
Bounds Analysis by Abstract Interpretation∗

Xiaolei Qian Allen Goldberg

Computer Science Laboratory Kestrel Institute
SRI International

qian@csl.sri.com goldberg@kestrel.edu

Abstract

Abstract interpretation is a framework that precisely relates programs to their

formal models. A model of a program retains its control structure but computes in a

data domain that is less detailed, i.e. more abstract. Symbolically evaluating programs

over the abstract domain yields analysis results that have been traditionally used by

compilers for optimization.

This paper presents an abstract interpretation for a program language with set-

theoretic data structures that automatically and efficiently obtains bounds and con-

tainment data that may be used to help select efficient representations for these abstract

types. In this work an abstract context, i.e. model, consists of a deductively-closed col-

lection of formulas in a simple logical theory. The technique is easily extensible to other

high-level data abstractions, and readily incorporable into compilers for very-high-level

languages.

1 Introduction

We develop a program analysis technique that derives the symbolic containment and mem-
bership assertions of set-theoretic data abstractions automatically and effectively. Abstract
interpretation[3] is applied to construct a deductive semantics of programs. Concrete con-
texts are abstracted into sets of simple facts about program points called bound assertions ,
and the abstract interpretation serves as a specialized theorem prover or fact gatherer [11]

∗Supported in part by the U.S. Air Force Rome Laboratory under contract F30602-86-C-0026.

which computes global bounds information. In this application of abstract interpretation,
the abstract domain is a deductively-closed decidable theory. i.e. an abstract model of the
program. For a syntactic construct s and a bound assertion p, the abstract interpretation
derives a post-condition of p over s[6]. Based on the abstract interpretation, we show to
perform bounds analysis that are of interest to data structure selection. The importance of
inclusion and membership relationships to automatic data structure selection in very-high-
level languages was first recognized in [12] and developed in [4, 5]. Techniques similar to
data flow analysis were developed there for setl, which start from an initial set of plau-
sible relationships and iteratively eliminate those that might be false. Compared with the
approach in [12], our approach does not require that all plausible inclusion and membership
assertions be generated, and intra-function analysis is syntax-directed rather than iteratively
approximated. Abstract interpretation was originally proposed in [2, 3] as a general frame-
work for semantically correct program analysis. It has been applied to applicative languages
to perform a variety of analysis tasks, such as strictness analysis in functional programs
and mode analysis in logic programs[9]. An example of abstract interpretation applied to
imperative languages is [1], where induction variables and recurrence relations in loops can
be automatically recognized.

The paper is organized as follows. The syntax and semantics of our programming lan-
guage are given in Sections 2 and 3. Section 4 defines abstract contexts and shows their
correctness. Abstract interpretation is presented in Sections 5 and 6 together with their
properties that are useful for bounds analysis. We discuss various types of bounds analysis
in Section 7. Finally, Section 8 gives some concluding remarks.

2 Syntax

We define a simple programming language to illustrate the analysis method. The program-
ming language has of three primitive datatypes: integer, symbol, and boolean; and five type
constructors: pair, set, sequence, map, and (binary) relation. The grammar for the language
is:

program

fn
def
= function id(id : dl , . . . , id : dl) = st return e

declaration

dl
def
= integer | symbol | boolean
| pair(dl , dl) | set(dl) | sequence(dl) | map(dl , dl) | relation(dl , dl)

statement

st
def
= id ← exp

| id(exp)← exp

| if exp then st else st

| (st ; . . . ; st)
| while exp do st

| enumerate id over exp do st

| let (id = exp, . . . , id = exp) st

The expressions are formed by standard operators on the primitive types and the oper-
ators for composite types given in figure 1.

In this paper we restrict out attention to an intraprocedural analysis of a single function.
In [10] the generalization of our analysis method to interprocedural analysis is given, as well
as full proofs and a description of applications.

A program is represented by a directed graph 〈 Node , Arc 〉 whose nodes correspond to
syntactic constructs defined in the grammar, and whose arcs denote to control flow. Arcs are
specified by predecessor and successor relationships, which are mappings over nodes. Every
statement is represented by a (hyper) node with exactly one incoming arc and one outgoing
arc, as shown in Figure 2. The incoming node and outgoing nodes of a function, are called
the entry and exit nodes respectively. The unique arc from the entry node is called the entry
arc, and the unique node to the exit node the is called the exit arc.

For an if, test, or choice node n, its two successor nodes are denoted by succt(n) and
succf(n) respectively. For a test or choice node n, its two predecessor nodes are denoted by
pred i(n) and pred l(n) respectively. For an endif node, its two predecessor nodes are denoted
by pred t(n) and pred f (n) respectively. For any other kind of node n, succ(n) and pred(n)
denote its successor and predecessor nodes respectively.

As an example, the program in Figure 3 computes a topological sort from a partial order
R over a set of symbols S. Succ is a map from an element of S to its direct successors in the
partial order. A total order consistent with the partial order is accumulated in the sequence
result . NumPred is a map that maps an element of S to the number of elements of S not yet
inserted into the total order result. MinEls is the set of elements of S whose predecessors are
elements of result . The directed graph representation of the program is shown in Figure 4.

