data needed by the planner to compute an
Air Tasking Order.

DISTRIBUTION STATEMENT A. Approved for public release.

3 DISTRIBUTED CONTROL ARCHITECTURE

Distributed Control Architecture

In the preceding section, we mentioned that the Planner can be configured to run a planning
process ranging from fully centralized to fully distributed. We also introduced the concepts
of Planning Node, Planning Agent, and communication via message broker. In this section
we will explain in more details what these Planning Agents are, how Planning Nodes are
configured, and how these agents communicate with each other to generate a plan.

Figure 1: Example Task Decomposition

The key algorithmic concept, or assumption, driving the distributed problem-solving
process implemented by the SCHARP Planner is the hierarchical decomposition of tasks, as
presented in Figure 1. A task is an entity representing a request to generate a full plan, a
partial plan, or just a single mission. Larger planning tasks can be decomposed into smaller
planning tasks. Plans computed to satisfy smaller tasks can be composed to satisfy larger
ones. For example, the generation of an ATO can be decomposed into a number of tasks
to generate strike packages to hit the targets in the JIPTL. A strike package request can be
further decomposed into tasks for planning one or more strike missions, tasks for planning
support missions, tasks for planning air refueling, tasks for planning recon, etc. The plan
snippets computed to satisfy a certain task, can then be combined, or composed, to generate
larger plans that satisfy the higher-level tasks. The decomposition of tasks into sub-tasks,
and the composition of plan snippets into larger plans, and finally into an Air Tasking
Order is the fundamental element of the distributed control architecture implemented by
the SCHARP Planner.

The Planning Agents are the computational entities (e.g., Java objects) responsible for
processing tasks and producing plans. Since tasks are decomposed hierarchically, the Plan-
ning Agents are also organized into a planning hierarchy. Agents higher in the hierarchy

DISTRIBUTION STATEMENT A. Approved for public release.

3 DISTRIBUTED CONTROL ARCHITECTURE

create tasks and assign them to lower level agents. Agents lower in the hierarchy compute
candidate missions for the tasks and send those candidate missions back to the requesting
agent. We call the candidate plan generated by an agent in response to a task, a “mission
bid” or just a “bid.”

Tasks and bids are transmitted among agents using the ActiveMQ (AMQ) message bro-
ker. Each agent encodes a task or a bid as an AMQ message and sends it to the corresponding
receiver agent. The AMQ broker is just another Java object that can be hosted either (1)
in the same Java Virtual Machine running the Planning Node; or (2) in its own, dedicated
Java Virtual Machine in the same host as the Planning Node; or (3) in a separated computer
reachable from the computer hosting the Planning Node(s).

The AMQ broker takes care of receiving messages from and sending messages to the
correct Planning Agent. All the interactions between agents only happens through the
AMQ. Given that all interactions between agents are mediated by the AMQ, an agent can
be hosted in any physical node, provided the node can reach the AMQ broker.

The Planning Agent structure, and the use of the AMQ broker are the key architectural
elements that allow us to configure the planner as a single node or as multiple nodes.

In a single node configuration, all planning agents are hosted in the same Java process
but are still communicating via AMQ messages. The fully distributed configuration is a
topology in which each planning node hosts a single planning agent. Any topology ranging
from a single node hosting all agents, to the fully distributed configuration with one agent
per node, is achievable using the implemented SCHARP Distributed Control Architecture.

DISTRIBUTION STATEMENT A. Approved for public release.

4 PLANNING AGENTS

Planning Agents

A Planning Agent is a computational entity, or a Java object, that takes a task as input and
produces a plan candidate as output.

Figure 2: Planner Nodes and Agents

In SCHARP, there are 3 types of planning agents as presented in Figure 2: Node Agent,
Functional Agent, and Resource Agent. The Node Agent is the process that bootstraps the
Planning Node, and initializes all the other Planning Agents running in a Planning Node.
There is only one Node Agent per node.

The Node Agent is responsible for reading the node configuration, instantiating all the
other agents hosted in the node, creating the top-level tasks necessary to compute the plan,
assigning tasks to other planning agents, collecting the top-level bids generated by other
Planning Agents, and composing the plan output.

In a multi-node configuration, the Node Agents are also organized hierarchically. Each
node has some well-defined set of planning authorities prescribed in a static document called
the Distributed Control Plan (DCP). For each set of fully connected Planning Nodes, one,
and only one, of the nodes is selected to be the AOC Node. The AOC node agent has the
ultimate responsibility for composing and publishing the ATO. The AOC Node may send
tasks to be processed by other Node Agents, but it has the authority to compose and publish
the ATO.

All the communication among Planning Nodes goes through the Node Agents. Conceptu-
ally, the architecture allows any agent to communicate with any other agent via AMQ. This,
however, generates a large amount of network traffic. To reduce the number of messages flow-

DISTRIBUTION STATEMENT A. Approved for public release.

4 PLANNING AGENTS

ing through an external AMQ broker, we optimized the messaging mechanism, and restricted
inter-node messages to always go through the Node Agent: Only Node Agents can send and
receive messages from other Planning Nodes. Messages between agents hosted in the same
node go through an internal message queue that does not use the external AMQ broker, and
therefore is not affected by limited bandwidth. Figure 3 shows an example topology with 4
DC2C Planning Nodes. Each DC2C’s Node Agent communicates with other nodes via the
message broker. All intra-node communication is handled by an internal message passing
mechanisms that avoids using the external AMQ.

Figure 3: Message Flow

The second type of Planning Agent is the Functional Agent. The Functional Agents
are responsible for orchestrating the planning process for specific types of missions or pack-
ages. For example, the STRIKE Agent would be responsible for planning strike packages to
hit targets in the JIPTL; the SEAD Agent would be responsible for providing SEAD/EW
missions to support strike packages; the REFUEL Agent would be responsible for planning
tanker missions to provide air refueling to all other missions requiring air refueling. Each
cluster of connected nodes has only one active Functional Agent for each mission type the
system can plan. Accordingly, there is only one STRIKE agent per cluster of connected
nodes, only one REFUEL agent per cluster of connected nodes. The Distributed Control
Plan defines which physical node is responsible for planning each specific type of mission.
If, for example, STRIKE planning and REFUEL planning authorities are assigned to two
different nodes, the STRIKE Agent and the REFUEL Agent are instantiated and executed
in different nodes. In this case, air-refueling tasks created as a result of planning strike
missions would have to be transmitted between physical nodes.

DISTRIBUTION STATEMENT A. Approved for public release.

