Incremental Fixpoint Computation

Lambert Meertens*
Department of Algorithmics and Architecture, CWI, Amsterdam, and
Department of Computing Science, Utrecht University, The Netherlands
http://www.cwi.nl/cwi/people/Lambert.Meertens.html

Printed April 11, 2000

1 In the following (A, \sqsupseteq) is some poset, and $F: A \rightarrow A$ denotes a monotonic function.

2 A value $x \in A$ is a prefixpoint of F when $x \sqsupseteq F x$.
3 Define $\Pi=\Pi$ (false ${ }^{\mathrm{K}}$: id) and $\Perp=\Pi$ id. If A is Π-complete, both exist. We show that Π and \Perp - in spite of the asymmetric definitions given are each other's dual, i.e., Π is synonymous with $\pi^{\prime}=\bigsqcup$ id.

Proof. We show that both π and π^{\prime} dominate all elements of A.

First,

$$
\begin{array}{cc}
& \Pi \sqsupseteq z \\
\equiv & \{\text { definition of } \Pi\} \\
& \Pi\left(\text { false }^{k}: \text { id }\right) \sqsupseteq z \\
\equiv & \{\Pi \text {-characterization }\} \\
& \forall\left(\text { false }^{k}: \text { id } \doteq z\right) \\
\equiv & \{\text { shunting, propositional calculus }\}
\end{array}
$$

[^0]true
Next,
\[

$$
\begin{array}{cc}
& \pi^{\prime} \sqsupseteq z \\
\equiv & \left\{\text { definition of } \pi^{\prime}\right\} \\
& \begin{array}{l}
\text { id } \\
\\
\risingdotseq \\
\\
\\
\\
\text { true }
\end{array}
\end{array}
$$
\]

So

$$
\begin{aligned}
& \pi=\pi^{\prime} \\
& \equiv \quad\{\text { indirect equality }\} \\
& \forall\left(z:: \pi \sqsupseteq z \equiv \pi^{\prime} \sqsupseteq z\right) \\
& \equiv \quad \text { \{just shown }\} \\
& \forall(z:: \text { true } \equiv \text { true }) \\
& \equiv \quad \text { \{propositional calculus\} } \\
& \text { true }
\end{aligned}
$$

End of proof.
4 If A is finite and \sqcap-complete (i.e., all binary \sqcap s exist), then all non-empty Π s exist. If, moreover, Π exists, A is Π-complete.

5 If A is Π-complete, it is also μ-complete, i.e., μF exists and equals $\Pi(\mathrm{id} \sqsupseteq F:$ id $)$. In words, the least fixpoint of F is the infimum of the set of prefixpoints of F.

6 A stream x is a mapping $x: \mathbb{N} \rightarrow B$ for some B. Instead of $x . n$ we also write, equivalently, x_{n}.

7 A stream x is finite when there exists a value x_{∞} and a natural s such that $\forall\left(n:: x_{s+n}=x_{\infty}\right)$, and we say then that x is finished at s and has final value x_{∞}. If such an x_{∞} and s exist, x_{∞} is unique but s is not.

If x is finished at $s, x_{\infty}=x_{s}$. It follows that x is finite iff there exists an s such that $\forall\left(n:: x_{s+n}=x_{s}\right)$, or, equivalently, $\forall\left(n:: x_{s+n+1}=x_{s+n}\right)$.

8 A stream $x: \mathbb{N} \rightarrow A$ is called ascending when x is a monotonic mapping, that is, $x_{i} \sqsupseteq x_{j} \Leftarrow i \geq j$.

If A is finite, each ascending stream is - non-constructively - finite.
Defining $\bar{x}=\left(n:: \bigsqcup\left(i: i \leq n: x_{i}\right)\right)$, the stream \bar{x} - if all Π s involved exist — is ascending for all x. Moreover, x is ascending iff $\bar{x}=x$.