Type Expression Remark

Pair x.1 The first component of pair x
x.2 The second component of pair x
〈x, y〉 The pair consisting of x and y

Set { } Constant denoting the empty set
arb(x) Select an arbitrary element of set x

(partial and nondeterministic)
x with y Add element y to set x
x less y Remove element y from set x
notempty(x) Test if set x is not empty
x ∈ y Set membership
x ⊆ y Set inclusion
x ∪ y Set union
x ∩ y Set intersection
power(x) Powerset of set x
{f(x): x ∈ y ∧ p(x)} Set comprehension

Sequence [] Constant denoting the empty sequence
first(x) The first element of sequence x (partial)
append(x, y) Append element y to the end of sequence x
rangeseq(x) The set of elements in sequence x
x ∈seq y Sequence membership
[f(x): x ∈seq y ∧ p(x)] Sequence comprehension

Map {||} Constant denoting the empty map
x(y) Pointwise selection of map x at point y (partial)
x ◦ (y → z) Pointwise assignment changing the value of map

x at point y to z
domain(x) The set of elements in the domain of map x
range(x) The set of elements in the range of map x
{|f(x)→ g(x): x ∈ y ∧ p(x)|} Map comprehension

Relation domainrel(x) Projection of binary relation x onto its first
component

rangerel(x) Projection of binary relation x onto its second
component

Figure 1: Operators on Composite Data Types

let

let

st
st

exp

while/enumerate

st

st

block

st

return

return

stst

exp

condition

endif

entry edge

exit edge

function

exit

entry

assign

assign

Figure 2: Program Graphs

function TopSort(S: set(symbol), R: relation(symbol,symbol)) =
s0 (let (result = [],

Succ = {| v → {}: v ∈ S |},
NumPred = {| v → 0: v ∈ S |})

s1 (enumerate z over R do

s2 (let (x = z.1, y = z.2)
s3 (Succ(x)← Succ(x) with y;
s4 NumPred(y)← NumPred(y) + 1);))
s5 let (MinEls = { })
s6 (enumerate v over S do

s7 if NumPred(v) = 0 then MinEls ← MinEls with v;
s8 while ¬(MinEls = { }) do
s9 let (a = arb(MinEls))
s10 (MinEls ← MinEls less a;
s11 result ← append(result , a);
s12 enumerate w over Succ(a) do
s13 (NumPred(w)← NumPred(w)− 1;
s14 if NumPred(w) = 0 then MinEls ← MinEls with w))))
s15 return result

Figure 3: Topological Sorting Program

exit

12986

1

0

131110

7

2

5

entry

Figure 4: Graph Representation of Topological Sorting Program

3 Semantics

Following the Cousots [3], we define the semantic domain Value as the collection of values
that program variables can take on; the semantic domain Id as the collection of program
variables; the semantic domain Exp as the collection of expressions over the identifiers and
operations; the semantic domain Environment as the mappings from Id to Value; and
the semantic domain State as the collection of flow-graph arc and environment pairs, called
states.

Value
def
= Integer + Boolean + Symbol + · · ·

Environment
def
= Id→ Value

State
def
= Arc× Environment

The semantic domain for representing the set-theoretic types are the hereditarily finite
sets [7]. The meaning of an expression in an environment is defined by the evaluation func-
tion val : Exp→ (Environment→ P(Value)). Since there is a non-deterministic operator
arb, val maps an expression and an environment to a set of values. For expression e and
environment r, the meaning of e in r is denoted by val [[e]]r. For most expressions, val is
straightforward. For example

val [[S with x]]r = {Sv ∪ {xv}|Sv ∈ val [[S]]r ∧ xv ∈ val [[x]]r}

and

val [[arbS]]r =
⋃

val [[S]]r

.
The semantics of programs is defined using a state transition function next : State→

P(State), which maps a state to a collection of states. For arc 〈m,n〉 and environment r,
next(〈m,n〉, r) is defined as follows.

• If n is an assignment node representing the statement v ← e, then the next state is in
{〈〈n, succ(n)〉, r ◦ (v → x)〉|x ∈ val [[e]]r)}. If n is an assignment node representing the
statement v(d) ← e, then the next state is in {〈〈n, succ(n)〉, r ◦ (v → val [[v]]r ◦ (x →
y))〉|x ∈ val [[d]]r ∧ y ∈ val [[e]]r}.

• If n is an if node representing the statement if q then s1 else s2, then the collection of
possible next states contains 〈〈n, succt(n)〉, r〉 if true ∈ val [[q]]r and 〈〈n, succf(n)〉, r〉 if
false ∈ val [[q]]r.

• If n is an endif node, then the next state is 〈〈n, succ(n)〉, r〉.

• If n is a let node representing the statement let (v1 = e1, · · · , vl = el) s, then the next
state is in {〈〈n, succ(n)〉, r ◦ (vi → xi)

l
i=1〉|

∧l
i=1 xi ∈ val [[ei]]r}.