5 THE DISTRIBUTED PLANNING CONTROL AND MESSAGE FLOW

Functional agents communicate both with other functional agents, and with Resource
Agents to plan a mission or a package to satisfy a given task. They also communicate with
the Node Agent to return bids for top-level tasks originating from the Node Agent. We will
revisit the interaction between the different types of agents after we describe the third type
of agent, the Resource Agent.

The third class of Planning Agent is the Resource Agent. A Resource Agent corresponds
to a physical Air Unit. This agent manages a homogeneous pool of resources, usually a set
of aircraft of the same type, which can be used to implement a specific type of mission.
The Resource Agent is responsible for computing all the details of a mission using the
available resources managed by the agent. The Resource Agent determines if there are
enough resources available for a mission, computes the flight path for the mission, identifies
the need for air refueling, identifies the need for additional support (e.g., SEAD and OCA
support), and creates the detailed mission representation that is used to generate the ATO
representation. For each task, if there are available resources, and if the requirements of
the task can be satisfied, a Resource Agent computes one or more mission candidates that
satisfy the task requirements. If the current agent cannot satisfy the task, an empty plan,
or an empty bid, is returned to the requesting agent.

Resource Agents receive tasks from – and send bids to – Functional Agents only. Resource
Agents do not communicate directly with other Resource Agents, nor with Node Agents. The
Resource Agents “hide” behind their assigned Functional Agent.

A Resource Agent can plan multiple types of mission if the available resources have
multi-role capabilities, and if these resources are shared among those roles. If the resources
are multi-role, the Resource Agent may communicate with multiple Functional Agents. If
the aircraft type managed by the Resource Agent can only fly one type of mission, the
corresponding Resource Agent communicates with only one Functional Agent. Similar to
the Functional Agent, for a cluster of connected nodes, there is only one instance of a
Resource Agent for a given resource pool. The DCP prescribes in what Planning Node the
Resource Agent is hosted. Ideally the Resource Agent would be hosted in the same node
as the Functional Agent(s) it can talk to. Each Resource Agent uses a number of different
planning algorithms customized for the type of mission it can compute. For example, a
strike resource agent uses path planning, shortest path, and threat avoidance algorithms to
compute feasible routes for a strike mission; it uses temporal constraint propagation to define
start and end times of flight segments, it uses some light weight optimization algorithms to
determine the appropriate type and number of munitions to use, etc. A refuel resource agent
uses different types of algorithms to create a Tanker mission to make fuel available at a
certain air-refueling track and manage the amount of fuel available at each refueling track.

The three types of agents and the message passing mechanism are the basic building
blocks of the Distributed Control Architecture. We are now ready to dive into the details of
the message and control flow used to plan missions and compose an ATO.

The Distributed Planning Control and Message Flow

The SCHARP Planning Engine runs as a cluster of interconnected Planning Nodes. The
Planning Nodes in the cluster communicate via message passing, mediated by an ActiveMQ

DISTRIBUTION STATEMENT A. Approved for public release.

5 THE DISTRIBUTED PLANNING CONTROL AND MESSAGE FLOW

message broker. The architecture does not dictate how many Planning Nodes should be in
a cluster. The cluster size can range from one single node hosting all Planning Agents, to a
cluster with as many nodes as Planning Agents available. The cluster should also include one
or more instances of the Apache ActiveMQ message broker. All inter-node communication
goes through the AMQ instances. If several AMQ instances are present, the instances should
be fully connected. The Distributed Control Plan document defines the cluster configuration:
It specifies how many nodes are used in a cluster, the unique id for each node, which node
hosts the AOC Node Agent, and in what nodes each Functional and Resource Agent are to
be hosted. Additional input defines what we call the scenario the planner actually plans.
The scenario is a large data set that includes which air bases, air units, and resource types
are available, the different resource models, how many resources of what type are available
at each unit, the prioritized set of targets that should be struck, the air space configuration,
and additional requests for non-strike missions. The Resource Agents correspond to the Air
Units described in the input data and in the DCP. A single physical Air Unit may map
to multiple Resource Agents if the pool of resources from an Air Unit is split into smaller,
dedicated resource pools (e.g., use 8 of the 16 aircraft from an Air Unit for strike missions,
and the remaining 8 for XATK missions).

Each Planning Node has a unique identifier provided as an input parameter to the node
start up script or command line. When the Planning Node process starts, the bootstrap code
loads the scenario data, and instantiates the unique Node Agent for that node. The Node
Agent then parses the DCP and initializes all the Functional and Resource Agents hosted
in the node. In single node mode, the Node Agent instantiates all the Functional Agents,
and all the Resource Agents defined in the input scenario data. After node initialization,
the AOC Node is ready to receive user commands, and all the remaining nodes are listening
for AMQ messages.

User commands are also transmitted to the AOC Node via AMQ messages. The AOC
Node instantiates a special message server that listens for user commands. The user, via the
Graphical Web Based Interface, can then start the planning process. The user can ask the
system to plan one mission at a time, or to batch process all targets and generate the full
plan.

The server listening to user commands forwards the request to the AOC Node Agent.
The AOC Agent then processes the request by translating the user requests into planning
tasks, packing these tasks into AMQ messages, and sending messages to the Functional or
Node agents capable of processing the tasks. After all tasks have been processed, the AOC
Node sends a response to the user. The set of planning commands available to the user and
the corresponding response messages are defined elsewhere. In this section, we are interested
only in the control and message flow after the AOC node receives a user command.

Let’s assume the user command is a request to automatically generate a plan to hit all
targets in the JIPTL, plan all non-strike missions, and to produce an Air Tasking Order in
USMTF format. This command triggers the planning process in fully automated mode. In
this case, the Planner generates the entire plan without any guidance from the user. The
user can later edit the plan.

After receiving this user request, the AOC Node creates strike tasks for targets in the
JIPTL, and tasks for the different types of non-strike missions specified in the AOD (e.g.,
CAS missions, XATK missions, XEW missions, ISR missions, FAC missions, GATK missions,

DISTRIBUTION STATEMENT A. Approved for public release.

5 THE DISTRIBUTED PLANNING CONTROL AND MESSAGE FLOW

etc.) A strike task can specify a single target, or a cluster of targets to hit. The AOC Node
may pre-process the input data and provide some additional guidance to the other planning
agents on how to compute the plan. For example, based on the location of targets and
air bases, the AOC agent may pre-define some entry and exit points, the AOC Agent may
estimate fuel demand, pre-compute a tanker allocation profile, and create tanker tasks to
instruct tanker agents to create these fuel availability profiles. We call the tasks generated
by the AOC Agent top-level tasks.