9 A finite ascending stream x has final value $x_{\infty}=\bigsqcup x$.

10

Theorem 1: Let x be an ascending stream satisfying
(i) $\quad F x_{n} \sqsupseteq x_{n+1}$ for all n
(ii) $x_{0}=\Perp$
(iii) $x_{n+1} \sqsupset x_{n} \vee x_{n} \sqsupseteq F x_{n}$ for all n

Then:
(a) if there exists a natural s such that $x_{s} \sqsupseteq F x_{s}$, then x is finite
(b) $\quad \mu F \sqsupseteq x_{n}$ for all n
(c) if x is finite, $x_{\infty}=\mu F$

Proof. Denote $P=$ id $\doteq F$, i.e., the values satisfying P are the prefixpoints of F.

For part (a), we only need - next to the ascent of x - assumption (i). Define $Q_{n} \equiv x_{n+1}=x_{n} \wedge P x_{n}$. We will show that Q is ascending, but first we show that $Q=P \circ x$:

$$
\equiv \begin{gathered}
Q_{n} \equiv P x_{n} \\
\equiv \text { \{definition of } Q\} \\
\equiv \\
\begin{array}{c}
\left(x_{n+1}=x_{n} \wedge P x_{n}\right) \equiv P x_{n} \\
\quad \text { \{propositional calculus }\}
\end{array} \\
\\
x_{n+1}=x_{n} \Leftarrow P x_{n}
\end{gathered}
$$

$$
\begin{array}{ll}
\equiv & \begin{array}{c}
\left\{x_{n+1} \sqsupseteq x_{n}, \sqsupseteq \text { is antisymmetric }\right\} \\
\\
\equiv
\end{array} \quad \begin{array}{c}
x_{n} \sqsupseteq x_{n+1} \Leftarrow P x_{n} \\
\{\text { definition of } P\}
\end{array} \\
\equiv & x_{n} \sqsupseteq x_{n+1} \Leftarrow x_{n} \sqsupseteq F x_{n} \\
& \left\{(i) F x_{n} \sqsupseteq x_{n+1}, \sqsupseteq \text { is transitive }\right\}
\end{array}
$$

Then Q is ascending, since:

$$
\begin{array}{cc}
& Q_{n+1} \Leftarrow Q_{n} \\
\equiv & \{Q=P \circ x\} \\
\equiv & P x_{n+1} \Leftarrow Q_{n} \\
\equiv & \{\text { definition of } Q\} \\
& P x_{n+1} \Leftarrow\left(x_{n+1}=x_{n} \wedge P x_{n}\right) \\
\equiv & \quad \text { \{equational logic }\}
\end{array}
$$

We are now ready to show that x finishes at s if s is such that $x_{s} \sqsupseteq F x_{s}$:

$$
\left.\begin{array}{cc}
& \forall\left(n:: x_{s+n+1}=x_{s+n}\right) \\
\Leftarrow & \{\text { definition of } Q\} \\
\equiv & \forall\left(n:: Q_{s+n}\right) \\
& \{Q \text { is ascending }\} \\
& \forall\left(n:: \bar{Q}_{s+n}\right) \\
\equiv & \{\text { definition of } \bar{Q}\} \\
& \forall\left(n:: \exists\left(i: i \leq s+n: Q_{i}\right)\right) \\
\Leftarrow & \{\exists \text {-instantiation }\}
\end{array}\right\}
$$

For part (b) we use, in addition, assumption (ii), which provides the basis of a proof by natural induction. For the step:

$$
\begin{array}{cc}
& \mu F \sqsupseteq x_{n+1} \\
\Leftarrow & \left\{(i) F x_{n} \sqsupseteq x_{n+1}, \sqsupseteq \text { is transitive }\right\} \\
& \mu F \sqsupseteq F x_{n} \\
\equiv & \{\mu F \text { is fixpoint }\} \\
& F \mu F \sqsupseteq F x_{n} \\
\Leftarrow & \{F \text { is monotonic }\} \\
& \mu F \sqsupseteq x_{n}
\end{array}
$$

