
Functor Pulling

Lambert Meertens∗

Department of Algorithmics and Architecture, CWI, Amsterdam, and

Department of Computing Science, Utrecht University, The Netherlands

www.cwi.nl/
˜
lambert

1 Introduction

This paper is concerned with the construction of basic building blocks for polytypic pro-
gramming. A polytypic program is a program that is generic in a type constructor, say F ;
by specializing it for F :=List , a program for lists is obtained, while for F :=Tree we get a
program for trees, and so on.

Well-known examples of such polytypic building blocks are the initial algebra for F

(assuming F is such that an initial algebra exists):

inF : µF ←FµF

and the catamorphism combinator:

([f])F : a←µF ⇐ f : a←Fa

For more details, see [7] or [1].

A previous paper [8] defined a crush combinator

〈〈⊕〉〉F : a←F 〈a, a, . . . , a〉 ⇐ ⊕ : a← a × a

for all “regular” F , giving a generic way to reduce data structures with a binary operation.

In this paper we define a generalization of crush, and present some examples. Further
polytypic basic building blocks, as well as several advanced applications, can be found in
[5, 6, 4]

∗Part of this work was performed while visiting Kestrel Institute, Palo Alto.

1

2 Preliminaries

Constant functions Given x ∈ A, the mapping (z 7→ x) always returning x is denoted
as x K. It can be polymorphically typed as x K : A← a with a type variable a . We have
x K ◦ f = x K for any f .

Categorical embedding We assume a categorical embedding of the programming for-
malism, with the usual mappings:

function → arrow
type → object
type constructor → functor
polymorphic function → natural transformation

(the latter only if the typing translates to one with covariant functors.) As is usual in
the functional-programming idiom, we treat polymorphic functions as multiply typable
functions in the base category, and additionally we may use the typing from the functor
category, so that the following — not equally general — typings are all correct:

concat : List a ← List(List a)
concat : List Int ← List(List Int)
concat : List ← List ·List
concat : List ·F ← List ·List ·F

Function composition will be denoted with “ ◦ ”, whereas functor composition is denoted
with “ · ”.

We assume that the category has finite sums and products and initial F -algebras for all
regular F (defined in Section 3). For binary sum we use:

inl : a + b← a

inr : a + b← b

f ▽ g : c← a + b ⇐ f : c← a ∧ g : c← b

and for binary product:

exl : a← a × b

exr : b← a × b

f △ g : a × b← c ⇐ f : a← c ∧ g : b← c

For functors F : C←E and G : D←E the functor F�G : C × D←E is defined by:

(F�G)a = 〈Fa,Ga〉

2

Tuple notations To avoid the excessive use of ‘· · ·’s, we need some notation.
Indices always run through an initial segment of the naturals. Rather than writing,

e.g., TT
n−1
i=0 , we use the terser form TT

n
i . We may omit the superscript n when it can be

inferred or reasonably guessed from the context.
We use the notation 〈〉ni ai for the n-tuple 〈a0, a1, . . . , an−1〉. This behaves like a functor:

it respects typing and composition. So if f i : ai← bi for all i in the range, we have

〈〉i fi : 〈〉iai←〈〉ibi

and

〈〉i(fi ◦ gi) = 〈〉i fi ◦ 〈〉igi

If ai ∈ Ci , then 〈〉iai ∈ TTiCi . If the expression being tupled is constant, as in 〈〉ia =
〈a, a, . . . , a〉, we may omit the running index altogether and write 〈〉a .

The projection functors Exni : Ci← TTjCj , for i < n , can now be defined by:

Exi〈〉jaj = ai

We use � with a running index for “tupling” (the results of) a sequence of functors with
a common source, thereby generalizing binary �: for F i : Ci←D, their tupling �iFi :
TTiCi←D is defined pointwise by:

(�iFi)a = 〈〉i(Fia)

(so �2
iFi = F0�F1). For a tuple of functorially typed polymorphic functions f i : Fi←Gi

the correct typing is

〈〉i fi : �iFi←�iGi

(This is the consequence of treating polymorphic functions as “sloppily” typed functions
in the base category; with a proper categorical treatment of these as being natural trans-
formations we should use the typing �i fi : �iFi←�iGi in the functor category.)

