
A Verified Architecture for Trustworthy
Remote Attestation

Grant Jurgensen

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Perry Alexander: Chairperson

Dr. Drew Davison

Dr. Matthew Moore

Date Defended

The Thesis Committee for Grant Jurgensen certifies

that this is the approved version of the following thesis:

A Verified Architecture for Trustworthy Remote Attestation

Committee:

Chairperson

Date Approved

i

Acknowledgements

This research was made possible in part due to funding from the Defense

Advanced Research Project Agency, as part of the Cyber Assured Systems Engi-

neering project.

I’d like to thank my fellow students, and particularly the participants of the

lambda reading group, for the invaluable discussions which greatly accelerated my

understanding of type theory and logic. Most of all, I’d like to thank my advisor,

Dr. Perry Alexander for his continuous guidance, spanning both my graduate

and undergraduate career. This thesis would not have been possible without his

support.

ii

Abstract

Remote attestation is a process where one digital system gathers and provides

evidence of its state and identity to an external system. For this process to be

successful, the external system must find the evidence convincingly trustworthy

within that context. Remote attestation is difficult to make trustworthy due to

the external system’s limited access to the attestation target. In contrast to local

attestation, the appraising system is unable to directly observe and oversee the

attestation target. In this work, we present a system architecture design and

prototype implementation that we claim enables trustworthy remote attestation.

Furthermore, we formally model the system within a temporal logic embedded

in the Coq theorem prover and present key theorems that strengthen this trust

argument.

iii

Contents

Abstract iii

Table of Contents iv

1 Introduction 1

1.1 Overview . 1

1.2 Architectural Considerations . 2

1.3 Attestation and Verification . 3

1.4 Contributions . 3

2 Background 5

2.1 The Copland Language . 5

2.2 Attestation Patterns . 7

3 The Architecture 12

3.1 Design . 12

3.2 Implementation . 16

3.2.1 The Copland AM . 16

3.2.2 Communication . 17

3.2.3 Measurement Procedures 20

3.2.4 Key Release . 20

3.3 Application . 22

4 Verification 25

4.1 Framework . 25

4.2 Implementation . 28

4.2.1 Logical Embedding . 28

iv

4.2.2 Coinductive Paths . 31

4.3 Model . 34

4.4 Automated Proof Search . 38

4.5 Theorems . 39

5 Conclusion 43

References 46

v

Chapter 1

Introduction

1.1 Overview

When one computer system communicates with another, it often wishes to be

assured of the foreign party’s trustworthiness. We say that system A finds system

B trustworthy if A possesses evidence indicating desirable properties of B’s state

and/or identity. This set of properties is context-specific, and is determined by A

based on the nature of the planned communication. This may include establishing

the authority or authenticity of system B’s components, or B’s autonomy with

respect to malicious third parties.

When system B constructs such evidence and presents it to A, we call this

process attestation. The dual process, appraisal, is accomplished by A when it

inspects the evidence and makes a trust judgment. Furthermore, we call the

system performing attestation the attester, and the system performing appraisal

the appraiser. In practice, a single system may alternate between the two roles.

Therefore, these descriptors apply only to particular contexts.

Attestation is a broadly defined process, subsuming many existing protocols

1

and interactions. Identity attestation in particular is ubiquitous among internet

protocols. For instance, the authentication performed during HTTPS may be

viewed as an attestation, where the server attests to its identity as the owner of the

domain, leveraging its digital certificate from a trusted certificate authority. In this

example, the end-user’s browser performs appraisal by verifying the authenticity

of the supplied certificate.

Unifying such a large and diverse class of protocols under the singular um-

brella of attestation allows us to consider their potential compositions, as well

as generalized notions of protocol negotiation, execution, and analysis. To this

end, we make use of Copland, a domain-specific language (DSL) for defining and

executing attestation protocols [5, 15–19].

Attestation and appraisal can be performed locally if both the attester and

appraiser are hosted by the same system. In such cases, the appraiser has the

advantage of pre-existing knowledge of the attesting system, and perhaps oppor-

tunities to directly oversee attestation. However, most cases of attestation involve

two physically separated parties, which we call remote attestation.

1.2 Architectural Considerations

The ability of a system to produce trustworthy attestation evidence is highly

dependent on its underlying components and architecture. A system which is

unable to strongly protect the integrity of its measurement procedures and the

confidentiality of its attestation-related credentials will produce weak evidence, in

that an appraiser will find the evidence largely unconvincing.

2

1.3 Attestation and Verification

Attestation establishes trust dynamically and in real-time. Furthermore, it

often does so based on inherently probabilistic and temporal methods. Alterna-

tively, one may establish trust in software through formal verification. In con-

trast to attestation, such trust is attained statically at development time, and

the proofs are highly trusted, depending only on the consistency of the logic and

the soundness of its implementation. Formal verification is therefore often seen as

producing stronger trust results. However, its full application is often impractical,

and reserved only for the most critical use cases.

Despite these disparate characteristics, the two approaches are not at odds.

Rather, they may be employed in tandem to maximal effect. Instead of attempting

to verify an entire system, one may instead verify a select subset of system com-

ponents constituting the attestation infrastructure. Generally such attestation

components are smaller than the components which they measure, and therefore

more amenable to formal verification. Furthermore, portable attestation compo-

nents would not need to be re-verified when transported to a new system.

1.4 Contributions

We present a formally verified system architecture designed to foster trust-

worthy attestation. This architecture is designed to accommodate a wide array

of existing systems, which may be integrated with relatively minimal effort. We

then present an embedding of a temporal logic into the general-purpose logic of

the Coq theorem prover. Finally, we present the formal model of the attestation

architecture, concluding with a survey of our proofs of temporal propositions over

3

said model.

4

Chapter 2

Background

2.1 The Copland Language

Copland is a DSL for attestation protocols, designed by the System-Level

Design Group (SDLG) at KU, along with partners at MITRE, JHUAPL, and

the NSA. The goal of Copland is to provide a standard means of defining larger

attestation protocols from measurement procedures and cryptographic primitives.

Copland protocols are evaluated in the context of some system state, and with

respect to some initial evidence. The full protocol grammar is shown in Figure 2.1,

and formal semantics have been ascribed in previous works [16,18].

t ::= a | @p [t] | t -> t | t s<s t | t s~s t

a ::= | ! | # | {} | name x

s ::= + | -

Figure 2.1. The Copland protocol language. The t rule defines a
top-level protocol term. p represents a place, formalized as a natural
number. name is an identifier corresponding to an external ASP. Fi-
nally, x is a list of ASP arguments.

5

The a rule of the grammar defines Copland’s atomic terms. Proceeding left-to-

right: the term is read “copy”, and acts as an identity over the input evidence;

the ! term performs a cryptographic signature over the evidence; the # term

hashes the evidence; {} returns empty evidence; and finally, an identifier followed

by arguments denotes an external measuring procedure, referred to as an attes-

tation service provider (ASP) [4]. The Copland language is extensible through

the addition of custom ASPs, and transforms this otherwise pure language into a

stateful one.

The t rule of the grammar defines top-level protocol terms. Once again, we

proceed left-to-right. The first term a describes the aforementioned atomic terms.

