
KITP-93: An Automated Inference System

for Program Analysis

T. C. Wang and Allen Goldberg

Kestrel Institute

3260 Hillview Avenue
Palo Alto, CA 94304

KITP is an automated inference system developed for supporting the formal design,
verification, and validation of computer programs. It has evolved from an automated
verification system, RVF [5]. The latest version of KITP, KITP-93, features a typed
formulation and deduction, meta-level reasoning, and resolution-based proving enhanced
by conditional term-rewriting. This report describes KITP-93 from a user’s perspective.

1 Logical Framework

KITP-93 employs a classical higher-order language for a convenient interaction with the
user, and a typed clausal language for efficiently carrying out the inference. It accepts, in
general, any well-formed higher-order formula. Internally, all input axioms and lemmas
will be transformed into clausal normal form, and stored as rules in the knowledge-base
(KB) of the system. Only these KB rules will be directly accessed by the deductive
components of the system. For example, the user is allowed to input the following
statement into the KB,

1. ∀(s)(stringp(s) ∧ ∀(k: char)(k in s ⇒ (k ≥ #2 ∧ k ≤ #7)) ⇒ valid-key(s))

The system will transform the statement into the following three KB rules (k! is a
Skolem symbol).

1a. (k!(s) : char)/¬valid-key(s)/(s : seq(char))
1b. valid-key(s) ∨ ¬(#2 ≤ k!(s)) ∨ ¬(k!(s) ≤ #7)/(s : seq(char))
1c. valid-key(s) ∨ (k!(st) in s)/(s : seq(char))

The set of clausal normal forms is divided into two classes: typing rule and typed
clause. A typing rule has a form t: τ/H/R, which specifies that a term t has a type τ
if H and R holds. t: τ is called a type description (TD). R is a conjunction of TDs. H
is a conjunction of ordinary literals. For example, the above 1a is a typing rule, which
states that k!(s) is of type char if s is of type seq(char) and ¬valid-key(s) holds. A
typed clause has a form K/R, where K is an ordinary clause and R is a conjunction of
TDs, which means that K holds under R. The above 1b and 1c are typed clauses.

The inference supported by this framework is primarily predicate calculus with equality
and a restricted form of higher-order reasoning. It employs two kinds of resolution
(and paramodulation). One is kernel resolution, which is a resolution made by unifying



two typed clauses K1/R1 and K2/R2 upon literals of K1 and K2. Another is a type
resolution, which is a resolution made by unifying a TD of a typed clause and the head
of a typing rule. As will be described later, while kernel resolution is used to replace the
ordinary resolution in transforming an untyped proof procedure into a typed one, type
resolution is used for type-checking and type-deduction.

The ability to perform higher-order reasoning is due to a special feature of the clausal
language: predicate and function symbols can be denoted by higher-order logical vari-
ables. This feature is similar to the use of meta variables in Bundy’s meta-level inference
system [1]. For instance, the following KB rule contains a variable f which denotes an
arbitrary one-arity function.

image(f, s with e) = image(f, s) with f(e)/(f :map(α, β)) ∧ (s: set(α)) ∧ (e:α)

Despite the use of higher-order and typed variables, KITP-93 still employs an ordinary
Skolemization algorithm for the normalization and a form of first-order unification in
the deduction. It treats ∀(x: τ)φ and ∃(x: τ)φ as abbreviations of ∀(x)(x: τ ⇒ φ) and
∃(x)(x: τ ∧ φ), respectively. Its ability in higher-order theorem proving has not been
well developed. Its logical framework is essentially a predicate calculus expanded with
specialized notions and inference rules for type relations. There is no requirement that
every logical variable must be typed. In particular, this framework still assumes the set
of standard (untyped) equality axioms, and uses (untyped) paramodulation for equality-
oriented deduction.

2 Knowledge Base

KITP-93 contains a large KB (300+ rules), which is built on the data type theory for
integers, reals, characters, strings, sets, sequences, tuples and maps. Natural number is
introduced as a subtype (nat) of integer (int). A difficult problem in proving theorems
in a real programming environment is the possible search explosion caused by reasoning
about large KBs. To attack this problem, we have developed a KB management mecha-
nism for a controlled use of KB rules. KB rules are classified into different rule types with
specific constraints. Among them, a typing-rule rule will be used only for type-checking
and type-deduction, a reduction rule only for term-rewriting, a forward-implication rule
only by the forward inference procedure (FIP), and a backward-implication rule only by
the backward inference procedure (BIP). While an any-rule rule can be used by both
FIP and BIP, a manual-rule rule will be used nowhere unless it is explicitly claimed
by a particular inference task. In addition, the syntactical form of a rule may also add
some constraints to its use. For example, for a forward-implication rule, only the first
conjunct of its hypothesis is resolve or paramodulated. For a backward-implication, only
literals from the conclusion are resolved or paramodulated (this restriction is based on a
partial set of support strategy of hierarchical deduction [4]). Many KB rules have been
chosen as reduction rules in order to promote the use of term-rewriting. The user may
modify the KB or define their own KBs. The following are some examples of KB rules.