Here are some rules involving �. The Ex�-rule is:

Exi ·�jFj = Fi

The �-fusion rules are:

�i(F ·Gi) = F ∗·�iGi

�i(Fi ·G) = �iFi ·G

For F : C←D, its n-fold product F n : Cn←Dn is defined by:

F n = TT
n
i F

Here n is a functor on functors, so (F ·G)n = F n ·Gn . Note that F 2 = F × F , not F ·F .
We usually use an ∗ for the superscript when it should be clear from the context.

3

Transposition The transposition functors nTm : (Cn)m← (Cm)n are defined by:

nTm = �

m
i (Exmi)

n

So, spelling it out,

〈 〈 a0, 0, a1, 0, . . . , am−1, 0 〉
〈 a0, 1, a1, 1, . . . , am−1, 1 〉

...
〈 a0,n−1, a1,n−1, . . . , am−1,n−1〉 〉

nTm
⊢−→

〈 〈 a0, 0, a0, 1, · · · a0,n−1 〉
〈 a1, 0, a1, 1, . . . , a1,n−1 〉

...
〈 am−1, 0, am−1, 1, . . . , am−1,n−1〉 〉

We have the T�∗-rule:

T·(�iGi)
∗ = �i (Gi)

∗

since

T·(�iGi)
∗

= { definition of T }

�i (Exi)
∗·(�iGi)

∗

= { �-fusion }

�i ((Exi)
∗·(�iGi)

∗)

= { ∗ is a functor }

�i (Exi ·�iGi)
∗

= { Ex�-rule }

�i (Gi)
∗

Pairs of transpositions nTm and mTn form natural isomorphisms, so we also have:

T·�i(Gi)
∗ = (�iGi)

∗

3 Regular functors

Regular functors are an extension of the class of polynomial functors with type functors.
We define the latter notion first.

4

Type functors Given binary functor F : C←D × C, define, for fixed a ∈ D, the unary
functor Fa : C←C by Fa b = F 〈a, b〉. If there exists an initial Fa -algebra for all a , then
F has a (unary) type functor τF : C←D, defined by:

τF a = µ(Fa)
τF f = ([in ◦ F f id])

The initial algebra has functorial typing

in : τF←F ·Id�(τF)

For example, List = τL, where L〈a, b〉 = (a×b) + 1, with initial algebra

in : List a← (a × List a) + 1

Putting cons = in ◦ inl, nil = in ◦ inr, we have

cons :List a ← a × List a

nil :List a ← 1

Conversely, in = cons ▽ nil. For further details, consult [7] or [1].

A grammar for regular functors A functor built only from 1, Ex, +, ×, �, · and τ is
called a regular functor. A formal context-free grammar for the n-ary regular functors is:

F(n) ::= 1K n-ary constant functor
| Exni projection, i = 0, . . . , n − 1
| + | × (only if n = 2) binary sum and product

| �

k
i F

(n)
i functor tupling

| F
(k)
0 ·F

(n)
1 functor composition

| τF(2) (only if n = 1) the type functor induced by F(2)

In the rule for functor composition, the target ‘type’ (a category) of F1 should, of course,
be of the form TT

k
i Ci .