Next are compound terms. @p [t] signifies remote dispatch. The term t is sent

to and executed in place p. Places and remote dispatch will be explained by way

of example in Section 2.2. t -> t describes linear sequencing. The term to the

left of the arrow is executed first, and operates over the initial evidence. The

output evidence is then used as the input evidence for the term to the right of

the arrow. It may therefore be viewed as a composition operator. Next, the term

t s<s t describes another sequential operation which, like the arrow operator,

evaluates the right term strictly after the left. However, instead of piping the

input of the first term to the second, the initial evidence is optionally passed to

both subterms. The s rule defines whether the initial evidence is passed to the

correspond subterm. The first s corresponds to the first subterm, and the second

to the second subterm. + indicates that evidence is passed, whereas - gives the

respective subterm the empty evidence. Finally, the term t s~s t denotes parallel

branching. The evidence is passed as in the previous term, but there are no

constraints on the order of execution between the two subterms. The inclusion of

6

parallel branching does not make the language more expressive, but rather allows

for optimization as well as self-documentation when the order is insignificant.

In addition to the Copland protocol language, we also specify a Copland evi-

dence language. The details of Copland evidence have been specified in previous

work [15]. For our purposes, it suffices to know that both ASPs and the primitive

cryptographic operations produce byte strings, and that Copland evidence values

are a structured collection of byte strings reflecting the original protocol.

2.2 Attestation Patterns

While Copland allows for the specification of arbitrary attestation protocols, in

practice we see certain recurring archetypes emerge of common attestation idioms,

often associated with specific shapes of Copland protocols. A key identifying

feature of these idioms is the Copland notion of place.

A Copland place is an abstract location, typically associated with a Copland

Attestation Manager (AM) [15], a multi-purpose program capable of both attes-

tation and appraisal. An attestation protocol that is appraised in the same place

that it is evaluated is said to be an instance of local attestation. In contrast, a re-

mote attestation occurs when attestation is performed at one place, and appraised

in another.

In Copland, a top-level term is executed locally in the current place. However,

we may explicitly write a remote attestation protocol, using the @ term. For

instance, consider the following protocol:

@p1 [(hashFile "/etc/passwd ") -> !]

The bracketed sub-protocol requests a signed hash of the /etc/passwd file.

Rather than being executed locally, it is instead sent to and executed at the

7

remote place p1.

This protocol raises an important question: will place p1 really be willing to

give us a hash of this sensitive file? It certainly would not be surprising if such

an attestation request were rejected, especially if the requester is unknown to the

attester. However, it is also conceivable that the attester would agree to this

attestation. The hash operation does not reveal the files contents directly; it may

only confirm whether the file matches the appraiser’s expectations (by comparison

to the hash of an expected exact-equivalent file).

Beyond the attester’s concern of confidentiality is also its concern of expense.

Some attestation protocols may take considerable system resources, and an at-

tester is unlikely to submit to such attestations frequently. To address these

problems prior to attestation, the two parties first complete negotiation. We as-

sume here that all attestation protocols have been pre-agreed upon during the

negotiation phase.

Returning to the topic of places, consider this new protocol:

(hashFile "/etc/passwd ") +~+ @p1 [

(hashFile "/etc/passwd ") -> !

]

Here, we see an intermixing of local and remote attestation. The same file is

hashed at the local place as well as the remote place p1. Such a protocol could be

used by an appraiser to ensure that the two files are the same between the local

place and p1. Since the local and remote sub-protocols are logically independent,

we join the two with the parallel operator rather than the sequential operator.

Now consider an even more complex example:

(hashFile "/etc/passwd ") +~+ @p1 [

8

((hashFile "/etc/passwd ") -> !) +~+ @p2 [

(hashFile "/etc/passwd ") -> !

]

]

This extension performs the file hash yet again, at place p2, demonstrating

the ability in Copland to arbitrarily nest these remote dispatches. Note a subtle

property about the remote dispatch of the sub-protocol to place p2: the term is

included in the sub-protocol sent to p1, meaning that it will be the AM at p1 that

makes the dispatch to p2, not the local AM. This is often an important distinction.

Perhaps p2 does not trust the local place enough to agree to an attestation, but

will negotiate with p1. Or perhaps p2 is entirely inaccessible to the local place,

but reachable indirectly through p1.

It is not necessary that a place refer to an entire system. Sometimes, a system

will be partitioned into multiple layers, each considered its own place, and each

with its own AM. Such a system opens the door to layered attestation proto-

cols [5]. Layered attestation protocols make use of the nested dispatch idiom of

the previous example to chain and sequence evidence from across multiple layers.

Most often, layered systems are structured such that the lower layers are in-

trinsically more trustworthy than higher layers, owing to the reduced accessibility

and complexity of lower layers. To conduct a layered attestation, we make a typ-

ical attestation request to the target place, composed with a request to the layer

below it. The goal is for the more trustworthy layer to provide sufficient evidence

of the health of the target layer such that it effectively “extends” its trustwor-

thiness to the target place. This process can stretch across many layers, creating

arbitrarily long chains of trust [18].

9

For a concrete example of a layered system, consider a virtual machine monitor,

running a single virtual machine. We may choose to consider the virtual machine

and its monitor to be two distinct places. Since the virtual machine is logically

contained within the monitor, we say that the two places form two layers of the

system, with the monitor being the lower of the two layers. If we so desired, we

could further subdivide the system, separating the guest operating system’s kernel

and user space into distinct layers.

The final attestation pattern to note is not a matter of where an attestation

occurs, as in the previous schemas, but when. For transient interactions, a sin-

gle attestation may be sufficient. However, for prolonged interactions, we must

consider a strategy of periodic attestation. In any adequately complex system, at-

testation is necessarily limited to probabilistic notions of trust. Even if we assume

a given attestation protocol is perfectly descriptive of the system at the specific

moment of its execution, it cannot be expected to provide sufficient information

for arbitrary future states. By the time an appraiser receives attestation evidence,

the moment it was collected has already expired, and the underlying state of the

attestation target has possibly already diverged from the evidence which is now

being inspected. An appraiser will build trust with this evidence all the same,

based on the assumption that a system is unlikely to diverge significantly over

short durations. However, as more time elapses since the evidence was gathered,

this trust slowly wanes, as the probability of a meaningful divergence increases.

An appraiser is motivated to request as strong and as frequent attestations as

it is permitted in order to maximize its trust. The attester on the other hand will

prefer to minimize its work obligation. This has a specific manifestation within

layered attestation. Most often, a deep attestation, that is, an attestation request

10

over multiple layers of the system, will be stronger but more resource-intensive.

In contrast, a shallow attestation is weaker, but also cheaper.

The competing interests of the two parties are once again resolved by compro-

mise in the pre-attestation negotiation phase. In the context of layered attestation,

the systems will likely agree to perform relatively frequent shallow attestations,

and less frequent deep attestations.

11

Chapter 3

The Architecture

We present an architecture, referred to hereafter as the “attestation architec-

ture”, that enables trustworthy remote attestation. The attestation architecture

is intended to be a flexible and generic template into which an existing system

may be integrated and thereby augmented with powerful attestation capabilities.

In this section, we discuss the high-level design of the architecture, the prototype

implementation, and finally, a specific application of the attestation architecture

within the DARPA Cyber Assured Systems Engineering (CASE) project.

3.1 Design

Before an appraiser can make a trust decision based on attestation evidence, it

must determine the extent that it trusts the evidence itself. The appraiser may be

convinced of the integrity of the evidence based on the Copland protocol, coupled

with known properties of the target system’s architecture.

There are several possibilities the appraiser must consider. First is whether the

provided evidence was collected from the genuine attestation target. To this end,

12

most Copland protocols will terminate each sub-protocol at a given place with the

signature operator !, and use a nonce as the initial evidence in order to ensure

evidence freshness. Under such protocols, evidence can be totally identified with

the target place, up to confidentiality of the private key. Assuming well-written

protocols with optimally chosen signature points, the problem is reduced to the

confidentiality of the foreign AMs’ private keys, as determined by the respective

system architectures.