• If n is an endlet node representing the statement let (v1 = e1, · · · , vl = el) s, then the
next state is 〈〈n, succ(n)〉, {v → r(v)|v ∈ domain(r) ∧ v 6∈ {v1, . . . , vl}}〉.

• If n is a test node representing the statement while q do s, then the collection of
possible next states contains 〈〈n, succt(n)〉, r〉 if true ∈ val [[q]]r and 〈〈n, succf(n)〉, r〉 if
false ∈ val [[q]]r.

• The semantics of the statement enumerate v over S do s is equivalent to that of the
let statement

let (Snew = S)
while ¬(Snew = { }) do

let (v = arb(Snew))
(s;
Snew ← Snew less v).

The static semantics of programs utilizes the notion of (concrete) contexts , which are

collections of environments, i.e. Context
def
= P(Environment). Boolean expression e is

true in concrete context c if val [[e]]r = {true} for every environment r in c. Every arc is
associated with a concrete context by the function cont : Arc→ Context.

An input environment for a function h is a mapping from h’s formal parameters to values.
The concrete context cin associated with the (unique) input arc entry consists of a collection
of input environments. The concrete context associated with an arc a, cont(a), is defined
as the collection of environments on a that can be obtained by applying the state transition
function next a finite number of times to the input environment:

{r|(∃i ≥ 0)(∃r ∈ cin)(〈a, r〉 ∈ next i(entry , r))}.

Finally, given an input environment r, the concrete semantics of a function function
declared as function h(v1:T1, . . . , vl:Tl) = st return e is {val [[e]]r′|r′ ∈ cont(exit)}.

4 Abstract Contexts

Abstract contexts are collections of atomic formulas over program variables of specific syn-
tactic forms called bound assertions, that are closed under logical entailment.

4.1 Bound Assertions

The language of bound assertions is a restriction of the boolean expression available in the
full programming language. There is one constant { }. The bound terms , are formed from
constants and variables using the following operations form the programming language:

x, x(y), x.1, x.2, rangeseq(x), domain(x), range(x), domainrel(x), rangerel(x), power(x)

for terms x and y of appropriate types. The bound assertions are atomic formulas of the
form

notempty(t), t1 = t2, t1 ∈ t2, t1 ⊆ t2

for bound terms t, t1, and t2 of appropriate types. We use SV to denote a collection of bound
assertions whose variables are exactly those in V .

The ∗-closure of a collection of bound assertions SV over program variables V , denoted
by S∗

V , is the collection of bound assertions over V that are logically-entailed from SV . SV

is consistent if bound assertion notempty({ }) is not in S∗

V . For a program whose program
variables are contained in the set V the abstract contexts are the sets S∗

V .

4.2 Correctness

Suppose that g is a program with program variables V . An abstract interpretation of g
consists of a lattice of abstract contexts, ordered by set inclusion with bottom { }, and an
interpretation function. It is correct if it approximates the static semantics or concrete
interpretation of g. According to the Cousots [3], this amounts to the construction of two
functions α and γ such that (α, γ) forms an adjoined pair of functions: α◦γ = identity and
γ ◦ α ⊒ identity. The abstraction function α maps concrete contexts to abstract contexts.
For every concrete context c, α(c) is the collection of bound assertions over V that are true
in every environment contained in c.

The concretization function γ maps abstract contexts to concrete contexts. For every
abstract context c, γ(c) is the collection of environments in which every bound assertion in
c is true.

Theorem 1 For abstract context c, α(γ(c)) = c. For concrete context c, c ⊆ γ(α(c)).

Proof Suppose that c is an abstract context. For every bound assertion p ∈ c and every
environment r ∈ γ(c), we have that r |= p. Hence p ∈ α(γ(c)).

Let p ∈ α(γ(c)). Then we have that for every model in which every formula of c is true,
p is also true. Thus c |= p. But since an abstract context is closed under entailment, p ∈ c.

Suppose that c is a concrete context. For every environment r ∈ c and every bound
assertion p ∈ α(c), we have that r |= p. Hence r ∈ γ(α(c)). ✷

5 Abstraction Functions

To perform abstract interpretation, we need abstraction functions that map set-theoretic
expressions and boolean expressions in our programming language to logically related bound
terms and bound assertions respectively. These abstraction functions can be viewed as
abstract interpretations of the corresponding expressions.