This can be extended to arbitrary finite sums and products, and τF can be defined to
produce n-ary functors from (n+1)-ary functors, but these extensions can also be handled
via the obvious isomorphisms such as C (n+1) ≃ C × Cn . Here is how the functor List is
produced by this grammar:

List = τ(+ · ×�1K)

5

4 Functor pulling

Let an m-ary functor H be given. We want to define polytypic functions p such that for
n-ary F :

pF :

H 〈F 〈a0, 0, a0, 1, . . . , a0,n−1 〉,
F 〈a1, 0, a1, 1, . . . , a1,n−1 〉,

...
F 〈am−1, 0, am−1, 1, . . . , am−1, n−1〉 〉

←

F 〈H 〈a0, 0, a1, 0, . . . , am−1, 0 〉,
H 〈a0, 1, a1, 1, . . . , am−1, 1 〉,

...
H 〈a0,n−1, a1,n−1, . . . , am−1,n−1〉 〉

Such a function pulls, so to speak, functor H out of the inside of its parameter F . An
example of such a function for H = × is the product puller:

unzipF = F exl∗ △ F exr∗ : F 〈〉iai × F 〈〉ibi←F 〈〉i(ai×bi)

For the choice H = aK the typing of pF specializes to:

pF : a←F 〈a, a, . . . , a〉

which is the type of polytypic “crush”. Thus, the problem we are addressing here indeed
generalizes the notion of crushes.

Not only must pF be polytypic in F , it should also be polymorphic in the type variables
aij . Using transposition functors, the typing of pF can be rendered more succinctly and
naturally as:

pF : H ·F ∗·T←F ·H ∗

Since 1Tm = Id, this simplifies to

pF : H ·F ∗←F ·H

when F is unary — or is viewed as such, which is always possible since TT
n
i Ci = (TTni Ci)

1.

The polytypic function unzip defined above is completely generic; the only requirement on
F here is that it is a functor between two categories that have products. In general we are
not so lucky, and need to assume that F is regular, so that we can define pF as a polytypic
combinator by induction on the structure of F . In the process we shall see what ingredients
are needed for the “body” of pF . As was done for crush, we make a concerted effort
to minimize the number of ingredients that must supplied to the combinator: whenever
possible, we take whatever will do when it is available “for free”.

So we consider all cases corresponding to the production rules of the grammar. The
inductive hypothesis is that we already have

pF : H ·F ∗·T←F ·H ∗

6

for sufficiently simple F . We postpone the case 1K to the last.

Case Exi : the requirement is pEx
i
: H ·Exi

∗·T←Exi ·H
∗ = H ·Exi←H ·Exi .

The choice is obvious: pEx
i
= id. So for this case we need not supply an ingredient to the

combinator.

Case +: the requirement is p+ : H ·+∗·T←+·H 2 .
Spelling it out with type variables, the type of p+ is H 〈〉i(ai+bi)←H 〈〉iai + H 〈〉ibi . Using
〈〉inl : 〈〉i (ai+bi)←〈〉iai and 〈〉inr : 〈〉i(ai+bi)←〈〉ibi , we see that we can use

p+ = H 〈〉inl ▽ H 〈〉inr

Case ×: the requirement is p× : H ·×∗·T←×·H 2 .
This has no free solution. For example, if H = +, the requirement boils down to p× :
(a0×b0) + (a1×b1)← (a0+a1)× (b0+b1), which in Set has no polymorphic solution (take
a0 = b1 = 0, a1 = b0 = 1, showing that + cannot be pulled in Set and other categories
having no arrows with typing 0← 1). So some ingredient ⊕ : H ·×∗·T←×·H 2 will have
to be supplied.

Case �iFi : the requirement is p
�i Fi

: H ·(�iFi)
∗·T←�iFi ·H

∗ .
By the inductive hypothesis we have

pFi : H ·Fi
∗·T←Fi ·H

∗

so the tuple

〈〉ipFi : �i(H ·(Fi)
∗·T) ← �i(Fi ·H

∗)
= H ∗·�i(Fi)

∗·T ← �iFi ·H
∗

has the required typing.

Case F ·G : the requirement is pF ·G : H ·(F ·G)∗·T←F ·G ·H ∗ .
By the inductive hypothesis, viewing F as unary, we have

pF : H ·F ∗ ←F ·H
pG : H ·G∗·T←G ·H ∗

so that

pF : H ·F ∗·G∗·T ← F ·H ·G∗·T
= H ·(F ·G)∗·T ← F ·H ·G∗·T

FpG : F ·H ·G∗·T ← F ·G ·H ∗

7

By composing these two we obtain, for free,

pF ◦ FpG

as having the required typing.