The AOC Agent then prioritizes the tasks and assigns them to the corresponding Func-
tional Agent based on the task type. A strike task is assigned to the STRIKE Functional
Agent, a tanker task is assigned to the REFUEL Functional Agent, and so on.

The AOC Node packs each top-level task into an AMQ message and sends the message
to the appropriate Functional Manager. If the Functional Manager is not hosted in the same
node as the AOC Agent, special messaging code takes care of forwarding the message to the
Node Agent responsible for the node where the Functional Agent is located. In this case,
the receiving Node Agent forwards the message to the appropriate Functional Agent, and
acts as a proxy AOC for that Functional Agent.

The Functional Agent finds the best mission(s) that can execute the task according to
some pre-defined criteria. The Functional Agent is responsible for putting together a plan
snippet that fully satisfies the task. For example, the STRIKE Agent is responsible for
creating a package comprised of: (1) strike missions capable of hitting all targets specified
in the task, (2) EW and OCA escort support missions if necessary, and (3) appropriate air
refueling for all missions in the package. The STRIKE Agent computes this plan snippet
by further decomposing a strike task into smaller tasks and assigning those tasks to other
Functional Agents or Resource Agents.

The STRIKE Agent starts by requesting candidate strike missions from the different
strike Resource Agents. The strike resource agents are the Agents corresponding to the
strike Air Units available in the scenario (e.g., fighter and bomber units). The STRIKE
Agent sends a strike task to each of the strike Resource Agents it knows about. Each
Resource Agent runs its own planning algorithms, and, if possible, creates a strike mission
that satisfies the task.

The STRIKE Functional Agent, collects all the bids from the different strike Resource
Agents, and composes a strike package that can hit all the targets specified in the task. The
strike package can be composed of one or more strike missions. The STRIKE Functional
Agent adds missions to the package until all targets are hit with enough munitions. The
STRIKE Functional Agent selects one or more of the bids proposed by the different strike
Resource Agents and rejects the remaining bids. Once a bid is selected, the resources used
for that bid are committed, and considered unavailable and “in use.” If the bid is rejected,
the resources used in the bid are returned to the pool of available resources.

The STRIKE Functional Agent may go through several rounds of sending tasks to Re-
source Agents and selecting bids until it defines a satisfactory strike package capable of
hitting all targets in the task. The same Resource Agent can provide more than one mission
for a package. After the STRIKE Functional Agent is happy with the strike missions in
the package, it analyzes the missions to identify additional requirements for SEAD support,
OCA escort, or air refueling. The STRIKE Agent applies some analysis algorithms to the
missions in the package, and, if necessary, creates SEAD Tasks, OCA Escort Tasks, and/or

DISTRIBUTION STATEMENT A. Approved for public release.

5 THE DISTRIBUTED PLANNING CONTROL AND MESSAGE FLOW

Air Refueling Tasks. These new secondary tasks created in response to additional require-
ments imposed by the computed plan are called sub-tasks. The STRIKE Functional Agent
sends each one of these sub-tasks to the appropriate Functional Agent capable of planning
missions of that type: SEAD Tasks go to the SEAD Functional Agent, OCA Escort Tasks
go to the OCA Functional Agent; and Air Refueling Tasks go to the REFUEL Functional
Agent. If any of these Functional Agents are hosted in a remote node, the message processing
mechanism takes care of forwarding the message with the task to the appropriate node.

The SEAD, the OCA, and the REFUEL Functional Agents implement a problem solving
strategy similar to the one used by the STRIKE Functional Manager: They send a task
to each one of the known Resource Agents capable of processing tasks of that type (e.g.,
SEAD, OCA or Air Refuel Tasks). Each Resource Agent that has available resources and
can feasibly satisfy the task sends back a non-empty bid. The Functional Agent collects all
the bids provided by Resource Agents, analyzes the missions in the bids, generates and plans
additional sub-tasks if necessary (e.g., SEAD or OCA missions require air refueling), selects
the best bid, and returns best bid to STRIKE Functional Agent.

Back in the STRIKE Functional Agent, if all sub-tasks (SEAD, AOC, REFUEL) can be
successfully planned, the Functional Agent finalizes the package creation and sends back a
bid containing the selected package to the AOC Agent.

After receiving a bid for a task, the AOC proceeds to the next task in a prioritized list of
tasks. The AOC Agent sends the top-level tasks one at a time to the appropriate Functional
Agent and collects the bids returned for that task before proceeding to the next task. If a
task cannot be satisfied, an empty bid is returned.

After all tasks have been processed, the AOC Agent triggers the serialization of the ATO
in USMTF format. The ATO serialization is then written to a file stored in the file system of
the computer or virtual machine hosting the AOC Node. In addition to the USMF format,
the plan is also serialized as a JSON string that is sent back to the User Interface, and as
an AOCOI XML string that can be sent to other systems like ATOMS. The same workflow
is used for non-strike tasks. The AOC node sends a top-level task to the corresponding
Functional Manager. The Functional Manager sends tasks to the mission specific Resource
Agents. Each Resource Agent responds with a bid that may eventually contain an empty plan
if that particular agent cannot satisfy the task. The Functional Agent collects all the bids,
analyzes the bids and determines if additional planning is needed for residual requirements
(e.g., air refueling, additional support, etc.), creates sub-tasks for these requirements, sends
those to the appropriate Functional Agent, collects the bids for the sub-tasks, composes the
response plan, assembles the response bid, packs the bid into the response message, and
sends the response to the requesting agent, in this case the AOC Node Agent.

All the planning actions implemented by the planner follow a similar workflow of messages
and control flow: The process starts with the user interface sending a message to the Planner
UI Server hosted in the AOC Planning Node. The Planner UI Server forwards the message
to the AOC Node Agent. The AOC Node Agent decomposes the user request into tasks and
assigns those tasks to Functional Agents. The messaging infrastructure is responsible for
delivering the messages with the tasks to the Functional Agents. The Functional Agents then
delegate the actual task processing to the Resource Agents. The plan snippets generated by
Resource Agents flow back to Functional Agents, get composed into larger plans, and finally
flow back to the AOC Node for final ATO generation.

DISTRIBUTION STATEMENT A. Approved for public release.