5.1 Canonicalization

The first step is to transform set-theoretic expressions and boolean expressions into logically
equivalent canonicalized forms that are closer in syntax to bound terms and bound assertions.
The canonicalization is achieved by applying the boolean simplification rules in, for example,
[8] and the following transformation rules repeatedly until no rules are applicable:

rangeseq([]) =⇒ {}
domain({| |}) =⇒ {}
range({| |}) =⇒ {}
notempty({ }) =⇒ false

notempty(t1 with t2) =⇒ true

notempty(t1 ∪ t2) =⇒ notempty(t1) ∨ notempty(t2)
¬(t = { }) =⇒ notempty(t)
t1 ∈ t2 =⇒ t1 ∈ rangeseq(t2) t2 has type seq(δ)
arb(t1) ∈ t2 =⇒ notempty(t1) ∧ t1 ⊆ t2
p[y(x)] =⇒ x ∈ domain(y) ∧ p(y(x)) y has type map(δ, σ)
t1 ∈ power(t2) =⇒ t1 ⊆ t2
(t1 ∪ t2) ⊆ t3 =⇒ (t1 ⊆ t3) ∧ (t2 ⊆ t3)
t1 ⊆ (t2 ∩ t3) =⇒ (t1 ⊆ t2) ∧ (t1 ⊆ t3)
t1 ∈ (t2 with t3) =⇒ (t1 ∈ t2) ∨ (t1 = t3)
t1 ∈ (t2 less t3) =⇒ (t1 ∈ t2) ∧ ¬(t1 = t3)
(t1 with t2) ⊆ t3 =⇒ (t1 ⊆ t3) ∧ (t2 ∈ t3)
t1 ⊆ (t2 less t3) =⇒ (t1 ⊆ t2) ∧ ¬(t3 ∈ t1)
rangeseq(append(t1, t2)) =⇒ rangeseq(t1) with t2
{v: v ∈ t} =⇒ t t has type set(δ)
{v: v ∈ t} =⇒ rangeseq(t) t has type seq(δ)
[v: v ∈ t] =⇒ t
domain(m ◦ (v → e)) =⇒ domain(m) with v
range(m ◦ (v → e)) =⇒ (range(m) less m(v)) with e
domain({|d→ r: d ∈ t|}) =⇒ t t has type set(δ)
domain({|d→ r: d ∈ t|}) =⇒ rangeseq(t) t has type seq(δ)
t1 = t2 =⇒ t1 ⊆ t2 ∧ t2 ⊆ t1 t1, t2 are sets

Most transformation rules are straightforward except the ones that involve partial oper-
ators arbitrary selection, and pointwise selection. The rules generate the necessary applica-
bility assertions, and preserve logical equivalence for defined terms.

5.2 Closure

Abstract context are collections of bound assertions closed under logical entailment. To
generate closed sets we introduce a deductive system and show it complete. The +-closure of

a collection of bound assertions SV over program variables V , denoted by S+
V , is the collection

of bound assertions over V that are inferred from SV by following rules of inference:
Tautolgy

{ } ⊆ x x ⊆ x

Empty Set
x ∈ y

notempty(y)
notempty(x), x ⊆ y

notempty(y)

Subset
x ⊆ y, y ⊆ x

x = y
x = y

x ⊆ y, y ⊆ x
x ⊆ y, y ⊆ z

x ⊆ z

Power Set
x ⊆ y

power(x) ⊆ power(y)
power(x) ⊆ power(y)

x ⊆ y

x ⊆ y
x ∈ power(y)

x ∈ power(y)
x ⊆ y

Binary Relation
x ∈ y

x.1 ∈ domainrel(y)
x ∈ y

x.2 ∈ rangerel(y)

Map Range
x ∈ domain(y)
y(x) ∈ range(y)

y(x) ∈ range(y)
x ∈ domain(y)

Equality
x = y, y = z

x = z
x = y

f(x) = f(y)
f any function in the language

These rules are a specialized theorem proving system for bound assertions. For any given

finite collection of program variables, by restricting the use of the axiom
x ⊆ y

power(x) ⊆ power(y)
in the obvious way, only a finite number of bound terms and hence bound assertions can
be formed. Therefore, inference in this system always terminates. It is also easy to verify
that our axiom system is sound. Theorem 2 shows that it is complete with respect to bound
assertions.

Theorem 2 If SV is consistent, then S+
V = S∗

V .

Proof (proof outline.) Suppose that there is a bound assertion p ∈ S∗

V but p 6∈ S+
V . We

construct a model of S+
V in which p is false. This is a contradiction because (S+

V)
∗ = S∗

V . To
construct the model we build a graph whose nodes are bound terms and whose edges denote

membership or subset relations, insuring that any relationship that is provable is explicitly
represented.

✷

5.3 Bound Term Abstraction

We define two abstraction functions that map set-theoretic expressions to logically-related
bound terms. Ab(t) maps a set-valued expression t to a collection of bound terms that
are subsets of t, while Ap(t) maps a set-valued expression t to a collection of bound terms
that are supersets of t. In other words, for every t1 ∈ Ab(t) and t2 ∈ Ap(t), t1 ⊆ t and
t ⊆ t2 are valid. If t is a bound term, then Ab(t) = Ap(t) = {t}. If t is not a bound term
and is not in one of the forms covered by the rules below, then the abstraction functions
return empty. Otherwise they are computed by the following rules, where Aw and As are
the bound-assertion abstraction functions to be defined in the next section:

Ab(t1 with t2)
def
= Ab(t1)

Ab(t1 ∪ t2)
def
= Ab(t1) ∪Ab(t2)