Beyond the confidentiality of private keys, the appraiser must consider the in-

tegrity of the measurements. A measurement might be conducted by the genuine

attestation target, but the measurement procedure tampered with by a sufficiently

privileged malicious actor on the system. A highly privileged actor could conceiv-

ably circumvent detection even without affecting the measurement procedures

actively, but rather by obscuring its presence totally to conventional observation.

For instance, if an attacker managed to install a rootkit onto the attestation tar-

get, said rootkit could certainly hide itself from any measurement conducted from

within the compromised kernel.

This leads us to our second concern: separation. We would like to ensure that

our measurement functionality is adequately separated and independent of any

vulnerable components. A very strong architectural candidate would therefore be

a separation kernel, a specialized operating system kernel designed to maximize

our assurance of separation [20]. However, contrary to most separation kernels,

we don’t want every component completely isolated, since it is important that

each measurer retains one-way access to the measurement target.

Certainly if we developed a system from the ground up on such a kernel,

we would have a very strong foundation to perform trusted attestation. However,

13

such an architecture would not accommodate the vast majority of existing systems

that are overwhelmingly developed on top of general-purpose operating systems,

and would need to each be painstakingly ported. Instead, we propose a generic

solution where many existing systems may be integrated.

To balance these concerns, we present a stratified architecture supporting lay-

ered attestation. The foundation of our architecture is the seL4 microkernel [10].

seL4 is compelling for our high-trust argument for two reasons. First, seL4 makes

extensive use of formal verification, including strong separation semantics and a

proof that the kernel may operate as a separation kernel under proper configura-

tion [13]. Second, seL4 gives us the freedom to stray from strict separation when

need be, in order to give measurers one-way access to other components.

We use the CAmkES framework [12] to organize our seL4 architecture into log-

ical components. CAmkES components, as well as their communication channels,

are statically defined. All components are strongly separated from one another.

Likewise, communication channels are strongly separated from all components

which were not granted access under the static configuration. seL4 enforces this

separation by way of virtual memory management.

One CAmkES component within the seL4 layer is a virtual machine manager,

hosting a Linux virtual machine. This Linux environment constitutes our second

layer. The intention is that existing Linux systems may be moved to this virtual

machine with relative ease, especially in comparison to the prospect of porting a

full system to a different operating system.

Now, we build out the attestation capabilities of the system by augmenting

each layer with a Copland AM. To differentiate the two, we refer to the Linux AM

running within the VM as the UserAM, and the AM running at the seL4 layer

14

as a CAmkES component as the PlatformAM. This architecture is portrayed in

Figure 3.1.

Linux VM

Target

UserAM Remote AM

seL4

PlatformAM

Figure 3.1. The attestation architecture. Red dashed arrows rep-
resent measurement. Blue arrows represent incoming Copland attes-
tation requests. Green arrows represent outgoing Copland evidence.

The two AMs each have a distinct role in the system owing to their respective

positions. The UserAM can perform a much wider array of measurements and

more easily, because it shares the Linux environment with the attestation target,

and therefore has access to the typical Linux interfaces to inspect the filesystem,

other processes, etc. However, it is also also vastly more prone to corruption, again

owing to its position within the corruptible Linux environment, where a malicious

actor may conceivably attain equal or greater privileges. The PlatformAM, on

the other hand, is strongly separated from the virtualized Linux environment, and

significantly less corruptible. However, it is more difficult for the PlatformAM to

conduct fine-grained measurements from outside the Linux kernel. While it has a

complete view of the guest kernel space, it would require considerable effort and

15

re-engineering to replicate much of what is accomplished trivially by the UserAM.

As discussed in Section 2.2, a common idiom emerges from such an archi-

tecture, whereby the attester will agree with the appraiser to perform frequent

shallow attestations and less frequent deep attestations. The precise periods are

determined in the negotiation process according to the resource cost and the

strength of the attestation protocols.

3.2 Implementation

We have developed a prototype implementation for much of the attestation

architecture presented here. This includes both the the CAmkES configuration

which defines the logical components and their communication channels, as well

as the development of the Copland AM for both CAmkES and Linux. We have

developed a collection of basic measurement procedures for the AM, and we have

also defined a start-up procedure to safely release private attestation keys.

3.2.1 The Copland AM

A number of Copland AMs have been developed. We refer here to one partic-

ular implementation [9] written in CakeML and C, based on the reference imple-

mentation specified in Coq [15].

CakeML is a near-subset of Standard ML with a formally verified compiler [11].

Therefore, it brings us closer to our goal of a formally verified attestation solution.

The CakeML standard library is currently immature compared to mainstream

languages. However, the language includes a foreign function interface (FFI) to

C that we use to add arbitrary interfaces to any necessary system calls. We also

use the FFI to re-use C libraries that would be prohibitive to reproduce within

16

CakeML directly. For instance, we include the formally verified cryptographic

library HACL* [2], written in C, through the CakeML FFI.

Beyond the verification benefits of CakeML, the language is also impressively

portable. Its only dependency is the standard C library. There exists a companion

to the standard library with OS-specific FFI definitions, but these definitions

may easily be ported for new environments. Despite being a garbage-collected

language, CakeML does not require a separate runtime environment. Instead, the

garbage-collection procedure is compiled into each binary. CakeML programs may

be compiled into a static binary, and due to its high interoperability with C, is

often usable in any context C is used, although it may require some custom shim

code.

Due to this portability, the same core AM is used for both the UserAM and the

PlatformAM, the former living in a Linux environment, and the latter at the seL4

level as a CAmkES component. The core Copland interpreter, due to its purity,

is identical between the two. We need only switch out the OS-specific wrappers

to standard system calls, or disable some features entirely if not supported by the

target environment.

3.2.2 Communication

The UserAM and PlatformAM must communicate in order to support layered

attestation. The UserAM is capable of typical network communication, listening

for Copland attestation requests on a predetermined port. The PlatformAM,

however, has no network capabilities. The seL4 environment in which it operates

is feature-sparse, and does not offer networking functionality out-of-the-box. In

fact, this sparsity may be considered a feature in and of itself. The intention is for

17

the PlatformAM to be as strongly separated as possible from the external world

to avoid malicious interference. The PlatformAM is therefore only accessible via

the UserAM, through a well-defined, static communication channel spanning the

VM boundary.

The limited accessibility of the PlatformAM raises the question of whether we

are concerned with denial-of-service attacks against the attestation infrastructure.

For instance, a compromised UserAM may choose not to forward attestation pro-

tocols to the PlatformAM. Ultimately, we do not to prioritize resilience to this

class of attack. The chief goal of attestation is to provide trustworthy evidence.

Denial-of-service attacks do not threaten the integrity of evidence, only its avail-

ability. Therefore, it does not threaten to provoke a false positive in appraisal. If

the attestation process is interrupted by some denial-of-service attack and unable

to complete, than the appraiser may safely consider the target untrustworthy until

service is restored.

Communication between the PlatformAM and the UserAM occurs over a

CAmkES “dataport”, a static communication channel consisting of shared mem-

ory. Access to this shared memory is configured at compile-time, and given only

to the two components. Memory access is enforced using seL4’s usual separation

methods, based on virtual memory management. The communication channel is

further augmented with “events”, passive general-purpose signals, used to indi-

cate when one party has finished writing or consuming data. The dataport is

shared between the PlatformAM and the seL4 virtual machine manager (VMM).

The VMM, in turn, provides an interface for the guest machine to interact with

this dataport. The guest Linux image is extended at compile-time with a custom

kernel module that will expose a file-like object to the system, representing the

18

dataport. Internally, it handles all read/write calls to the dataport by making the

corresponding hypercalls to coordinate with the VMM.

