
UserInteractionWare

Lambert Meertens

(

1

)



API

� -

� -

� -

User-

Interaction

Mediator

� -

� -

GUI

toolbox

The conceptual position of

the User-Interaction Mediator

(UIM)

(

2

)



How to specify the UIM

Derive the mapping between GUI and

application from:

� a generic theory of user interaction

� a description of the application functionality

in terms of that theory

� a re�nement of the interactor subtheory

to GUI capabilities

(

3

)



Current practice

The design is dominated by focus on

low-level GUI capabilities

(menus, buttons, dialog boxes, colors).

The user-interaction paradigm is not

a conscious part of the design.

The result is hard to change.

(

4

)



Model-View-Controller (MVC)

The model is formed by \abstract" data.

The view is a visual presentation of the data.

The controller is a process maintaining

the correspondence between model and view.

plane(11.04,

1.97)

plane(11.57,

1.10)

✈

✈
&%

'$

C

-� � -

(

5

)



The MVC Loop

The user \edits" (interacts with) the view.

The controller adjusts the model.

The application reacts and further changes

the model.

The controller adjusts the view.

(

6

)



States and events

Assume a state space �, and an

event space (or edit-action space) E .

The semantics of events is a mapping

M : E ! (� ! �)

We must de�ne this twice: once for the models,

and once for the views. The event space,

however, is shared between the two sides.

(

7

)



Event passing

s

m

s

v

? ?

�

e

user

acts

s

0

m

s

0

v

? ?

�

e

0

application

reacts

s

00

m

s

00

v

(

8

)



At the model side

Specify functions

esem : �� E ! �

react : � ! E

where esem(s; e) = M(e)(s)

(

9

)



Reacting to a stream

sreact : � ! E

!

! E

!

sreact s (e : es) = e

0

: sreact s

00

es

where s

0

= esem s e

e

0

= react s

0

s

00

= esem s

0

e

0

(

1

0

)



Approach

Specify the application side in SLANG.

Write the view side directly in some

conventional programming language

until we have enough experience to

know what we need.

Start with simple problems; gradually

expand to more ambitious problems.

(

1

1

)



Some tasks

� experiment with simple textual reactive systems

� test various ways of modelling reactivity

� design a GUI library at a good level of abstraction

� perform trials with GUI reactivity

� redo generic parts of view side

as much as possible using Specware

(

1

2

)