Ab(t1 ∩ t2)
def
= Ab(t1) ∩Ab(t2)

Ab({v: p})
def
= {x|{v ∈ x} ∈ As(p)}

Ab(rangeseq([v: p]))
def
= {x|{v ∈ x} ∈ As(p)}

Ab(domain({|d→ r: p|}))
def
= {x|{d ∈ x} ∈ As(p)}

Ab(range({|d→ r: p|}))
def
= {x|{r ∈ x} ∈ As(p)}

Ap(t1 less t2)
def
= Ap(t1)

Ap(t1 − t2)
def
= Ap(t1)

Ap(t1 ∪ t2)
def
= Ap(t1) ∩Ap(t2)

Ap(t1 ∩ t2)
def
= Ap(t1) ∪Ap(t2)

Ap({v: p})
def
= {x|(v ∈ x) ∈ A+

w(p)}

Ap(rangeseq([v: p]))
def
= {x|(v ∈ x) ∈ A+

w(p)}

Ap(domain({|d→ r: p|}))
def
= {x|(d ∈ x) ∈ A+

w(p)}

Ap(range({|d→ r: p|}))
def
= {x|(r ∈ x) ∈ A+

w(p)}

5.4 Bound Assertion Abstraction

We define two abstraction functions that map boolean expressions to logically related bound
assertions. Aw(p) maps a boolean expression p to a collection of bound assertions that are
logically weaker than p. In other words, for every q ∈ Aw(p), p → q is valid. Likewise,
As(p) maps a boolean expression p to a collection of collections of bound assertions that are

logically stronger than p. In other words, for every S ∈ As(p),
∧

q∈S q → p is valid. If p
is a bound assertion, then Aw(p) = {p} and As(p) = {{p}}. If p is not a bound assertion
and is not in one of the forms covered by the rules below, then the abstraction functions
return empty. Otherwise they are computed by the following rules, where Ab and Ap are
the bound-term abstraction functions defined in the previous section:

Aw(p ∧ q)
def
= Aw(p) ∪Aw(q)

Aw(p ∨ q)
def
= Aw(p) ∩Aw(q)

Aw(notempty(t))
def
= {notempty(x)|x ∈ Ap(t)}

Aw(x1 ∈ t2)
def
= {x1 ∈ x2|x2 ∈ Ap(t2)} x1 is a bound term

Aw(t1 ⊆ t2)
def
= {x1 ⊆ x2|x1 ∈ Ab(t1) ∧ x2 ∈ Ap(t2)}

Aw(t1 = arb(t2))
def
= Aw(notempty(t2) ∧ t1 ∈ t2)

Aw(t1 = first(t2))
def
= Aw(notempty(rangeseq(t2)) ∧ t1 ∈ rangeseq(t2))

Aw(t1 = t2(t3))
def
= Aw(t3 ∈ domain(t2) ∧ t1 ∈ range(t2)) t2 has type map(δ, σ)

Aw(t1 = t2)
def
= Aw(rangeseq(t1) ⊆ rangeseq(t2))
∪Aw(rangeseq(t2) ⊆ rangeseq(t1)) sequence equality

Aw(t1 = t2)
def
= Aw(domain(t1) ⊆ domain(t2))
∪Aw(domain(t2) ⊆ domain(t1))
∪Aw(range(t1) ⊆ range(t2))
∪Aw(range(t2) ⊆ range(t1)) map equality

As(p ∧ q)
def
= {x1 ∪ x2|x1 ∈ As(p) ∧ x2 ∈ As(q)}

As(p ∨ q)
def
= As(p) ∪As(q)

As(notempty(t))
def
= {{notempty(x)}|x ∈ Ab(t)}

As(x1 ∈ t2)
def
= {{x1 ∈ x2}|x2 ∈ Ab(t2)} x1 is a bound term

As(t1 ⊆ t2)
def
= {{x1 ⊆ x2}|x1 ∈ Ap(t1) ∧ x2 ∈ Ab(t2)}

5.5 Example

As an example from the topsort program of Figure 3, Aw applied to the canonicalized
boolean expression Succ = {|v → {}: v ∈ S|} is the union of Aw applied to the four boolean
expressions below (after canonicalization):

domain(Succ) ⊆ S
S ⊆ domain(Succ)
range(Succ) ⊆ range({|v → {}: v ∈ S|})
range({|v → {}: v ∈ S|}) ⊆ range(Succ)

The first two expressions are already in the form of bound assertions. Aw applied to the third
expression results in the bound assertion range(Succ) ⊆ power(S), because bound assertion

{ } ∈ power(S) is in A+
w(v ∈ S). Finally, no bound assertion is abstracted by Aw from the

last expression.

5.6 Correctness

Theorem 3 For every bound term t2 ∈ Ab(t1), t2 ⊆ t1 is valid. For every bound term

t2 ∈ Ap(t1), t1 ⊆ t2 is valid. For every bound assertion q ∈ Aw(p), p→ q is valid. For every

collection of bound assertions S ∈ As(p),
∧

q∈S q → p is valid.