At the seL4 level, dataports are statically defined entities, where the vari-

ous components have statically defined privileges. Thus, we know that only the

PlatformAM and the VMM have read and write access to their shared dataport.

However, once it is mapped into the Linux environment, we are reliant on Linux’s

dynamic privilege control mechanisms over files to retain the UserAM’s exclusive

access to the communication channel. To this end, the dataport file is assigned to

a user and group by the name of “useram”. We modify access controls over the

file to allow just read and write access from the owner, and we assign no access to

non-owners. Finally, the useram user is not a regular user; one cannot log in to

the system as “useram”. Instead, the UserAM application is owned by useram,

and using the set-user-id functionality, is always run with the privileges of useram.

This is a common access control idiom used by Linux daemons. This method

endows the executable with certain privileges (in this case, exclusive access to the

dataport file), but no others1. This satisfies the “principle of least privilege”.

Of course, this strategy is not full-proof. Any adversary which achieves root

privileges may freely modify the access controls. However, this would mean the

Linux VM was deeply compromised. Therefore, a deep attestation performing a

sufficiently strong measurement of the Linux guest would observe this corruption,

and appraisal of the attestation evidence would ultimately fail.

1The exact privileges of the UserAM will vary depending on the attestation requirements of
the system. For instance, some measurements may require considerable privileges, such as the
ability to view another process’s memory space.

19

3.2.3 Measurement Procedures

The primary contribution of this work is in the design of the broader attes-

tation architecture. However, some concrete measurement procedures have been

written for the Copland AM. In particular, the UserAM has several measurers at

its disposal. The most basic is the hashing of files and directories. Such a measure-

ment might be useful to an appraiser who wishes to ensure that the attestation

target has trusted binaries, libraries, or configuration files. In the case that we

wish to dynamically measure a running process, we include a measurement pro-

cedure to read the process’s address space, and hash the section we expect to be

static. The measurement is comparatively brittle, and considerably more compli-

cated than the static measurer. It would require further testing before real-world

use.

At the moment, no significant measurers have been developed for the Platfor-

mAM. However, there are several promising directions for future measurement.

One particularly ambitious route would be the development of a full kernel in-

tegrity measurer, intending to detect modifications to the linux kernel obscured

to the UserAM. More practical would be the inclusion of an existing measurer.

While not publicly available, the Linux Kernel Integrity Measurer (LKIM) [14],

developed in joint by APL and the NSA, would be one such candidate.

3.2.4 Key Release

Each AM possesses a private key it uses to endorse evidence collected during

Copland protocol execution. The semantics of Copland makes the simplifying

assumption that each AM has exclusive access to its private key to strongly iden-

tify evidence bundles it generates. However, in our concrete design the AMs do

20

not begin execution with possession of said keys. Instead, keys are strategically

released during the start-up process to avoid starting a compromised AM and

thereby leaking its key.

We assume that the system hardware supports some notion of a hardware-

derived root of trust. For the purpose of the prototype implementation, this

feature is stubbed-out. In real systems, there exist many different approaches

to establishing a root of trust from the hardware, for example using a Trusted

PlatformModule (TPM), protected SRAM, physical unclonable functions (PUFs),

or ARM TrustZone.

In order to abstract this notion of a device-specific anchor of trust, we assume

that the boot process leaves some token in memory, visible to the PlatformAM,

that represents an endorsement from the root of trust of the boot image. That is,

the token reflects the image that was booted, and is verifiably derived from the

root of trust.

Key release is performed in a “bottom-up” manner. For this system, the

PlatformAM is the lowest-layered AM, and so its key will be released first. It

begins execution with an encrypted key that it decrypts with the root of trust

token. As a result, if an improper seL4 image was booted, potentially containing

a compromised PlatformAM, then the root of trust token would be “incorrect”.

If the potentially compromised PlatformAM then attempts to release its key, it

would fail because it decrypts its encrypted key with the wrong root of trust token.

Next, the PlatformAM prepares to release the UserAM’s key. Before it does

so, it must first measure the UserAM and the encompassing Linux environment to

be satisfied of their authenticity and integrity. These measurements may be the

same Copland protocols an appraiser might request from the attestation manager

21

at runtime. Once the PlatformAM is confident that the UserAM is trustworthy, it

releases its key by providing it with a decryption key. This decryption key is itself

derived from the PlatformAM’s private key, in order to ensure that a compromised

PlatformAM cannot release the UserAM’s key.

Once the attestation manager’s keys have been released they may start their

normal procedures, waiting and listening for an appraiser’s request. This key-

release strategy is not expected to protect fully from leaks. Rather, it is intended

to avoid leaks specifically at start-up. Over the course of the system’s runtime,

the system may become compromised, and a key leaked. In particular, the Linux

environment is considered susceptible to runtime corruption and key leak.

The PlatformAM is considered largely immune from such leaks as a conse-

quence of its strong separation. Furthermore, in the case of runtime credential

theft within the Linux environment, we expect to be able to detect that a key

was leaked, provided the PlatformAM conducts sufficiently strong and frequent

measurements. In contrast, if a key is leaked during start-up, it is not necessarily

possible for a component to detect the leak and publish the necessary revoca-

tion. Therefore, the prevention of key leaks during start-up is a crucial act of

prophylaxis.

3.3 Application

As part of the DARPA CASE project, we had the opportunity to apply our

architecture to existing systems, adding both attestation and appraisal capabil-

ities. This experiment provided valuable insight into the practical experience of

integrating a system into our architecture, as well as affording the opportunity to

evaluate the strength of our resulting attestation capabilities.

22

The CASE project explores a scenario featuring two parties: an unmanned

aerial vehicle (UAV), and a ground station. The two establish a remote connection,

and the UAV flies in a path established by waypoints transmitted from the ground

station. In their original forms, both systems run Linux natively, and both possess

a regular Linux executable implementing the relevant flight coordination behavior.

This original pair of interacting systems is depicted in Figure 3.2.

Linux

UxAS

Linux

Flight Planner
Commands

Figure 3.2. Original ground station (left) and UAV (right) archi-
tectures.

The UAV should only follow waypoints provided by a trustworthy ground sta-

tion. To assure the UAV that the ground station is trustworthy, we add attestation

capabilities to the ground station. In order to act on this evidence, the UAV must

be modified to accommodate an appraisal process.

The ground station is modified in accordance to the previously described at-

testation architecture, which necessitates a move to seL4 and the inclusion of the

two AMs. The UAV is modified to incorporate an AM, responsible for requesting

attestation from the ground station and appraising the results. In order to avoid

having to modify the flight planner software, we introduce a filter which inter-

cepts flight-related communication. It then coordinates with the AM, and only

forwards messages to the flight planner which are associated with ground stations

which have recently passed appraisal. This filter provides a general solution to

attestation scenarios which aim to restrict communication to legacy components

to successfully appraised targets. Finally, the system is moved to seL4 to guaran-

23

tee separation between the filter/AM and the legacy flight planner software. Both

the attestation-hardened ground station and UAV are depicted in Figure 3.3.

Linux VM

UxAS

UserAM

seL4

AM

Filter
Commands Flight

Planner

Linux VM

Appraisal Place

seL4

PlatformAM

Figure 3.3. Hardened ground station (left) and hardened UAV
(right). As in Figure 3.1, red dashed arrows represent measure-
ment, blue arrows represent incoming Copland attestation requests,
and green arrows represent outgoing Copland evidence.

The hardened UAV architecture has been fully implemented, and the hard-

ened ground station has been partially implemented. There exists a prototype for

the general attestation architecture [6], however the groundstation software has

not been incorporated. The ground station was instead augmented with just the

UserAM. Since the PlatformAM does not currently possess meaningful measure-

ment capabilities, there were no substantial attestation benefits of applying the

full attestation architecture to the ground station.