Case τF : the requirement is pτF : H ·(τF)∗← (τF)·H .
Using τF a = µ(Fa) = µ(b 7→ F 〈a, b〉), we pattern match the required typing against

([f]) : H (Ga)← τF (Ha)

⇐ { catamorphism typing }

f : H (Ga)←F 〈Ha,H (Ga)〉

With functorial typing (abstracting from the type variable), this amounts to:

([f]) : H ·G← τF ·H ⇐ f : H ·G←F ·H 2·Id�G

So we see that for pτF we can use a catamorphism

([f]) : H ·(τF)∗← (τF)·H

provided that we can construct an f with the typing

f : H ·(τF)∗·←F ·H 2·Id�(τF)∗

By the inductive hypothesis we have

pF : H ·F ∗·T←F ·H 2

so that

pF : H ·F ∗·T·Id�(τF)∗ ← F ·H 2·Id�(τF)∗

= H ·(F ·Id�τF)∗ ← F ·H 2·Id�(τF)∗

Further we have function in : τF←F ·Id�(τF), so that

H 〈〉in : H ·(τF)∗←H ·(F ·Id�τF)∗

The free solution for this case is therefore pτF = ([H 〈〉in ◦ pF]).

Case 1K: the requirement is p1K : H ·1K∗·T← 1K·H ∗ = (H 〈〉1)K← 1K.
So p

1
K = e where e : H 〈〉1← 1 (non-functorially typed). As for the case ×, this has no free

solution (consider H = 0K). In the construction of crushes, with H = aK, this specializes to

8

e : a← 1. There e was taken to be the neutral element of ⊕, the ingredient needed for the
case ×. For general H , neutrality of ⊕ in the usual sense is meaningless; only operations
of some type a← a × a can have neutral elements, and the typing of ⊕ does not have that
form. We can, however, define a generalized notion of neutrality. Consider

exr : H 〈〉iai← 1× H 〈〉iai

Using ⊕ and e we have another way of constructing a function with this typing, namely:

H 〈〉iexr ◦ (⊕) ◦ e × id

This has the same typing since:

H 〈〉exr : H 〈〉iai ← H 〈〉i(1× ai)
⊕ : H 〈〉i(1× ai)← H 〈〉i1× H 〈〉iai

e × id : H 〈〉i1× H 〈〉iai ← 1× H 〈〉iai

We require now that these two equi-typed generic functions are equal. A similar coherence
condition is obtained by switching left and right. Moreover, we require that these two
requirements combined have a unique solution. So, define an element e to be H -neutral
for ⊕ when:

H 〈〉iexr ◦ (⊕) ◦ e × id = exr ∧ H 〈〉iexl ◦ (⊕) ◦ id× e = exl

The requirement is now that ⊕ has a unique H -neutral element, and then p
1
K = e . Spe-

cialization to a K-neutrality gives the conventional notion of neutrality.
✷

We introduce now a notation for pF thus constructed, namely 〈〈⊕〉〉, the same notation
used for the special case of crush.

Summary Given a functor H , for ⊕ : H ·×∗·T←×·H 2 with unique H -neutral element
e : H 〈〉1← 1, the H puller

〈〈⊕〉〉F : H ·F ∗·T←F ∗·H

is inductively defined on regular functors by:

〈〈⊕〉〉1K = e

〈〈⊕〉〉Ex
i

= id

〈〈⊕〉〉+ = H 〈〉inl ▽ H 〈〉inr
〈〈⊕〉〉× = ⊕
〈〈⊕〉〉

�i Fi
= 〈〉i〈〈⊕〉〉Fi

〈〈⊕〉〉F ·G = 〈〈⊕〉〉F ◦ F 〈〈⊕〉〉G
〈〈⊕〉〉τF = ([H 〈〉in ◦ 〈〈⊕〉〉F])