6 THE MESSAGING INFRASTRUCTURE

The Messaging Infrastructure

The flexibility that the Distributed Control Architecture provides by hosting any agent in
any node is achieved through a messaging infrastructure that mediates all interaction among
agents in a location-independent fashion. It should be clear by now that a SCHARP Planning
Node is just a collection of Planning Agents running in the same Java Virtual Machine.
Similarly, a SCHARP Planning Cluster is a collection of interconnected Planning Nodes.
The actual location of the agents is pretty much irrelevant to the operation of the system.
The Messaging Infrastructure was designed to allow agents to communicate with each other
uniformly, and independently of their location. All agents communicate via message passing
using either the actual AMQ broker service, or some internal messaging optimization that
emulates the behavior of the message broker to improve intra-node communication. There
is no actual coupling among agents.

The messaging infrastructure has 4 main components:

1. The ActiveMQ message broker responsible for managing the message traffic among
agents.

2. An Agent Client component (e.g., a Java class) that act as a proxy for interacting with
agents.

3. An Agent Server component (e.g., a Java class) that actually implements the processing
of the messages.

4. An Agent API (e.g., a Java interface) that greatly simplifies the interactions among
agents by providing a small set of message processing primitives that encapsulate the
details of the messaging mechanism.

The Agent API is a set of methods (e.g., a Java Interface) all agents must implement. In
the previous section, we talked about agents sending messages to other agents. The actual
sending and receiving of messages is handled by the methods implemented by this API. The
message sending mechanism is similar to a Remote Procedure Call: when an agent S wants
agent R to process some task, agent S calls the appropriate task processing method in agent
R’s Agent API using a proxy for agent R. The implementation of the Agent API method
takes care of packing the task into an AMQ message, sending the message to the actual agent
R via the AMQ, getting the response from agent R, unpacking the result, and returning the
result to agent S. Agent S has no knowledge of the actual location of agent R.

The Agent Client, and the Agent Server are Java classes that implement the client side
and server side respectively of the Agent API. In our example above, the proxy used by agent
S to call a method on agent R is an instance of the Agent Client. The server is the actual
agent: All agents are instances of the Agent Server. The Agent Server implements the control
loop for an agent. The server listens to AMQ messages, and triggers agent functionality in
response to received messages.

At node startup, the Node Agent creates one instance of an Agent Client for each agent
that should be present in the Planning Cluster. This includes all the remote Node Agents,
all Functional Agents, and all Resource Agents. Each Node Agent has clients representing

DISTRIBUTION STATEMENT A. Approved for public release.

7 MISSION PLANNING ALGORITHMS

proxies to all other agents in the system. This allows a Node Agent to potentially commu-
nicate with any agent. The Node Agent also creates an instance of an Agent Server for each
agent hosted in its node. Each Agent Server runs as a separate thread in the node’s Java
virtual machine. Each Agent Server has a control loop that keeps listening to AMQ messages
and dispatches those messages to the appropriate message handler. Each Agent Server has
a dedicated AMQ channel (e.g., an AMQ queue or topic) for receiving messages. Both the
Agent Client and the Agent Server know the unique identifier of this channel. The Client
writes messages to the channel - it is a message producer, and the Server reads messages
from this channel - it is a message consumer.

For each agent in the cluster, there is an Agent Client instance corresponding to that
agent in every node. There is, however, only one Agent Server instance for each agent in
a cluster. Only the node hosting the agent has an instance of the Agent Server. The DCP
document specifies where Agent Server instances should be hosted. There is a single AMQ
channel per agent. This channel has multiple message producers, and only one message
consumer. The server receiving a message does not send a response to that message through
the same channel from which it received the message. It always uses the dedicated agent
channel. Each message contains the unique identifier of the message’s sender. If there is
a need to respond to a message, the Agent Server generating the response uses the Agent
Client instance corresponding to the sender of the message to respond. Let’s revisit our
communication example in more details. Agent S requires Agent R to process some task.
Each node has a directory service (e.g., a lookup table) of all planning agents in the system.
Agent S uses this lookup table to get a handler to Agent R. The lookup table returns an
instance of an Agent Client for Agent R. Agent S then calls the appropriate task processing
method on the Agent Client object. The client creates an AMQ message for the task and
sends it to the channel the corresponding Agent Server R is listening to.

Agent Server R receives the message, processes the task, and follows the same workflow
to send a response back to Agent S: Agent R retrieves the identifier of the sender from the
message, uses the lookup service to find a handler to agent S, receives an instance of a Client
Agent for agent S, calls the appropriate method on the client object, and the client sends
the message to Agent S’s unique channel. Agent Server S processes the response.

If both agents are hosted in the same node, it is possible to bypass the sending and
receiving of the message using the AMQ broker. When the receiver of the message is hosted
in the same node as the sender, the communication infrastructure forwards the message
directly to the server without going through the AMQ channel.

In earlier implementations of the system, all agents were using the AMQ broker for all
messages. With this optimization there is no external network traffic when agents in the same
node are communicating. This optimization greatly reduced the communication overhead,
especially under restricted bandwidth conditions.

Mission Planning Algorithms

In the previous section we introduced the generic problem-solving workflow to explain the
distributed control architecture, and the message passing mechanism. In this section we will
describe in more detail the logic and algorithms used to plan the different types of mission.

DISTRIBUTION STATEMENT A. Approved for public release.

7 MISSION PLANNING ALGORITHMS

As we saw before, the planning process starts with the AOC Node Agent sending top-
level tasks, or mission requests, to the different Functional Agents. Each Functional Agent
is responsible for planning only one or a few closely related types of missions. Figure 4 shows
the general message flow for a strike mission: The AOC agent sends a message with a task
to the Strike Functional Agent. The Strike Functional Agent then interacts with Resource
Agents and other Functional Agents to compute a package that can satisfy the request.

Figure 4: Problem Solving Workflow

The current implementation has the following types of Functional Agent:

• STRIKE Agent: Plans Air to Ground Strike packages and missions.

• XATK Agent: Plans Air-to-Ground Alert missions.

• KI Agent: Plans Kill-Box Interdiction Air-to-Ground Strike missions.

• C2 Agent: Plans Command and Control Orbit missions.

• DCA/OCA Agent: Plans Air-to-Air alert and escort missions.

• CAS Agent: Plans Close Air Support missions.

• SEAD/XEW Agent: Plans EW alert and escort missions.

• ISR Agent: Plans Intelligence, Surveillance and Reconnaissance missions.

• REFUEL Agent: Plans Tanker missions and Air Refueling support.

DISTRIBUTION STATEMENT A. Approved for public release.

7 MISSION PLANNING ALGORITHMS

Each Functional Agent delegates the actual mission creation to the more specialized Re-
source Agents. The Planner’s Resource Agents correspond to the actual Air Units available
in the theater. Each Resource Agent has a pool of aircraft resources available for planning.
The constraints on resource availability at each Air Unit are defined by the Unit Contract
provided as part of the scenario input data. The Resource Agent models the GO availability
profile defined in the Unit Contract. Each resource agent “knows” how to create missions of
a particular type using the types and quantities of resources available.