24

Chapter 4

Verification

4.1 Framework

The structure of the attestation architecture and the interactions of its com-

ponents are carefully designed to ensure attestation is reliable and resilient to

malicious interference. The goal of our verification is to formalize some subset of

these properties that together establishes the trustworthiness of attestation. These

properties are proven with respect to a high-level formal model of the attestation

architecture.

In particular, we are concerned about the effects of malicious interference which

can occur at arbitrary points during execution. To represent such possibilities,

we use a branching-time logic to capture all such event traces and consider the

effects on attestation.

Computation tree logic (CTL) is a temporal logic first proposed by Clarke and

Emerson [3], commonly used in model checkers. CTL defines a class of formulas

whose validity are considered with respect to a particular state and state transition

relation. We therefore model the attestation architecture as a state transition

25

system, and use CTL to make assertions over the model.

Using CTL, we prove judgments of the form R @s ⊨ ϕ1, called an entailment.

Here, R is the state transition system, represented concretely as a left-total binary

relation over the state type. Next, s is the current state. Finally, ϕ is a CTL

proposition, also called a CTL formula. We may read this statement as “temporal

proposition ϕ holds at state s, under the transition relation R”.

CTL propositions may make assertions over the current state s, or they may

make statements over entire paths or path segments originating from s. A path is

an infinite transition sequence obeying the relation R. It has a starting state, but

no final state. A path segment is also a transition sequence, but finite. That is,

it has both an initial and final state. Note that, since R is left-total, every path

segment is necessarily a prefix of some path.

A CTL proposition ϕ is constructed from the grammar in figure 4.1.

ϕ ::=⊥ | ⊤ | !ϕ | ϕ && ϕ | ϕ || ϕ | ϕ _ ϕ | ϕ] ϕ | JpK

| AX ϕ | EX ϕ | AF ϕ | EF ϕ | AG ϕ | EG ϕ

| A[ϕ U ϕ] | E[ϕ U ϕ] | A[ϕ W ϕ] | E[ϕ W ϕ]

Figure 4.1. The CTL proposition grammar. Here, p represents a
predicate over states.

Our formal CTL semantics are specified by our Coq embedding [8]. Informally,

we may understand CTL formulas as follows.

The first row of the CTL grammar is largely made up of familiar propositional

logic constants and connectives and are assigned their typical meanings. Reading

1We adopt a slightly altered set of CTL notations as compared to traditional presentations.
This alteration is done to allow embedding into the Coq notation system and to avoid conflicts
with its existing syntax. Both the notation for entailment as well as many of the symbols in
Figure 4.1 have been modified.

26

left-to-right, we define the false constant, the true constant, negation, conjunction,

disjunction, implication, the biconditional, and finally a lifting operator which

promotes arbitrary state predicates into CTL propositions. This state predicate

is interpreted as applying to the current state.

The next two rows define temporal quantifiers that specify particular states

and paths over which their subformulas apply. Each features two letters, and

can be understood by combining the informal meaning of the first letter with the

second. The first letter describes the paths under consideration, always originating

from the current state. “A” may be read “for all paths”, and “E” as “there exists

some path”. The second letter specifies the state or states in said path on which

the proposition holds. “X” is short for “next”, and refers to the state immediately

following the current. “G” stands for “global”, and refers to all states in the path.

“F” stands for “finally”, and asserts that the proposition holds for some state on

the path. “U”, short for “until”, asserts that the first proposition holds until the

second holds, and that the second will eventually hold. Finally, “W”, sometimes

called “unless” or “weak until”, states that the first proposition holds until the

second holds, but the second need not ever hold.

For instance, we could rigidly interpret the entailment R @s ⊨ EG ϕ according

to the above rules as “there exists some path from s under transition relation R

such that ϕ always holds”. More simply, we may interpret the entailment as

“it is possible ϕ holds forever”, with an implicit understanding of the transition

relation and current state which form the context of our statement. Similarly,

R @s ⊨ AF ϕ is interpreted rather rigidly as “for any path from s under R, there

exists some state such that ϕ holds”, or more simply as “ϕ will hold at some

point”.

27

4.2 Implementation

CTL is most commonly used in model checkers, that attempt to verify proper-

ties automatically and without user input, based on internal decision procedures

and heuristics. In contrast, interactive theorem provers are user-guided. Formal

proof objects are generally built incrementally using tactics, composable proce-

dures which solve the current goal, or reduce it to further subgoals. Theorem

provers therefore put more burden on the end user to guide a proof, however they

also enable the user to prove arbitrarily complex propositions, without regard for

any internal proof-search limitations.

In this work, we elect to use the Coq theorem prover. Coq presents a general-

purpose intuitionistic logic, which we extend axiomatically into a classical logic

by adding the law of the excluded middle, as well as other commonly accepted

axioms such as functional and propositional extensionality. This acts as the host

logic where we embed CTL.

4.2.1 Logical Embedding

When embedding a particular logic into a theorem prover, one has the choice

of developing either a shallow or a deep embedding. In a deep embedding, one

would define the embedded logic constructs as a set of uninterpreted symbols.

Then, one defines the entailment operator which determines which formulas are

derivable.

Deep embeddings are appealing in that embedded constructs are only mean-

ingful in the context of their entailments, and therefore there is no confusion

between propositions of the embedded logic and those of the host logic. However,

they may be prohibitively complicated in their entailment definitions.

28

In a shallow embedding, the distinction between the embedded and host logic

is greatly reduced. Propositions in the embedded language are defined by direct

mappings to propositions in the host language. Since embedded propositions then

carry their meaning in their definitions, the definition of entailment is largely

trivialized.

In this case, we elect to shallow embed CTL into Coq. Initial efforts focused

on a deep embedded implementation. However, this approach proved impractical.

The obvious relational definition of entailment was unsound and rejected by Coq

due to technical issues involving unavoidable positive occurrences in the inductive

definition of negation and implication entailments [1]. A functional definition of

entailment was possible, but struggled against Coq’s requirement that recursion be

obvious terminating - that is, that all recursive applications occur over structurally

smaller values. This led to complicated and unintuitive definitions of the CTL

constructs.

Not only is the shallow embedding easier to work with, we also believe that

the disadvantages of a shallow embedding are largely mitigated in practice by

obscuring the underlying representation, and presenting a separate set of theorems

and proof tactics through which to reason about CTL constructs.

We define the type of CTL propositions, which we call tprop, short for “tem-

poral proposition”, parameterized by the state type.

Definition tprop state :=

∀ R: relation state,

transition R →
state →
Prop.

In the definition above, transition is a predicate which asserts that the binary

29

relation R acts as a transition relation, in the sense that it is left-total. With this

representation of CTL propositions, the definition of entailment becomes trivial:

Definition tentails {state} (R: relation state) {t : transition R}
(s : state) (P : tprop state) :=

P R t s .

Our entailment definition just applies the parameters to our CTL proposition,

exploiting its shallow representation. Notice the two arguments surrounded by

curly braces in the definition of tentails. These indicate that the arguments are

implicit. We will not explicitly instantiate tentails with these values. Rather, Coq

will automatically infer their values. The first implicit argument, state: Type, is

inferred from the other arguments. The second implicit argument, t : transition R,

is inferred using Coq’s “typeclass” functionality, inspired by the Haskell feature

of the same name. Coq allows us to define custom notations, which we use to

declare a notation for entailment in alignment with our presentation thus far2:

Notation “R @ s ⊨ P” := (tentails R s P).

The definitions of simple CTL propositions (i.e., those which do not quantify

over paths) are largely straightforward. Consider the following definitions of the

constant truth constant and of conjunction:

Context (state : Type).