Proof We prove by induction on the structure of set-theoretic and boolean expressions.
For bound term t ∈ Ab(t1 ∪ t2), we have that either t ∈ Ab(t1) or t ∈ Ab(t2) by definition.
But t ⊆ t1 or t ⊆ t2 is valid according to induction hypothesis on Ab. Hence t ⊆ t1 ∪ t2
is valid. For bound term t ∈ Ab({v: p}), we have that {v ∈ t} ∈ As(p) by definition, and
v ∈ t→ p is valid by induction hypothesis on As. So {v: v ∈ t} ⊆ {v: p} and hence t ⊆ {v: p}
are valid. Other cases for Ab and Ap are similar.

For bound assertion q ∈ Aw(t1 ⊆ t2), q must be of the form x1 ⊆ x2 by definition.
Furthermore, x1 ⊆ t1 and t2 ⊆ x2 are valid by induction hypothesis on Ab and Ap. It follows
that t1 ⊆ t2 → q is valid. For q ∈ Aw(t1 = arb(t2)), q ∈ Aw(notempty(t2)) or q ∈ Aw(t1 ∈ t2)
by definition. By induction hypothesis on Aw, notempty(t2) → q or t1 ∈ t2 → q is valid.
In other words, notempty(t2) ∧ t1 ∈ t2 → q is valid. Hence t1 = arb(t2) → q is valid since
t1 = arb(t2)→ notempty(t2) ∧ t1 ∈ t2 is valid. Other cases for Aw are similar.

For collection of bound assertions S ∈ As(p ∧ q), there exists S1 and S2 such that
S = S1 ∪ S2, S1 ∈ As(p), and S2 ∈ As(q). By induction hypothesis on As,

∧
r∈S1

r → p and∧
r∈S2

r → q are valid. Hence
∧

r∈S r → (p ∧ q) is valid. Other cases for As are similar. ✷

6 Interpretation Function

The abstract interpretation ℑmaps an abstract context c and a arc 〈m,n〉 to another abstract
context c′. Intuitively, if c is true before executing m, then c′ is true after executing m on the
arc 〈m,n〉. In other words, ℑ computes post-conditions of bound assertions over syntactic
constructs. If c′ = ∅, then the post-condition is true . If node n has only one outgoing arc,
then ℑ(c, n) stands for ℑ(c, 〈n, succ(n)〉). If node n represents statement s, then ℑ(c, s)
stands for ℑ(c, n). For notational convenience, ℑ(S, n) denotes ℑ(S+, n) for set of bound
assertions S, and ℑ(p, n) denotes ℑ({p}, n) for bound assertion p. For expression e, e[e′/v]
denotes the expression identical to e except that occurrences of v in e are replaced by e′.

6.1 Non-Looping Constructs

The abstract interpretation of non-looping constructs is specified by the rules below. The
interpretation of those syntactic constructs not listed is taken to be the identical mapping.

In the third and fourth rules, n denotes an if node with boolean expression q.

ℑ(c, v ← e)
def
= (S ∪ {p|p ∈ c ∧ (∃c′)(c′ ⊆ c ∧ c′ ∈ As(p[e/v]))})

+

S = { } if v occurs in e
S = Aw(v = e) otherwise

ℑ(c, v(d)← e)
def
= (S ∪ {p|p ∈ c ∧ (∃c′)(c′ ⊆ c ∧ c′ ∈ As(p[v ◦ (d→ e)/v]))})+

S = { } if v occurs in d or e
S = Aw(v(d) = e) otherwise

ℑ(c, 〈n, succt(n)〉)
def
= (c ∪ Aw(q))

+

ℑ(c, 〈n, succf(n)〉)
def
= (c ∪ Aw(¬q))

+

ℑ(c, let v1 = e1, · · · , vl = el)
def
= (c ∪ Aw(v1 = e1 ∧ · · · ∧ vl = el))

+

ℑ(c, if q then s1 else s2)
def
= ℑ((c ∪ Aw(q))

+, s1) ∩ ℑ((c ∪ Aw(¬q))
+, s2)

ℑ(c, (s1; . . . ; sl))
def
= ℑ(ℑ(c, s1), (s2; . . . ; sl))

ℑ(c, let (v1 = e1, · · · , vl = el) s)
def
= {p|p ∈ ℑ((c ∪ Aw(v1 = e1 ∧ · · · ∧ vl = el))

+, s)
∧p is free of v1, . . . , vl}

The interpretation for assignment statements needs further explanation. According to
Hoare Logic [6], p is true after v ← e if p[e/v] is true before the assignment. Assuming that
p is true before the assignment, then it is true after the assignment if p → p[e/v] is true
before the assignment. Given an abstract context c that is true before v ← e and p ∈ c, p is
true after the assignment if there exists c′ ⊆ c such that c′ ∈ As(p[e/v]).

6.2 Looping Constructs

The basic idea of the rules for looping constructs is as follows. The only way that a bound
assertion could be propagated through a looping construct is when it is an invariant of the
loop. Therefore the rules propagate exactly those bound assertions true on entry to the loop
that are verifiably loop invariants.