The Resource Agent manages a homogeneous fleet composed of a number of aircraft of
the same type. It creates a mission by doing the following:

1. Estimating resource requirements for the task.

2. Reserving available resources from its pool.

3. Computing detailed and optimized flight routes.

4. Scheduling start and end times for each flight segment.

5. Prescribing appropriate munitions or additional equipment to use.

6. Estimating munition usage.

7. Calculating fuel utilization.

8. Identifying the need for additional support missions.

A Resource Agent is usually dedicated to only one mission type, and usually communi-
cates with only one Functional Agent. For example, the STRIKE Functional Agent interacts
with a number of STRIKE Resource Agents. We usually refer to the Resource Agents simply
as units. For example, we will refer to a STRIKE Resource Agent as a strike unit. Similarly,
we refer to the Functional Agents as functional managers or just managers. We call the
STRIKE Functional Agent simply the strike manager. The AOC Node Agent is called the
Plan Manager.

Although there are 9 different types of Functional Managers, from a more abstract plan-
ning perspective, there are 4 distinct types of mission structure that are planned by the
different functional and resource agents:

1. A strike mission or package.

2. An orbit mission.

3. A support mission.

4. An air refueling mission.

DISTRIBUTION STATEMENT A. Approved for public release.

7.1 Planning Strike Packages 7 MISSION PLANNING ALGORITHMS

Planning Strike Packages

A strike package is a set of missions containing more than one single mission. Generally, the
set comprises one or more EW Escort missions, one or more OCA escort mission, plus the
Air Refueling that may be needed by missions in the package.

The planning of strike packages is the most complex planning activity performed by
SCHARP. It requires the synchronization of several missions using different types of aircraft
flying from different locations. Figure 5 shows a more detailed view of the workflow for
planning strike packages.

Figure 5: Strike Mission Detailed Planning Workflow

The Strike Manager is the functional manager responsible for planning strike packages.
The planning of a strike package starts with the creation of a top-level strike task. The
Plan Manager (e.g., the AOC Node Agent) creates top-level strike tasks corresponding to
the targets in the JIPTL, and sends those tasks, one at a time, to the Strike Manager.

A strike task may contain a single target, with all its JDPIs, or multiple targets clustered
together. If the strike task contains more than one target, the strike package must successfully
plan missions to hit all targets in the target cluster specified by the task. The Planner does
not currently provide partial satisfaction of a task. The system does not break a single
target into multiple tasks. It may create multiple missions for a single target if the number
of JDPIs for the target is such that a single mission cannot strike all of them.

The Strike Manager starts planning the strike package once it receives the message with
the task from the Plan Manager. The strike manager uses the following workflow to create
a strike package:

1. It first plans the package’s commander mission: The commander mission is the first
strike mission planned for the package. The route and munitions used by the com-
mander mission are optimized for the higher priority targets in the strike task. The
commander mission visits all targets in the task in priority order. It deploys its muni-
tions on the targets in priority order. Depending on the amount of munitions available

DISTRIBUTION STATEMENT A. Approved for public release.

7.1 Planning Strike Packages 7 MISSION PLANNING ALGORITHMS

to the mission, and on the number of targets in the task, the mission may fly over
some targets but not deploy any munitions on those targets. The system later plans
additional strike missions to hit those targets. If a target has too many JDPIs, it is
possible to have multiple missions from the package deploying munitions over the same
target.

The strike manager generates the commander mission by requesting a candidate mis-
sion from each one of the strike units (e.g., strike Resource Agents) available in the
cluster. The strike manager collects the bids and selects the best commander mission
based on some user-defined metric like shortest mission duration, maximum amount
of damage, minimum munitions usage. Strike units that cannot generate a mission for
the request, return an empty plan or an empty bid.

Once the Strike Manager selects one of the feasible missions, if any, it notifies all other
units providing bids that the resources in those missions can be released - we say those
bids have been rejected. If the planner cannot find a feasible commander mission,
an empty plan is immediately returned to the Plan Manager, and the Plan Manager
marks the strike task as infeasible.

2. Each strike unit receiving a request for a candidate strike mission creates a mission
optimized for the highest priority target. The creation of the commander mission by
the unit implements the following algorithm:

(a) Given the earliest start and latest finish times defined in the strike task, the unit
finds all GOs (e.g., availability intervals) that have enough available unused sorties
for a strike mission. If there are no available intervals with enough capacity, the
unit returns the empty bid.

(b) For each available GO or interval, the unit computes the flight route for the
mission. The flight route is represented as an ordered sequence of flight legs or
activities. Each activity has an origin, a destination, an earliest start time, a latest
end time, and an expected duration. Each flight segment between 2 waypoints is
represented by an activity.

(c) The route computation algorithm minimizes the total time the mission spends in
the battlespace. It starts by selecting the best battlespace entry point if more than
one option is available and computing the route from home base to entry point.
The route is then expanded to visit the locations of all targets in the task. If, after
visiting all required targets, fuel and munitions are still available, secondary or
opportunistic targets may be added to the mission route. Finally, a flight from the
last target to the exit point is added to the route, and the route from battlespace
exit location back to home base is computed. Visits to air-refueling tracks are
also inserted into the mission’s positioning (e.g., from home base to entry point)
and de-positioning (e.g., from exit point to home base) itineraries if the aircraft in
the mission cannot fly the round-trip to base without air refueling. If no feasible
route can be created for a certain go, the route computation algorithm returns an
empty route.

DISTRIBUTION STATEMENT A. Approved for public release.

7.1 Planning Strike Packages 7 MISSION PLANNING ALGORITHMS

(d) If a feasible non-empty route exists for a given go, the unit computes the parent
mission that is essentially a container for the activities in the generated route.
The mission object summarizes or aggregates all the relevant data in the detailed
flight route defined by the activity sequence.

(e) The unit creates a reservation for the resources required by the mission. For
example, if the mission requires 4 aircraft, and the go selected was the go starting
at 0600 and finishing at 1200, the unit reduces the number of available sorties in
the corresponding go by 4 units.

(f) Based on the selected start time for the parent mission, the unit may perform
temporal propagation to precisely define when targets will be hit, and when air
refueling will occur. The unit will update fuel consumption values for each activity
and compute the overall fuel consumption for the parent mission. It will also
perform some level of threat analysis and annotate the activities that are likely
to be threatened by enemy SAM sites or airfields.