2. (x:nat)/(x ≥ 0)/(x: int) [typing-rule]
3. (x: int)/true/(x:nat) [typing-rule]
4. (x ≥ 0)/(x:nat) [any-rule]
5. stringp(x) = (x: seq(char)) [reduction]

2



6. (x: string) = (x: seq(char)) [reduction]
7. (concat(x, y): string)/true/(x: string) ∧ (y: string) [typing-rule]
8. (x in concat(p1, p2))or¬(x in p1)/(x: char) ∧ (p1: seq(char)) ∧ (p2: seq(char)) [any-rule]
9. (x in concat(p1, p2))or¬(x in p2)/(x: char) ∧ (p1: seq(char)) ∧ (p2: seq(char)) [any-rule]
10. (x in p1)or(x in p2)or¬(x in concat(P1, P2))/(x: char) ∧ (p1: seq(char)) ∧ (p2: seq(char)) [any-rule]
11. (y:α)/x = y/(x:α) [manual-rule]

3 Proof Objects

KITP-93 provides inference service through a language construct called a proof-object.
A proof-object is a record of classified information about an inference task. The basic
usage of a proof-object is to introduce a proof-obligation into the prover. But, it can also
be used to introduce user directions and to help incremental development of proofs. A
proof-object produced by a batch-mode verification/analysis procedure usually contains
no other information except a conjecture to be proved. However, the proof-obligation
given in a simple proof-object may not always be discharged automatically and efficiently.
Sometimes, a more complex proof-object needs to be used for helping the prover. Such
a proof-object can be created by the user from a scratch or by editing a proof-object
originally produced by an application procedure. For instance, in order to help prove
a conjecture h1 ∧ ... ∧ hn ⇒ C, one can decompose the hypothesis into a set of proof-
rules, h1, ..., hn, and annotate each of them with a specific rule type for the intended
use. Other informations that can be provided by proof-object include local bindings
(constans with a lexical scope of the object body), KB rules to be disabled, KB rules
to be enabled, additional lemmas, hypotheses, and additional conjectures to be proved,
specific values of control parameters, special proof-strategies, etc. The following table
contains an example of proof-object, which contains a conjecture, and two axioms about
valid-keymentioned in the conjecture, as well as some informations for helping the proof.

———————————————————————————————–
Proof valid-key-prop
local-bindings {valid-key}
proof-rules

valid-key-def-1 : forward-implication (definition)
∀(s)(valid-key(s) ⇒ stringp(s) ∧ ∀(k : char)(k in s ⇒ (k ≥ #2 ∧ k ≤ #7)))

valid-key-def-2 : backward-implication (definition)
∀(s)(stringp(s) ∧ ∀(k: char)(k in s ⇒ (k ≥ #2 ∧ ch ≤ #7)) ⇒ valid-key(s))

proof-conjectures

conjecture valid-key-prop [any-rule]
∀(a: string) ∧ ∀(b: string)(valid-key(a) ∧ valid-key(b)

⇒ valid-key(concat(a, b)))
forward-step-limit {1}
backward-step-limit {8}
max-induced-vars {1}

end-conjecture

———————————————————————————————–

Normally, all KB rules (except manual-rule rules) together with proof-rules given in a
proof-object will be used by the prover in proving a proof-conjecture of the object. To
direct the prover to use only a subset of KB rules, one can use the directives disabled
and enabled. For example, to prevent the prover from using other KB rules, except
rules 2 – 10 given earlier, one can insert in the above proof-object a line disabled {all},
and following it, a line enabled {2 – 10 }. However, one can not disable the linear
arithmetic theory that has been built in by KITP-93. This theory will be implicitly
used in proving all theorems (for example, it will be used to simplify lb+ t1 − lb to t1).

3



4 Typed Deduction with Conditional Term Rewriting

The prover of KITP-93 is constructed by incorporating natural deduction, term-rewriting,
partial evaluation, unit resolution and paramodulation, set of support strategy, and hi-
erarchical deduction. Except the use of typed deduction, the basic architecture of this
inference engine is similar to the prover documented in [5]. Here we discuss some of the
advanced features recently added to the prover, namely typed deduction enhanced by
conditional term rewriting.

Term rewriting is done in two distinct levels. The basic level uses existing facts to
verify the conditions of rewriting rules. It is applied exhaustively to each expression
input and generated by other inference procedures of the prover. The advanced level of
term rewriting is employed by BIP. For BIP, if the (instantiated) condition of a rewriting
rule, which is applied to the current goal G, can not be established immediately, then
a resolvent will be produced by combining the instantiated condition and the result
of rewriting G. Thus, the condition of a rewriting rule can be handled similarly as
the subgoals (literals) inherited from a backward-implication rule. Consider to apply a
rewriting rule p ⇒ if(p, q, r) = q/(p : boolean) to a goal, ¬evenp(if(n = 0, ans, foo(n−
1, n ∗ ans))) ∨ G1. If the (instantiated) condition p (i.e., n = 0) is not contained in the
current KB, then a candidate goal ¬evenp(ans) ∨ n 6= 0 ∨ G1 will be produced. Thus
the verification of the condition can be handled by BIP by including n 6= 0 as a subgoal.