Definition ttop : tprop state :=

fun ⇒ True.

Notation “⊤” := ttop.

Definition tconj (P Q : tprop state): tprop state :=

fun R s ⇒ R @s ⊨ P ∧ R @s ⊨ Q .

Notation “P && Q” := (tconj P Q).

2This notation declaration, as well as future notation definitions, are simplified slightly as
compared to the real implementation to avoid extraneous detail regarding parsing precedence,
print-formatting, and notation scopes.

30

Note the distinction between CTL and Coq formulas. ⊤ and && are CTL

propositions, while True and ∧ are Coq propositions.

Although our type family tprop admits any Coq relation between a transition

relation and state, we choose to restrict ourselves to the pre-defined CTL formulas,

in order to separate our understanding of the CTL semantics from its underlying

representation. To further obfuscate the representation of these CTL formulas,

we make their definitions opaque, i.e. we forbid the terms from being unfolded,

and restrict ourselves to a set of basic theorems which capture the meaning of the

CTL formulas without exposing their underlying representation. For instance,

instead of directly appealing to the definitions of the top value and conjunction

shown above, we use the following fundamental theorems:

Context (state : Type) (R: relation state) {T : transition R} (s : state).

Theorem tentails ttop :

R @s ⊨ ⊤.

Theorem tentails tconj : ∀ P Q ,

R @s ⊨ P →
R @s ⊨ Q →
R @s ⊨ P && Q .

Not only are these theorems more readable than the definitions, they also force

us to only consider CTL propositions in the context of an entailment, as we would

in a deep embedding.

4.2.2 Coinductive Paths

Paths in CTL are infinite, as they are intended to capture an entire possible

future of the state transition system. This poses a challenge to formalization,

since most type definitions in Coq are inductive. A term of an inductive type is

built from finitely many constructors, and are therefore themselves finite. From

31

an inductive definition arises an induction principle, automatically generated by

Coq, which allows us to prove a proposition by structural induction (or in its more

generalize form, to build a term by well-founded recursion).

To define types with potentially infinite terms, Coq provides the dual notion

of coinductive types. Terms of coinductive types are called codata. While terms of

inductive types are conceptually built from a “bottom-up” perspective, codata are

represented by “top-down” descriptions. Informally speaking, the only constraint

on coinductive terms is that they are well-defined when we destruct them.

For instance, we may define paths in the following coinductive fashion:

Context {state : Type} (R : relation state).

CoInductive path (s : state) : Type :=

| step : ∀ s’ , R s s’ → path s’ → path s .

The step constructor defines a path originating from s by connecting a relation

step R s s’ , and a path originating from s’ . Since step is the only path constructor,

all paths are infinite under this representation, as intended.

This definition is appealing in that it captures our intuitive notion of a path.

Unfortunately, coinductive types are difficult to reason about in Coq. While

inductive types produce induction principles, there is no corresponding elimina-

tion principle for coinductive types. One must instead use the primitive notion

of a cofixpoint to produce all necessary codata, that are subject to unintuitive

“guardedness” conditions. Finally, we face significant obstacles reflecting infinite

observations into finite ones. Even something as simple as proving two paths

equivalent requires a new coinductive notion of equality specialized to the infinite

structure of our paths, as well as a specialized axiom to reflect this equality to the

typical propositional equality. For these reasons, we avoid an explicitly coinduc-

tive formulation of paths. Fortunately, there exists a general isomorphism from

32

coinductive types to function types3. Below is the alternative functional definition

of paths:

Context {state : Type} (R: relation state).

Definition path (s : state) : Type :=

Σ p: nat → state,

p 0 = s ∧
∀ i , R (p i) (p (S i)).

In this formulation, we define a path originating from s as some function from

the natural numbers to the state type, where the first element is s , and subsequent

elements are related by R. Concretely, it is a dependent pair4 of this characteristic

function and a proof of the path properties.

The isomorphism between this path definition and the previous is self-evident.

Instead of explicitly constructing a sequence of steps in a concrete object, we

instead construct a function mapping an index to the state at that position. To

capture the same structure as was in the original path definition, we further

constrain the function to anchor it to the correct starting point, and ensure the

pairwise relatedness of consecutive states.

Since a path is primarily identified with its underlying function, we allow the

implicit coercion of the former to the latter. That is, for some path p and natural

number n, we interpret the expression p n as the state in p at index n. With this

representation, predicates over paths are defined quite straightforwardly.

Definition in path {s} (x : state) (p: path s) : Prop :=

∃ i , p i = x .

3By a type isomorphism, we mean a bijection between types. Strictly speaking, this isomor-
phism relies on extensionality principles for both functions and individual coinductive types,
which are taken for granted in ordinary mathematics, but must be added to axiomatically to
Coq.

4We adopt the sigma binder notation for dependent pair types. This notation is standard in
type theory literature, however Coq uses alternative notation by default. The dependent pair
Σ x , F x is instead written {x | F x} when F is a predicate, and {x & F x} otherwise.

33

Definition in path before {s} x i (p: path s) : Prop :=

∃ j , j < i ∧ p j = x .

The definitions of path-quantifying CTL formulas also follow quite directly.

For instance, consider the following theorems that capture our definitions of EG

and AU:

Theorem rew EG : ∀ P ,

R @s ⊨ EG P =

∃ p: path R s , ∀ s’ , in path s’ p → R @s’ ⊨ P .

Theorem rew AU : ∀ P Q ,

R @s ⊨ A[P U Q] =

∀ p: path R s , ∃ i ,

(∀ x , in path before x i p → R @x ⊨ P) ∧
R @(p i) ⊨ Q .

The full set of fundamental theorems may be found in the CTL repository [8],

in Ctl/Basic.v.

4.3 Model

We distinguish between two kinds of state. The first, which we call a state

label, describes in general terms the internal state of a particular component.

This corresponds to the implicit state arising from one’s current position in the

program.

The second is called the environment. This is a mutable data store shared

by all components, representing the explicit storage of values. To support the

notion of secret values and non-interference, we augment this environment with a

description of access controls.

Formally, we define two privileges: the privilege to read some data store, and

the privilege to write to some data store.

34

Inductive privilege : Set :=

| p read

| p write.

An access control is defined as a decidable relation between components and

privileges.

Definition access := comp → privilege → bool.

The particular definition of the component type comp is not of great interest.

We use the string type for the sake of extensibility.

We apply the natural inclusion ordering over relations to access controls. That

is, we say a1 < a2 if and only if a2 is strictly more permissive than a1. This

ordering gives rise to a boolean lattice and enables compositional construction of

access controls using meet and join operations.

We then declare our environment type as a partial mapping of variables to

access controls and heterogeneous values:

Definition any : Type := Σ X , X .

Definition box {X } (x : X) : any := ⟨X , x ⟩.

Definition env := var → option (access ∗ any).

The type any is intended to represent a value of arbitrary type. Concretely, it

is a dependent pair where the left pair element is a type, and the right element is

an inhabitant of that type. The pair is logically identified with its right element.

We include the box definition to construct and represent elements of any while

leaving the type implicit. As with comp, the definition of the variable type var is

not of great significance, and we again use the string type.

Singleton environments are represented x 7→ y . Access controls default to

the top element of the lattice, i.e. the totally permissive access control. Access

controls can be overwritten using the notation a ? Γ, which assigns the access

35

control a to all variables in the environment Γ. Finally, two environments can be

joined with the notation Γ1 ;; Γ2. If there is any overlap in the domain of the two

environments, the combined environment uses the value under Γ1 (the elements

of Γ1 are said to “shadow” those of Γ2).

We now introduce propositions to describe interactions with the environment

that respect our access controls.