(g) If a feasible strike mission is successfully created and the resource reservation
succeeds, a strike mission bid is created and returned to the strike manager.
Otherwise an empty bid is returned.

3. The strike manager collects all the candidate commander missions and creates can-
didate packages using each of these candidate missions. To do this, it first tells all
the units to cancel all the reservation made for the candidate missions. It then cycles
through the candidate missions one at time and computes a package for each candidate
mission. It does this by canceling and re-creating the reservations provided in the bid.
The next steps in the workflow are executed for each candidate commander mission.

4. If a feasible commander mission is available, the strike manager plans EW and OCA
Escort Missions if necessary: The strike manager analyzes the route of the commander
mission and, if it identifies potential SAM or airfield threats, it creates SEAD and
OCA Tasks, and sends those tasks to the SEAD and OCA manager respectively. The
SEAD and OCA managers will then try to generate EW and OCA Escort missions to
support the package. A failure to plan EW or OCA escort may cause the STRIKE
manager to fail planning the strike package and return an empty plan to the Plan
Manager. The user can allow a strike package without either EW or OCA support to
fly by setting a planning preference. If there are no support missions, and the choice
is to return the empty plan, before returning the empty plan to the Plan Manager, the
Strike manager notifies the unit providing the resources for the commander mission to
release its resources - the commander mission bid has been rejected.

5. If necessary, the strike manager will also plan air refueling for the commander mission.
The actual planning of the refueling is delegated to the Refueling Manager. If there is a
feasible commander mission that requires air refueling, the strike manager creates one
or more air refueling tasks, and sends them to the Refueling Manager. If air refueling
is not feasible, the Planner cancels all pending reservations, and returns the empty bid
to the Plan Manager. Failing to find a tanker for air refueling when fuel is needed
always causes the task to fail.

DISTRIBUTION STATEMENT A. Approved for public release.

7.1 Planning Strike Packages 7 MISSION PLANNING ALGORITHMS

6. If there are residual targets or JDPIs that have not been hit by the commander mission,
the strike manager plans additional strike missions until all targets and JDPIs have
been hit. If it is not possible to find strike missions to hit all targets, the strike
manager cancels all previously made reservations and returns the empty bid to the
Plan Manager. In case of failure, the previously made reservations that need to be
canceled include any strike mission that has not yet been rejected, plus the support
missions created, plus any Air Refueling activities.

7. To compute non-commander missions for a package, the strike manager repeats the
following sequence of steps until all the JDPIs have been struck:

(a) Compute the set of remaining JDPIS that have not yet been struck by the strike
package. If the set of residual JDPIs is empty, exit this loop and proceed to
package creation using the selected strike missions. If the residual JDPI set is not
empty, go to step b.

(b) Create a new target task including the commander mission and the remaining set
of JDPIS.

(c) Send the new strike task to each strike unit.

(d) Collect all candidate bids, select best bid, and cancel reservation for all other bids.

(e) Go to step a.

The strike units also plans non-commander missions following a workflow similar to the
one described for the commander mission. The main difference is that, while creating
the mission flight route, the unit only computes the positioning, and de-positioning
routes, and copies the flight route inside the battlespace from the commander mission.
All the missions in the strike package rendezvous at the entry point defined for the
commander mission and fly together inside the battlespace. All missions also exit at
the same exit point and then fly separately to their home base.

8. The strike manager will not schedule additional SEAD or OCA Escort missions for
the additional strike missions created. It assumes the support missions created for the
commander mission will be enough to support the package.

9. If the system was able to create a set of missions that satisfy all the requirements
of the strike task, the Planner succeeded in generating a plan. The Strike Manager
creates a strike package with all the missions created, creates a strike bid, and returns
a successful bid to the Plan Manager.

10. The Plan Manager receives the response from the Strike Manager. If the bid is not
empty, it records the strike as successful and adds the returned strike package to the
collection of successful packages. Otherwise, the Plan Manager marks the strike tasks
as failed.

DISTRIBUTION STATEMENT A. Approved for public release.

7.2 Planning Orbit Missions 7 MISSION PLANNING ALGORITHMS

Planning Orbit Missions

The non-strike missions in the ATO are usually missions composed of 2 or 4 aircraft that
stay in orbit at certain pre-defined airspace locations for a certain periods of time (perhaps
refueling at a nearby air-refueling track), before finally returning to base. The Tanker mission
is a special type of Orbit Mission that stays in the same orbit for the entire duration of the
mission. Figure 6 shows the workflow used to plan an orbit mission. An orbit mission may
refuel several times depending on the duration of the orbit.

Figure 6: Orbit Mission Planning Workflow

Orbit tasks are top-level tasks created by the Plan Manager (e.g., the AOC Node Agent).
Orbit tasks are defined based on input coming from the AOD, or user specified. Orbit tasks
usually specify the orbit location, and the expected duration the mission should stay in orbit.
Some tasks also specify the unit that should provide the resources for certain orbits.

C2 missions, CAS missions, DCA missions, XATK missions, FAC missions, and XEW
missions are all examples of orbit missions. Ground alert are also treated similarly to orbit
mission, but they stay on the ground instead of flying to some orbit location.

The workflow for orbit missions is straightforward:

1. The Plan Manager sends a top-level orbit task to the corresponding orbit Functional
Manager.

2. If the task specifies the unit providing the resources for the mission, the orbit manager
sends the task directly to the specified orbit unit. Otherwise, it requests candidate
missions from all units that can plan that particular type of orbit mission.

3. If the orbit unit receiving the task does not have enough resources available in the
time window specified by the task, it returns the empty bid. Tanker units, when
planning tanker missions, also check if the air-refueling track specified in the task still

DISTRIBUTION STATEMENT A. Approved for public release.

7.3 Planning Support Missions 7 MISSION PLANNING ALGORITHMS

has orbits available. The planner assumes an air refueling track can have different
orbits at different altitudes, and will assign a tanker for each orbit.

4. If the unit has enough available resources, it expands a flight route or flight plan capable
of positioning the aircraft of the mission in the specified orbit. The flight route may
also include as many trips to the air refueling track as necessary to keep the mission
in the orbit during the requested time window. If the mission is not feasible given the
aircraft or unit contract constraints, the unit returns the empty bid.

5. If the mission is feasible, and air refueling in needed, the orbit unit creates the necessary
air refueling tasks, and sends the tasks to the REFUEL manager. If any of the refueling
tasks fails to schedule, the orbit mission creation for that unit fails, and the orbit unit
returns the empty bid.