To verify that an abstract context c is an invariant of a loop with loop body s, we
need to show that if c is true before s then it is true after s. By the definition of abstract
interpretation, it is sufficient to show that ℑ(c, s) logically implies c.

An invariant of while statement while q do s is an abstract context Inv such that
Inv ⊆ ℑ((Inv ∪Aw(q))

+, s). Invariants of enumerate statements can be defined similarly.
The rules for abstract interpretation can be stated as follows. Let n be the test node of

while statement while q do s. For abstract context c, let Inv be the largest invariant of the
statement such that Inv ⊆ c:

ℑ(c, 〈n, succt(n)〉)
def
= (Inv ∪ Aw(q))

+

ℑ(c,while q do s)
def
= (Inv ∪ Aw(¬q))

+

The first rule for enumerate statements of the form enumerate v over S do s is the
same if we replace q by v ∈ S. The second rule is specified as follows, since v should not be
visible outside the statement:
ℑ(c, enumerate v over S do s)

def
= Inv

6.3 Example

For the topsort program of Figure 3, we compute the interpretation of a collection P of
bound assertions:

p1: domain(Succ) = S
p2: range(Succ) ⊆ power(S)
p3: domainrel(R) ⊆ S
p4: rangerel(R) ⊆ S

through the first enumerate statement s1:

s1: enumerate z over R do

s2: let (x = z.1, y = z.2)
s3: (Succ(x)← Succ(x) with y;
s4: NumPred(y)← NumPred(y) + 1);

In addition to the bound assertions in P , P ′ = (P ∪Aw(z ∈ R))+ contains bound assertions
z.1 ∈ S, z.2 ∈ S, Succ(z.1) ⊆ S, etc. Assuming that n is the let node of s2, we have that
ℑ(P ′, n) = (P ′ ∪ {x = z.1, y = z.2})+. Notice that

As(p1[Succ ◦ (x→ Succ(x) with y)/Succ])
= As(domain(Succ) with x ⊆ S ∧ S ⊆ domain(Succ) with x)
= {{domain(Succ) ⊆ S, x ∈ S} ∪ {S ⊆ domain(Succ)}}
= {{p1, x ∈ S}}

As(p2[Succ ◦ (x→ Succ(x) with y)/Succ])
= As(range(Succ) less Succ(x) ⊆ power(S) ∧ Succ(x) ⊆ S ∧ y ∈ S)
= {{range(Succ) ⊆ power(S)} ∪ {Succ(x) ⊆ S, y ∈ S}}
= {{p2, Succ(x) ⊆ S, y ∈ S}}

both of which contain subcollections of ℑ(P ′, n). Furthermore, p3, p4 are not affected by s3.
Hence P can be propagated through s3 and therefore s2. In other words, P ⊆ ℑ(P ′, s2). In
conclusion, all bound assertions in P are loop invariants of the enumerate statement s1 and
can be propagated through it: ℑ(P, s1) = P .

6.4 Correctness

Lemma 4 For abstract context c and arc a = 〈m,n〉, ℑ(c, a) is an abstract context.

Proof (proof outline.) ℑ has been defined so that it either explicitly closes the set using
the inference procedure, or it follows inductively from the fact that c is. ✷

Theorem 5 For abstract context c and arc a = 〈m,n〉, if c is true before executing m, then

abstract context ℑ(c, a) is true after executing m on arc a.

Proof We show by induction on the structure of m. Most rules for non-looping constructs
are self-explanatory. For the first assignment rule and every p in ℑ(c, v← e), if p ∈ Aw(v = e)
then p is true after the assignment because v = e is. Otherwise there exists c′ ⊆ c true before
the assignment such that c′ ∈ As(p[e/v]). Thus p[e/v] is true before the assignment according
to Theorem 3, and hence p is true after the assignment.

For looping constructs, we show the case with while statement s of the form while q do

s′. The case with enumerate statements is similar. Suppose that c is true before executing s,
and Inv is the largest invariant of s such that Inv ⊆ c. If Inv and q are true before executing
s′, then ℑ((Inv ∪ Aw(q))

+, s′) is true after executing s′ by induction hypothesis, and hence
Inv is true after executing s′ since Inv ⊆ ℑ((Inv ∪ Aw(q))

+, s′). Therefore ℑ(c, s) = Inv is
true after executing s since c is true before executing s and Inv ⊆ c. ✷