9

Example specialization Specialization of 〈〈⊕〉〉List , where List = τ(+ · ×�1K), gives:

〈〈⊕〉〉List

= { definition of 〈〈⊕〉〉 }

([H 〈〉in ◦ (H 〈〉inl) ▽ (H 〈〉inr) ◦ (⊕) + e])

= { rules for + and ▽ ; H is functor }

([(H 〈〉(in ◦ inl) ◦ (⊕)) ▽ (H 〈〉(in ◦ inr) ◦ e)])

5 Examples

In this section we give two examples of “functor pullers” that are useful in many different
problems. We freely mix functional-programming idiom with categorical notation.

Cross One application of 〈〈 〉〉 is to construct a generalization of the cross-product of two
sets. We assume a type-constructor Set , so, for example, values of type Set Int are sets of
naturals. Set is made into a functor by defining

(Set f) xs = {f x | x ← xs}

We want crossF to be a generalization of

cross× : Set(a × b)← (Set a)× (Set b)
cross× 〈xs , ys〉 = {〈x , y〉 | x ← xs , y ← ys}

Here a pair of sets is turned into a set of pairs. So Set is “pulled out”. For List we should
have, for example:

crossList [{u, v}, {x , y , z}] = {[u, x], [u, y], [u, z], [v , x], [v , y], [v , z]}

In general an F -structure of sets is turned into a set of F -structures, one for every way

of choosing its elements from the constituent sets. We apply this intuition to govern the
construction of the Set-neutral element e , which must have typing Set 1← 1, that is, it
is a “constant” of type Set 1. Now there are two values of this type: the empty set,
or the singleton set {•}, in which • stands for the single inhabitant of the unit type 1.
Since structures of the source type have no constituent sets, we have no freedom in making
choices: there is exactly one way “choosing an element from the constituent sets”. The
result must therefore be a singleton set, and so e • = {•}. This solution satisfies, as
required, the coherence conditions, while the other choice does not.

10

We define then, generically, cross = 〈〈cross×〉〉, with cross× as defined above.

From the previous section we have the specialization

crossList = ([(Set(in ◦ inl) ◦ cross×) ▽ (Set(in ◦ inr) ◦ {•}K)])

Using (Set f) {x | x ← · · ·} = {f x | x ← · · ·}, and recalling that in ◦ inl and in ◦ inr corre-
spond to the list constructors cons and nil, respectively, we can express this in conventional
functional-programming idiom:

crossList = foldr 〈 c©, n〉 where

xs c© ys = {cons 〈x , y〉 | x ← xs , y ← ys}
n = {nil}

Jeuring [5] defines two mutually-recursive polytypic functions cross and cp, the latter for
using with type functors. With the present approach, a single definition does the job:
crossτF is cp.

Full Let the type constructor Maybe be defined as:

data Maybe a = one a | none

Consider a structure of some type F 〈〉i(Maybe ai). If every “maybe” position is filled, that
is, has a value of the form one x , we can turn the whole structure into one of type F 〈〉iai .
Otherwise this is impossible: there is no generic way of inventing values to fill the missing
entries none. So we can, at best, maybe deliver a structure of type F 〈〉iai . The idea can
be encapsulated in a generic function

fullF : Maybe(F 〈〉iai)←F 〈〉i(Maybe ai)

In other words, we want to pull the internal Maybe ’s to the outside. We need to define
full×. We express it by functional-programming-style pattern match:

full× 〈one x , one y〉 = one 〈x , y〉
full× 〈 , 〉 = none

(If both positions of the pair are filled, a pair is returned. Otherwise, at least one is
missing, and none is returned.) Next we must find a Maybe-neutral element e . By the
same reasoning as for cross, we find that e = (one •)K.