The type restriction (TR) attached to a rewriting rule is verified by a type-checking
procedure. Given a TR R, the procedure will try to prove T |= ∃(R), where T is the
entire set of typing rules. For example, to apply a rewrite rule (x < y) = (x + 1 ≤
y)/(x : int) ∧ (y : int) to an expression t1 < t2, the expression will not be rewritten into
t1 + 1 ≤ t2 unless T |= (t1 : int) ∧ (t2 : int) has been proved (This proof will fail if < is
overloaded and t1 and/or t2 is of type real).

BIP is based on a typed hierarchical deduction, which differs from the untyped one
described in [4] mainly in two aspects. First, the typed deduction uses kernel resolution
to carry out the hierarchical deduction. If the current goal K/R is not a kernel-empty
clause (i.e. K 6= box), then the subgoal to be developed must be chosen from K, and the
rules to be used must chosen from the set of typed clauses, but not from T . Moreover,
for each resolvent K’/R’ produced by a kernel resolution, type-checking will be applied
immediately to the type restriction R’ in order to determine if R’ is satisfiable in T (in
the sense that the result of the type-deduction procedure described below is non-empty);
and discard the resolvent if it is not.

Second, if a goal is a kernel-empty clause box/R, then a type-deduction procedure
will be applied. The type-deduction procedure will deduce from R and T a set of
preconditions by which R is implied by T . It thus plays a role similar to Milner’s
type inference algorithm [3]. Each precondition must be a form H ∧ Q, where H
is a conjunction of ordinary literals and Q is a conjunction of variable TDs (such as
(x:nat) ∧ (y:α)). For example, assuming R is ((a + x):nat), and T contains (a: int),
(x + y: int)/true/(x: int) ∧ (y: int), and all typing rules given earlier, then H will be
a + x ≥ 0 and Q will be (x: int), and the resolvent obtained from box/R will be
¬(a + x ≥ 0)/(x: int).

Type-deduction is implemented by a varient of SLD-resolution extended to abductive
reasoning. Type-checking for rewriting and for BIP (and FIP) both is implemented by
a simplified version of type-deduction. A reasonable assumption to the structure of the

4



underlying typing theory has been made, which guarantees the finite termination and an
efficient implementation of these procedures. The results are cached for reuse. The deter-
ministic nature (and the efficiency) of the type-checking and type-deduction procedures
helps improve the performance of the prover. For example, in proving the conjecture
of the valid-key proof-object, the prover produced a kernel-empty resolvent (named by)
−23. With this resolvent, the type-deduction procedure deduced immediately one and
only one resolvent (named by) −24. However, if using the untyped deduction, the prover
must produce at least four resolvents (i.e. candidate goals) before this useful resolvent
can be deduced, because it needs to be deduced from the goal −23 by using four distinct
(typing) rules: 1a, 7, (a! : string), and (b! : string).

−23. box/(concat(a!, b!) : seq(char))(k!(concat(a!, b!)) : char)(a! : seq(char))(b! : seq(char))
−24 : valid-key(concat(a!, b!))/true

BIP can run both automatically and interactively. In the interactive mode, the user
can investigate the status of the procedure, trace the history of a derivation, select a
goal for the next deduction step, etc.

5 Conclusion

Our goal is to produce a powerful inference system which is capable of dealing with large
number of KB rules, and large number of conjectures with diverse features. To achieve
this goal, we have built KITP-93 on a logical framework which allows a convenient user
interaction and an easy incorporation of existing inference techniques. We have devel-
oped a management mechanism for a controlled use of KB rules, and a proof manager
for supporting a high-level interaction and incremental development of proofs. We have
designed an inference engine by incorporating a variety of efficient inference techniques
for raising the degree of automation. In conducting deeper reasoning, we emphasize
the role of term-rewriting, goal-oriented deduction, and decision procedures, as well as
interactive proof utilities

KITP-93 has been incorporated as an inference server by a number of formal devel-
opment/analysis environments. Significantly, it has been used successfully by a large
industrial user in control flow analysis of Ada procedures. A review of the use of KITP
for solving real world problem is included in [Jül93]. Besides proving theorems, other in-
ference services that KITP-93 can provide include disproving a non-theorem, simplifying
program fragmentss, answering some questions, and deducing antecedents.

References

1. Bundy, A and Sterlin, L. “Meta-level inference: Two applications,” J. Automatic

Reasoning, 4(1), 15-28 (1988).

2. Jüllig, R. K. “Applying formal software synthesis,” IEEE Software, 10(3), 11-22
(1993).

3. Milner, R. “A theory of type polymorphism in programming,” J. Comput. System

Science, 17, 348-375 (1978).

4. Wang, T. C., and Bledsoe, W. W. ‘Hierarchical Deduction’, J. Automatic Reasoning,

3(1), 35-71 (1987).

5. Wang, T. C., and Goldberg, A. “RVF: an automated formal verification system,”
Proceedings CADE-11 (ed. D. Kapur), LNCS 607, 735-739 (1992).

5