6. If a mission is successfully created, a non-empty orbit bid is returned to the orbit
manager.

7. The orbit manager usually returns the first feasible mission returned by one of the
orbit units. It does not collect bids from all units.

All orbit missions, with the exception of tanker missions, are expected to take off and
land at the planned time. Tanker missions can change their landing time depending on the
amount of fuel offloaded. Tanker missions behave like dynamic resources: A tanker mission
in a certain air refueling track tells the system there is certain amount of fuel available at
that track. The initial duration of a tanker mission is the maximum time the tanker can
stay in orbit given fuel and other time constraints. As the tanker offloads fuel, its available
fuel, and corresponding mission end time is updated based on how long the tanker can stay
in orbit given the remaining amount of fuel.

Planning Support Missions

Support missions are missions that are created to complement the capabilities of other mis-
sions planned by the system. For example, if a strike mission will fly over a potentially
active SAM site, or if the strike mission is going to hit a SAM site, depending on the type
of aircraft used in the mission, it may require support from an EW mission. Similarly, for
airfield threats: If a strike mission will cross the radar range of an airfield, or if it is going to
hit the airfield, it may need support from one or more OCA escort missions. SEAD Escort
and OCA Escort are the two types of support mission the Planner currently creates to sup-
port strike missions. The planning of both types of missions follows pretty much the same
workflow. Only the aircraft type and the units are different.

The planning of support missions starts with the Strike Manager analyzing a strike
mission, identifying the need for some type of support, creating the support task, and sending
the support task to either the SEAD Manager or to the DCA/OCA Manager.

Both managers follow the same workflow to plan support missions:

1. The SEAD or the OCA Manager requests mission candidates from each of the SEAD
or OCA units available in the system.

DISTRIBUTION STATEMENT A. Approved for public release.

7.4 Planning Air Refueling Missions 7 MISSION PLANNING ALGORITHMS

2. If the Support unit does not have enough available sorties at the required mission time,
it fails and returns the empty bid.

3. Each tasked support unit will create a mission that will follow exactly the same flight
route as the strike mission while inside the battlespace. The strike mission has well
defined locations, or waypoints, where it enters and exits the battlespace region. All
the flight segments for the strike mission inside the battlespace are copied to the route
of the support mission. The support mission is expected to rendezvous with the strike
mission at the battlespace entry location and fly together with the strike mission until
the strike mission exits the battlespace at the specified exit point.

4. After expanding the route inside the battlespace, the support unit computes the posi-
tioning route for the support mission from the physical location of the Air Unit’s home
base to the entry point location. The unit also computes the fuel consumption for the
support mission and, if necessary, it adds waypoints for air refueling before the mission
reaches the entry point. If the support mission cannot feasibly reach the rendezvous
point in time, the planning of the mission fails, and the support unit returns an empty
bid.

5. If the mission is feasible, the support unit computes the de-positioning route from bat-
tlespace exit point location to home base. The unit again computes fuel requirements
and adds refueling to the de-positioning legs if necessary. If the support mission is not
fuel feasible (e.g., the aircraft does not have enough fuel to fly between the times it
can refuel), the unit returns the empty bid.

6. If the support mission requires air refueling, the unit creates the air refueling tasks
and sends them to the REFUEL manager. If refueling is not feasible, the support unit
returns an empty bid.

7. If a support mission is successfully generated, the support unit returns a support bid
to the requesting functional manager (e.g., the SEAD or OCA manager). The support
manager collects all the bids from its support units, selects the best non-empty bid
according to some user specified criteria, and returns the best bid to the Strike Manager.

8. The Strike Manager finishes its planning by performing temporal propagation if a
support mission forces a strike mission to move forward in time.

Planning Air Refueling Missions

The REFUEL Manager plans both Tanker missions and air refueling activities. Tanker
missions are orbit missions planned in response to Tanker tasks. Tanker tasks are currently
top-level tasks created by the Plan Manager based on estimated fuel needs, and available
tanker resources and air refueling tracks. A Tanker Mission is expected to refuel multiple
missions. A Tanker Mission acts as a gas station in the sky. The Planner takes care of
managing the amount of fuel available in a Tanker Mission, and the amount of fuel available
at an Air Refueling Track: The unit manages the fuel available in each Tanker Mission, and
the REFUEL Manager manages the fuel available at refueling tracks. A refueling track may

DISTRIBUTION STATEMENT A. Approved for public release.

7.4 Planning Air Refueling Missions 7 MISSION PLANNING ALGORITHMS

have multiple tankers coming from different air refueling units. The planner assumes each
refueling track location can support up to 4 orbits, each orbit at a different altitude.

Air refueling activities are created in response to Air Refueling tasks. These activities
represent the temporal and spatial synchronization of an existing Tanker Mission with some
other mission. As the different planning agents create the flight route for a non-tanker
mission, they identify the need for air refueling, and insert placeholders for air-refueling
activities in the mission’s flight path. The mission receiving fuel must fly to the air refueling
track location, spend some time at that location to refuel, and then fly to the next location
in its route.

If a mission requires air refueling, the agent planning the mission creates one or more Air
Refueling tasks and assigns those to the REFUEL Manager. The workflow for planning of
Air Refueling tasks is:

1. The REFUEL Manager receives the Air Refueling Task. The task specifies the time
interval in which the refueling is required, the required Air Refueling track, and the
amount of fuel required. It also specifies if the receiving aircraft needs BOOM or
DROGUE refueling equipment. The REFUEL Manager selects all the Air Refueling
or Tanker units that can provide the required type of refueling, sorts the units by their
distance from the requested refueling track, and sends an air-refueling task to each of
the air refueling units.

2. Upon receiving the task, each air refueling unit will try to find the earliest time interval
in which it can satisfy the task.

3. The air refueling unit will first verify if it has at least one Tanker resource or mission
in orbit at the required Air Refueling track during the time interval specified in the
Air Refueling task. If no such Tanker mission has yet been created, the unit returns
an empty bid. The unit will not create a new Tanker mission for an air-refueling task
since it has no visibility of other Tanker missions from other air refueling units already
planned to use the Air Refueling tracks.

4. If there is a Tanker mission from the unit already planned for the required Air Refueling
Track during the required time interval, the unit will check if the Tanker mission has
enough fuel to provide the requested amount of fuel and will check if the Tanker mission
can actually refuel the requesting mission during the specified interval. It is possible
that although there is a tanker from the unit in the specified track, the tanker is already
allocated to refuel other missions at the specified time interval. If there is not enough
fuel, or if none of the tankers from this unit on the requested track can offload fuel
during the requested interval, the unit returns the empty bid.