There is a natural transformation to Set from Maybe , namely:

setify (one x) = {x}
setify none = { }

11

in which the last r.h.s. denotes, of course, the empty set. (This is the specialization for
Maybe of generic setify = 〈〈∪〉〉 ◦ F 〈〉{ }.) This makes it possible to express a relationship
between cross and full, which we state without proof:

setify ◦ fullF = crossF ◦ F ⋆ setify

Monads Both Set and Maybe are the functor of a monad, and so the question is if both
cases above are instances of a generic construction for monads. The answer appears to be
yes, provided that the functor is strong; the details have not been worked out yet, though.

Not all functor pullers arise from this monadic construction. Since × is not an endo-
functor, unzipF — which coincides with 〈〈unzip

×
〉〉F for regular functor F — cannot arise

from a monad. Although aK is an endofunctor, it is not the functor of a monad unless
a ≃ 1, so the same holds for crushes.

6 Research questions

Half-zips Hoogendijk & Backhouse [3, 2] define even more generic “half-zips” that com-
mute two type constructors. This is done in an allegorical setting, in which there exist
arrows with typing 0← 1, which makes comparison with the results here a non-trivial
exercise. The relationship needs further study and clarification.

The monadic construction The details of the construction for monadic-functor pullers
mentioned at the end of Section 5 should be worked out

Uniqueness of neutral element We required uniqueness of H -neutral elements. It
is a simple exercise in algebra to show that “normal” neutral elements of an operation
⊕ : a← a × a are always unique. In all known examples of polymorphic functions ⊕ :
H ·×∗·T←×·H 2, any H -neutral element — if such an element exists at all — is also unique,
but at present it is unknown if this is necessarily so.

Calculational theory What are the calculational rules for these functor pullers? Reg-
ular functors appear to be polymorphic arrows in the category of small categories. Can we
use higher-order parametricity to boost calculation?

Beyond regularity Is it possible to extend the theory to non-regular functors? What
is special about × that it is so easily pulled?

Specification Can we (declaratively) specify function pullers fully, instead of partially
by their typings, which might have several inhabitants? How do we know that the functor
puller constructed is the right generalization of specific instances (a question that pertains
to more parts of polytypic programming). When does the typing guarantee uniqueness of
inhabitants, if any?

12

References

[1] Richard Bird and Oege de Moor. Algebra of Programming, volume 100 of Prentice Hall
International Series In Computer Science. Prentice Hall, 1997.

[2] Paul Hoogendijk. A Generic Theory of Data Types. PhD thesis, Eindhoven University
of Technology, 1997. www.win.tue.nl/cs/wp/papers/papers.html.

[3] Paul Hoogendijk and Roland Backhouse. When do datatypes commute? In E. Moggi
and G. Rosolini, editors, Category Theory and Computer Science, pages 242–260.
Springer-Verlag, 1997. LNCS 1290. www.win.tue.nl/cs/wp/papers/papers.html.

[4] Patrik Jansson and Johan Jeuring. PolyP — a polytypic programming language ex-
tension. In POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 470–482. ACM Press, 1997. www.cs.chalmers.se/

˜
johanj/publications.html.

[5] Johan Jeuring. Polytypic pattern matching. In Conference Record of FPCA

’95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages

and Computer Architecture, pages 238–248, 1995. www.cs.chalmers.se/
˜
johanj/

publications.html.

[6] Johan Jeuring and Patrik Jansson. Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Advanced Functional Programming, Second Interna-

tional School, pages 68–114. Springer-Verlag, 1996. LNCS 1129. www.cs.chalmers.se/

˜
johanj/publications.html.

[7] Grant Malcolm. Data structures and program transformation. Science of Computer

Programming, 14(2–3):255–279, 1990.

[8] Lambert Meertens. Calculate polytypically! In Herbert Kuchen and S. Doaitse Swier-
stra, editors, Programming Languages: Implementations, Logics, and Programs. Pro-

ceedings Eighth International Symposium PLILP ’96, volume 1140 of LNCS, pages
1–16. Springer-Verlag, 1996.

13