7 Bounds Analysis

Bounds Analysis is the process of determining bound assertions over program variables that
are true throughout the lifetime of the program variables involved, i.e., in all environments in
which these program variables are defined. We demonstrate the process of bounds analysis
using our topsort program. First we propagate bound assertions to the abstract contexts
associated with all program arcs. Assuming that the input abstract context consists of two
bound assertions:

domainrel(R) ⊆ S
rangerel(R) ⊆ S

After propagating through the let node of s0, the abstract context contains in addition the
following bound assertions:

rangeseq(result) ⊆ S
domain(Succ) = S
range(Succ) ⊆ power(S)
domain(NumPred) = S

The above collection of bound assertions can be propagated to the abstract context at the
outgoing arc of the first statement of s1, as demonstrated in Section 6.3. After propagating
them through the let node of s5, a new bound assertion MinEls ⊆ S is obtained. Lets
denote these bound assertions by P . Similar to Section 6.3 we can push P through the first
statement of s6. Notice that Aw(¬(MinEls = { })) = {notempty(MinEls)}. In order to
push P through s8, we have to compute ℑ((P ∪ {notempty(MinEls)})+, s9). After pushing
P ∪ {notempty(MinEls)} through the let node of s9, we get new bound assertions a ∈
MinEls , a ∈ S, etc. Only P ′ = P ∪ {a ∈ S} can be pushed through the first statement of
s10, which can then be pushed through s11.

Notice that Aw(w ∈ Succ(a)) = {a ∈ domain(Succ), w ∈ Succ(a)}, and w ∈ S is in
the closure of P ′ ∪ {a ∈ domain(Succ), w ∈ Succ(a)}. Similar to Section 6.4, we can push
P ′ through s13, hence ℑ(P ′, s12) = P ′. Finally, P can be pushed through s9, therefore
ℑ(P, s8) = P . All bound assertions in P not mentioning MinEls reach the outgoing arc of
s5, and hence the outgoing arc of the function. The abstract contexts associated with other
arcs can be computed in the similar way.

From the abstract interpretation, we conclude that S is a containment bound for MinEls ,
a domain bound and an access bound for Succ and NumPred , and a range bound for result .
In addition, power(S) is a range bound for Succ.

An efficient implementation of topsort requires that access to the maps NumPred and
Succ take constant time. This can be achieved by a data structure in which each element
of S is a heap-allocated record containing fields that hold the corresponding range values of
NumPred , and Succ. Elements of S appearing in MinEls , range(Succ), R, and result are
represented by a pointers to the record. This representation requires the assertions developed
by our analysis.

8 Conclusion

Bounds analysis, which is the process of determining symbolic bounds on program variables
that are true throughout their lifetime, is central to the successful compilation of programs in
very-high-level languages into efficient low-level implementation. We developed a technique
for the automatic analysis of bounds information for several important set-theoretic data
abstractions. Abstract interpretation is applied to associate a collection of bound assertions
with every program point, based on which a variety of bounds analysis can be performed
that are of interest to data structure selection. The abstract interpretation is kept compu-
tationally tractable by restricting ourselves to reasoning with bound assertions. Compared
with the approach in [12], our approach does not require that all plausible inclusion and
membership assertions be generated, and intra-function analysis is syntax-directed rather
than iteratively approximated. The technique is easily extensible to other high-level data
abstractions, and readily incorporable into compilers for very-high-level languages.

Acknowledgment

We thank Lee Blaine for our collaboration on the DTRE program transformation system,
which has been a source of inspiration for the ideas presented here.

References

[1] Ammarguellat, Z., Harrison III, W., “Automatic Recognition of Induction Variables
and Recurrence Relations by Abstract Interpretation”; Proceedings of the ACM SIG-

PLAN’90 Conference on Programming Language Design and Implementation, June
1990, 283-295.

[2] Cousot, P., “Semantic Foundations of Program Analysis”; Program Flow Analysis: The-

ory and Applications , S.S. Muchnick and N.D. Jones (editors), Prentice-Hall, 1981,
303-342.

[3] Cousot, P., Cousot, R., “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction of Approximations of Fixpoints”; Proceedings of
the Fourth ACM Symposium on Principles of Programming Languages , January 1977,
238-252.

[4] Goldberg, A., Kotik, G., “Knowledge-Based Programming: An Overview of Data
Structure Selection and Control Structure Refinement”; Technical Report KES.U.83.7,
Kestrel Institute, November 1983.

[5] Goldberg, A., Smith, D., “Towards a Performance Estimation Assistant”; Technical

Report KES.U.86.10, Kestrel Institute, November 1986.

[6] Hoare, C., “An Axiomatic Basis for Computer Programming”; Communications of the

ACM 12:10, 1969, 576-583.

[7] Krivine, J. Introduction to Axiomatic Set Theory , Reidel Publishing Co., Holland, 1971.

[8] Manna, Z., Waldinger, R., The Logical Basis for Computer Programming, Vol.2: De-

ductive Systems , Addison-Wesley, 1990.

[9] Abramsky, S., Hankin, C. (editors), Abstract Interpretation of Declarative Languages ,
Ellis Horwood Limited, 1987.

[10] Qian, X., Goldberg, A., “Bounds Analysis by Abstract Interpretation,” Kestrel Institute
Report, 1994.

[11] Schwartz, J., “Optimization of Very High Level Languages—I: Value Transmission and
Its Corollaries”; Computer Languages 1, 1975, 161-194.

[12] Schwartz, J., “Optimization of Very High Level Languages—II: Deducing Relationships
of Inclusion and Membership”; Computer Languages 1, 1975, 197-218.