Definition read {V } (Γ: env) (c: comp) (name: var) (v : V) : Prop :=

∃ acc: access,

Γ name = Some (acc, box v) ∧
acc c p read.

Definition write {V } (Γ: env) (c: comp) (name: var) (v : V) (Γ’ : env) : Prop

:=

∃ (acc: access) curr ,

Γ name = Some (acc, curr) ∧
acc c p write ∧
Γ’ = acc ? name 7→ v ;; Γ.

Definition changeAcc (Γ: env) (name: var) (f : access → access) (Γ’ : env) :

Prop :=

∃ (acc: access) V (v : V),

Γ name = Some (acc, box v) ∧
Γ’ = f acc ? name 7→ v ;; Γ.

Now, we may finally define our transition relation modelling the attestation

architecture. The entire definition is quite large, and can be found in the attes-

tation architecture model repository [7]. Here, we will only show a portion of the

state transition of the UserAM to demonstrate the style in which we define our

larger relation:

Inductive useram label :=

| useram wait key

| useram listen

36

| useram shallow attest

| useram deep attest.

Definition useram init env : env :=

only “useram” ? “useram key” 7→ encr useram key.

Definition decrypt useram key key decr key : useram key t :=

match (key , decr key) with

| (encr useram key, good decr key) ⇒ good useram key

| ⇒ bad useram key

end.

Definition shallow attest (good os good target good meas : bool) :=

good os = true → good target = true → good meas = true.

Inductive useram trans : relation (useram label ∗ env) :=

| useram get key : ∀ Γ Γ’ encr key decr key ,

read Γ “useram” “useram key” encr key →
read Γ “useram” “vmm dataport” decr key →
write Γ “useram” “useram key”

(decrypt useram key encr key decr key) Γ’ →
useram trans

(useram wait key, Γ)

(useram listen, Γ’)

| useram get shallow req : ∀ Γ,

useram trans

(useram listen, Γ)

(useram shallow attest, Γ)

| useram do shallow attest : ∀ Γ Γ’ os target meas ,

read Γ “useram” “good os” os →
read Γ “useram” “good target” target →
shallow attest os target meas →
write Γ “useram” “shallow attest result” meas Γ’ →
useram trans

(useram shallow attest, Γ)

(useram listen, Γ)

| useram get deep req : ∀ Γ Γ’ ,

37

write Γ “useram” “vmm dataport” attest req Γ’ →
useram trans

(useram listen, Γ)

(useram deep attest, Γ’)

| useram wait deep attest : ∀ Γ (meas : bool),

read Γ “useram” “vmm dataport” meas →
useram trans

(useram deep attest, Γ)

(useram listen, Γ).

4.4 Automated Proof Search

Since our transition relation is quite large, each CTL proof over the relation will

also be quite large. All such proofs must be carried out by cases on the potential

steps taken by the transition relation, of which there are 16. Even proofs of

relatively simple CTL propositions require lengthy proofs. However, most cases

are quite straightforward in practice. To overcome this tedium that degrades

efficient progress and to take advantage of the computerized proof environment,

we write an automated proof search tactic specialized to our domain.

Our consistent formulation of transition steps in terms of well-behaved read

and write statements presents a specialized domain from which we can consistently

and mechanically deduce significant insights. For instance, we have the following

theorems concerning read statements:

Theorem no lookup no read {Γ c x V } {v : V }:
Γ x = None → ¬ read Γ c x v .

Theorem wrong lookup no read {Γ acc c x V } {w v : V }:
Γ x = Some (acc, box w) →
w ̸= v →
¬ read Γ c x v .

38

Theorem good lookup read {Γ acc c x V } {w v : V }:
Γ x = Some (acc, box w) →
read Γ c x v →
w = v .

Theorem good lookup read acc {Γ acc c x W V } {w : W } {v : V }:
Γ x = Some (acc, box w) →
read Γ c x v →
acc c p read.

Note that each theorem follows from an assumed equality between Γ x and

some canonical value. Given some assumption read Γ c x v in our proof state, we

may then attempt to compute Γ x , and if it reduces to a canonical term, we then

deduce new facts from the relevant theorems.

Once we deduce all relevant facts from the available read, write, and changeAcc

assumptions, we may then employ conventional proof search techniques to re-

solve the proof goal. We call this tactic rw solver, that abbreviates “read-write

solver”. For simple CTL propositions making straightforward assertions over the

environment, rw solver often solves all but one or two of the 16 cases produced

by case analysis over a step of the attestation architecture transition relation.

4.5 Theorems

We conclude with a survey of the most significant propositions proven over the

attestation architecture model. First we prove that the PlatformAM’s private key

is never compromised under our model, in the sense that only the PlatformAM

ever possesses read access.

Definition platam key secure : tprop attarch state := Jfun ’(, Γ) ⇒
∀ c key t (key : key t),

read Γ c “platam key” key →

39

c = “platam”

K.

Theorem platam key uncompromised: ∀ s0 ,

attarch trans @s0 ⊨

is init state _
AG platam key secure.

Note that the state predicate is init state does not enforce that the state

specifically reflects a good or bad system. It only asserts that the state describes

a system in the boot phase with a minimal environment.

We do not present the full proofs here, but each is available in the repository [7],

and we shall comment on the general structure. For this theorem, we reflect the

AG construct into a statement over the reflexive transitive closure of the transition

relation. The proof then proceeds by induction over the structure of the transitive

closure witness. This produces 16 subcases, 14 of which are resolved in a single

step by our domain-specific automation tactic, rw solver. The remaining two

are straightforward.

We also prove that the PlatformAM can only possess its genuine private key

when the system is operating from a good initial image.

Definition platam key good : tprop attarch state := Jfun ’(, Γ) ⇒
∃ acc, Γ “platam key” = Some (acc, box good platam key)

K.

Theorem platam good key good image : ∀ s0 ,

attarch trans @s0 ⊨

is init state _
AG (platam key good _ image is good).

The general structure of this proof is the same as the previous. However, we do

rely in one subcase on an external lemma, which states that when the boot token

is good, then the boot image must be good. This lemma is proved separately in

40

much the same style as the theorems presented so far.

Similar to our first theorem, we prove a proposition asserting that the UserAM’s

private key is uncompromised. However, we only prove that this is case during

the start-up process. After this point, the status of our key is much less certain.

Definition useram key secure : tprop attarch state := Jfun ’(, Γ) ⇒
∀ c,

read Γ c ”useram key” good useram key →
c = “useram”

K.

Definition useram key released : tprop attarch state := Jfun ’(l ,) ⇒
∃ pl ul ,

l = sel4 run pl (vm run ul) ∧
ul ̸= useram wait key

K.

Theorem useram key uncompromised setup : ∀ s0 ,

attarch trans @s0 ⊨

is init state _
A[useram key secure W useram key released].

In contrast to the previous theorems, this proposition is stated in terms of the

AW connective. In this proof, we first strengthen the left AW subformula to the

statement that the UserAM’s private key is not the good key, which is true until

the key is released. We then proceed using a custom AW introduction rule, from

which the normal definition follows. This introduction rule tasks us to prove that

either subformula holds on the current state, and that either subformula holds for

some state at the end of a path segment, where the left subformula holds for all

earlier states in the segment, and the right subformula does not. In this latter

case, our automation resolves every further subgoal.

We are also able to nest the path-quantifying CTL formulas to some degree be-

41

fore encountering prohibitive complexity. For instance, we prove the permanence

of OS corruption, expressed by the following theorem:

Definition os corrupted : tprop attarch state := Jfun ’(, Γ) ⇒
∃ acc, Γ “good os” = Some (acc, box false)

K.