5. If there is a feasible time interval for a tanker from this unit to satisfy the request, the
Tanker unit computes the exact duration of the offload activity, computes the earliest
start time and finish time for this activity, and creates an air-refueling reservation for
that Tanker Mission. The air-refueling reservation keeps track of the exact start and
end time of the air-refueling activity, the amount of fuel to offload, and the identifier
of the fuel-receiving mission. As a result of creating the reservation, the structure of

DISTRIBUTION STATEMENT A. Approved for public release.

8 COMMANDER’S GUIDANCE

the Tanker Mission is modified to update the remaining amount of fuel available in the
tanker aircraft after the fuel offloading activity. The planner may change the end time
of the Tanker Mission if the level of fuel in the tanker is too low after the end of the
newly created refueling activity.

6. If an air-refueling reservation or activity is successfully created, the unit creates an
air-refuel bid specifying the Tanker Mission providing the fuel, and the exact start and
end times for the air refueling activity.

7. The REFUEL Manager collects air-refueling bids from all available Air Refueling units
and selects the best bid. The selected bid is usually the one that can closely match the
earliest start time of the request. As an optimization, while collecting the bids, if one
of the units generates a bid that exactly matches the earliest start time of the request,
the REFUEL Manager immediately accepts that bid, rejects any previously generated
bids, and returns the selected bid to the requesting agent.

8. Upon receiving the air-refuel bid, the agent planning the mission requesting air refueling
may be required to perform some temporal propagation to adjust the mission’s times
to accommodate the air refueling. It is possible that the air refueling times would force
the mission’s start and end time to shift forward in time.

9. If the REFUEL Manager returns an empty bid, the agent planning the requesting
mission may decide to fail the planning of the mission, or may iterate over the available
air refueling tracks, and repeat the process until it finds feasible air refueling.

Commander’s Guidance

SCHARP’s Commander’s Guidance allows the operator to vary high-level guidance for the
planner and consequently receive a range of plans with their corresponding metrics (‘baseball
cards’).

Table 1: Example allocation of resources to tasks.

Task Percentage of Resources to Be Allocated
AI/KI 30%
CAS 20%

SEAD 20%
OCA 15%
DCA 15%

The general procedure is:

• The user interface (UI) sends the planner parameters for allocating units’ resources to
various tasks. Table 1 shows an example in which 30% of the overall resources are to
be used for strike (AI or KI), etc.

DISTRIBUTION STATEMENT A. Approved for public release.

8.1 The Allocation Algorithm 8 COMMANDER’S GUIDANCE

• The UI sends the planner a configuration for multi-role platforms, giving, for each
platform, a prioritized list of roles the platform may perform. For example: the fighter
planes in a given strike unit may be configured for strike first, then CAS, then DCA
and finally OCA, while the fighter planes from a different unit may be configured for
DCA first, then OCA and finally strike.

• The UI sends the planner no-earlier-than (NET) and no-later-than (NLT) times for
targets. The UI uses this mechanism to define the flow of the day’s ATO; for ex-
ample, northern targets in the morning, followed by central targets in the afternoon,
followed by southern targets in the evening. (By default, the targets have NETs/NLTs
determined by the scenario data.)

• The UI then instructs the planner to generate a plan. The planner uses the allocations
and the configuration of multi-role aircraft to generate new unit contracts for the units.
It then generates a plan using those unit contracts and respecting the target NETs and
NLTs.

• The UI then requests the metrics computed for the generated plan.

• This process can be repeated with different allocations and NETs/NLTs and the met-
rics compared; e.g., a DCA-heavy plan may be compared with an OCA-heavy plan, or
a north-south flow with an east-west flow.

The Allocation Algorithm

The inputs from the user interface to the allocation algorithm are the allocation parameters
(i.e., a percentage of the total resources to be allocated to each task) and the preferred roles
for multi-role aircraft. The algorithm also uses the default unit contracts to determine how
many sorties each unit can provide in each go. The output is a new set of unit contracts
allocating those sorties to the various tasks.

The algorithm works as follows:

1. The unit contract for a specific go for a specific unit are partitioned into roles: the
number of sorties for air-to-air, the number of sorties for strike, the number of sorties
for SEAD, etc. The allocation algorithm sums over the roles, to determine the total
number of sorties available from that go.

2. The algorithm sums the sorties over all goes, to determine the total number of sorties
in the ATO day.

3. The algorithm then uses the allocation percentages to determine how many sorties
should be allocated to each role: sorties for strike = total sorties × percentage for
strike, etc.

4. The algorithm then tries to create unit contracts in which the total sorties for each
role match, as closely as possible, the number of sorties determined for that role. (It
may not be possible to achieve this completely.)

DISTRIBUTION STATEMENT A. Approved for public release.

9 CONCLUSIONS

• The algorithm starts with the strike role.

• It iterates through the units. If the unit’s platform has strike as its first preferred
role, then the algorithm allocates the unit’s sorties to strike.

• It continues this until either enough strike sorties have been allocated, or all units
have been tried and not enough strike sorties have been allocated. In the latter
case, the algorithm goes through the units again, this time allocating sorties from
units whose second preferred role is strike. And so on. Eventually, either enough
strike sorties are allocated, or all units and preferred roles have been exhausted.

• The algorithm then repeats for the CAS role, allocating sorties than were not
previously allocated to strike. And so on through each role.

Conclusions

This report documents the architecture and algorithms of SCHARP’s planning engine.
The architecture is flexible, allowing fully centralized operation (with all planning for all

resources performed on a single node), fully distributed operation (with each air unit and
functional manager operating on its own node), and partially distributed operation.

The planning algorithms follow a hierarchical decomposition, with planning for the JIPTL
targets and various orbit tasks at the top, decomposed into planning for functional areas (e.g.,
strike, SEAD, OCA, and refueling), which in turn decompose into planning for specific air
units.

The planning algorithms use a mixture of availability profiles (that reflect the number
of resources allocated by units over time) and constraint propagation to determine feasible,
synchronized operations between the various resources: e.g, SEAD and OCA missions es-
corting strike mission through enemy airspace, and tanker missions providing fuel to other
missions.

DISTRIBUTION STATEMENT A. Approved for public release.

	Introduction
	Planner Overview
	Distributed Control Architecture
	Planning Agents
	The Distributed Planning Control and Message Flow
	The Messaging Infrastructure
	Mission Planning Algorithms
	Planning Strike Packages
	Planning Orbit Missions
	Planning Support Missions
	Planning Air Refueling Missions

	Commander's Guidance
	The Allocation Algorithm

	Conclusions