Theorem os corrupted permanent : ∀ s0 ,

attarch trans @s0 ⊨

is init state _
AG (os corrupted _ AG os corrupted).

42

Chapter 5

Conclusion

We have presented (1) the design of a system architecture intended to augment

a wide array of existing systems with trustworthy attestation capabilities, and (2)

a high-level formal model of the architecture in an embedded temporal logic within

the Coq theorem prover. The attestation architecture has been prototyped and

applied to the DARPA CASE project, where it was evaluated by an independent

red team and found to prevent certain attacks which went undetected in the

original architecture.

The verification effort was split between the development of a general-purpose

CTL embedding, as well as a specific model built atop the CTL library capturing

the behavior of the attestation architecture. The CTL embedding contains not just

basic definitions, but numerous tactics and theorems to facilitate reasoning about

CTL constructs. Since it is a standalone library, independent of the architecture

model, it may be re-used for future verification efforts.

Finally, we developed a notion of access-controlled heterogeneous environ-

ments. By defining the rules of our attestation architecture transition relation

in terms of access-control-respecting read and write operations, we are presented

43

with a specialized domain of proof goals. To accelerate proof development, we

developed the rw solver tactic to automatically deduce common observations in

this domain before employing conventional proof-automation procedures to solve

straightforward proof goals. This tactic greatly alleviated the tedium of large

CTL proofs.

There are numerous ways that the work presented here may be extended. With

respect to the prototype architecture implementation, more work may be done to

integrate powerful measurers, particularly to the PlatformAM. Furthermore, we

aim to eventually apply the implementation to hardware which readily supports

a hardware root of trust, and to fully integrate said root of trust to enable the

full chain of trust described in Section 3.2.4.

There are considerable opportunities to improve the CTL embedding. While

it is intended to serve as a standalone library, many of the properties that have

been proven and the tactics developed have arisen from their necessity to the

attestation architecture model proofs. It is likely that there exists a number of

significant properties of CTL that would be needed for other projects that have

not yet been proven in our library. Given the popularity of CTL within model

checkers, it would likely be possible to introduce significantly more automation to

arbitrary CTL proofs, and particularly CTL formulas which span over decidable

state predicates.

The access-controlled environments used by the attestation architecture model

appear to be a promising and expressive abstraction. We may consider how to

generalize the environmental logic in this work into a more flexible framework. Of

particular interest would be the application of access controls to existing logics

for reasoning about state, such as separation logic.

44

Finally, we may focus on optimizing our existing proof automation. The

rw solver tactic solves many of our proof goals. However, it may execute for

several tenths of a second before either succeeding or failing. This is not an issue

for a single use, but execution is further slowed when the tactic is applied to a

dozen subgoals simultaneously, as we often do in our proofs. The tactic’s execu-

tion time is also prohibitive to its invocation in higher-order automation contexts

involving frequent backtracking.

45

References

[1] Coq language documentation: Positivity condition. https://coq.inria.fr/refman/

language/core/inductive.html#positivity, 2021.

[2] K. Bhargavan, B. Beurdouche, J.-K. Zinzindohoué, and J. Protzenko. Hacl*: A

verified modern cryptographic library. ACM CCS, September 2017.

[3] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronisation skeletons

using branching time temporal logic. In D. Kozen, editor, Logic of Programs, pages

52–71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberk.

[4] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,

A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation. International

Journal of Information Security, 10(2):63–81, June 2011.

[5] S. C. Helble, I. D. Kretz, P. A. Loscocco, J. D. Ramsdell, P. D. Rowe, and

P. Alexander. Flexible mechanisms for remote attestation. ACM Transactions

on Privacy and Security, 24(4), September 2021.

[6] G. Jurgensen. An attestation architecture prototype. https://github.com/ku-sldg/

attarch/tree/thesis, 2022.

[7] G. Jurgensen. A formal model of an attestation architecture. https://github.com/

ku-sldg/attarch-model/tree/thesis, 2022.

[8] G. Jurgensen and A. Cousino. A shallow embedding of computation tree logic (ctl)

in coq. https://github.com/ku-sldg/ctl/tree/thesis, 2022.

46

https://coq.inria.fr/refman/language/core/inductive.html#positivity
https://coq.inria.fr/refman/language/core/inductive.html#positivity
https://github.com/ku-sldg/attarch/tree/thesis
https://github.com/ku-sldg/attarch/tree/thesis
https://github.com/ku-sldg/attarch-model/tree/thesis
https://github.com/ku-sldg/attarch-model/tree/thesis
https://github.com/ku-sldg/ctl/tree/thesis

[9] G. Jurgensen, A. Petz, P. Alexander, T. Barclay, E. Komp, M. Neises, and

A. Cousino. A copland attestation manager (am) in cakeml. https://github.com/

ku-sldg/am-cakeml, 2021.

[10] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-

duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-

wood. sel4: formal verification of an os kernel. In SOSP ’09: Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles, pages 207–220,

New York, NY, USA, 2009. ACM.

[11] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: A verified imple-

mentation of ml. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’14, pages 179–191, New York,

NY, USA, 2014. ACM.

[12] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. Camkes: A component model for secure

microkernel-based embedded systems. Journal of Systems and Software, 80(5):687–

699, 2007. Component-Based Software Engineering of Trustworthy Embedded

Systems.

[13] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,

X. Gao, and G. Klein. sel4: From general purpose to a proof of information flow

enforcement. In 2013 IEEE Symposium on Security and Privacy, pages 415–429,

2013.

[14] J. A. Pendergrass and K. N. McGill. Lkim: The linux kernel integrity measurer.

volume 32, pages 509–516, 2013.

[15] A. Petz and P. Alexander. A copland attestation manager. In Hot Topics in

Science of Security (HoTSoS’19), Nashville, TN, April 8-11 2019.

[16] A. Petz and P. Alexander. An infrastructure for faithful execution of remote attes-

tation protocols. In A. Dutle, M. M. Moscato, L. Titolo, C. A. Muñoz, and I. Perez,

47

https://github.com/ku-sldg/am-cakeml
https://github.com/ku-sldg/am-cakeml

editors, NASA Formal Methods, volume 12673 of Lecture Notes in Computer Sci-

ence, pages 268–286, Berlin, Heidelberg, 2021. Springer International Publishing.

[17] A. Petz, G. Jurgensen, and P. Alexander. Design and formal verification of

a copland-based attestaiton protocol. In ACM-IEEE International Conference

on Formal Methods and Models for System Design (MEMOCODE’21), virtual,

November 2021.

[18] J. Ramsdell, P. D. Rowe, P. Alexander, S. Helble, P. Loscocco, J. A. Pendergrass,

and A. Petz. Orchestrating layered attestations. In Principles of Security and

Trust (POST’19), Prague, Czech Republic, April 8-11 2019.

[19] P. Rowe, J. Ramsdell, and I. Kretz. Automated trust analysis of copland specifica-

tions for layered attestations. In Principles and Practice of Declarative Program-

ming (PPDP 21), Sept. 2021.

[20] J. M. Rushby. Design and verification of secure systems. In Proceedings of the

Eighth ACM Symposium on Operating Systems Principles, SOSP ’81, pages 12–21,

New York, NY, USA, 1981. Association for Computing Machinery.

48

	Abstract
	Table of Contents
	Introduction
	Overview
	Architectural Considerations
	Attestation and Verification
	Contributions

	Background
	The Copland Language
	Attestation Patterns

	The Architecture
	Design
	Implementation
	The Copland AM
	Communication
	Measurement Procedures
	Key Release

	Application

	Verification
	Framework
	Implementation
	Logical Embedding
	Coinductive Paths

	Model
	Automated Proof Search
	Theorems

	Conclusion
	References