For part (c) we also use assumption (iii). Assume x finishes at s with final value x_{∞}. Instantiating $n=s$ in (iii), and using $x_{s+1}=x_{s}=x_{\infty}$, we obtain

$$
x_{\infty} \sqsupset x_{\infty} \vee x_{\infty} \sqsupseteq F x_{\infty}
$$

which by the antisymmetry of \sqsupseteq simplifies to

$$
x_{\infty} \sqsupseteq F x_{\infty}
$$

Then

$$
\begin{aligned}
& x_{\infty}=\mu F \\
& \equiv \quad\{\text { fixpoint properties }\} \\
& F x_{\infty}=x_{\infty} \wedge \mu F \sqsupseteq x_{\infty} \\
& \equiv \quad\left\{x_{\infty} \sqsupseteq F x_{\infty}, \sqsupseteq \text { is antisymmetic }\right\} \\
& F x_{\infty} \sqsupseteq x_{\infty} \wedge \mu F \sqsupseteq x_{\infty} \\
& \equiv \quad\left\{x_{\infty}=x_{s}=x_{s+1}\right\} \\
& F x_{s} \sqsupseteq x_{s+1} \wedge \mu F \sqsupseteq x_{s} \\
& \equiv \quad\{\text { left conjunct: }(i) \text {; right conjunct: }(b)\}
\end{aligned}
$$

End of proof.

11 Call (A, \sqsupseteq) well-roofed if each ascending stream is finite. A sufficient condition is finiteness of A.

The Theorem of item $\mathbf{1 0}$ gives a way to compute least fixpoints in well-roofed posets.

Assume F to be given. Let \mathcal{P} be any procedure - possibly non-deterministic, but effective - that, for given input x_{n}, produces output value x_{n+1} satisfying:

$$
\begin{aligned}
& F x_{n} \sqsupseteq x_{n+1} \sqsupseteq x_{n} \\
& F x_{n}=x_{n} \Leftarrow x_{n+1}=x_{n}
\end{aligned}
$$

So output x_{n+1} is bounded between $F x_{n}$ and x_{n}, and may only equal x_{n} if x_{n} is a fixpoint.

Then any stream starting with $x_{0}=\Perp$ and generated by iterating \mathcal{P} for $n=0,1,2, \ldots$, satisfies the conditions of the Theorem.

If the stream finishes - which is guaranteed under the assumption of wellroofedness - its final value is the least fixpoint. Otherwise, an (infinite) strictly ascending stream is produced.

12 A simple procedure is: take $x_{n+1}=F x_{n}$. To see that x is ascending, we appeal to induction.
(Basis)

$$
\begin{array}{cc}
\\
\equiv & x_{1} \sqsupseteq x_{0} \\
& \left\{\text { definition of } x_{0}\right\} \\
x_{1} \Perp & \sqsupseteq \Perp \\
& \quad\{\Perp \text {-characterization }\} \\
& \text { true }
\end{array}
$$

(Step)

$$
\begin{aligned}
& x_{n+2} \sqsupseteq x_{n+1} \\
& \equiv \quad\{\text { definition of } x\} \\
& F x_{n+1} \sqsupseteq F x_{n} \\
& \Leftarrow \quad\{F \text { is monotonic }\} \\
& x_{n+1} \sqsupseteq x_{n}
\end{aligned}
$$

13 Given two posets $\left(A, \sqsupseteq_{A}\right)$ and $\left(B, \sqsupseteq_{B}\right)$, the product ordering $\sqsupseteq_{A} \times \sqsupseteq_{B}$, denoted below by \exists_{\times}, is a relation on $A \times B$ defined by

$$
\left(a_{0}, b_{0}\right) \sqsupseteq_{\times}\left(a_{1}, b_{1}\right) \equiv a_{0} \sqsupseteq_{A} a_{1} \wedge b_{0} \sqsupseteq_{B} b_{1}
$$

It is again a partial-order relation.
Proof. In the proof expressions we omit the subscripts A_{A} and ${ }_{-B}$ since they can be immediately reconstructed and play no essential role.
(Reflexive antisymmetry) We combine the conjunction of the reflexivity and (weak) antisymmetry laws of relation R into the single reflexive-antisymmetry law $x R y \wedge y R x \equiv x=y$.

$$
\begin{array}{ll}
& \left(a_{0}, b_{0}\right) \sqsupseteq_{\times}\left(a_{1}, b_{1}\right) \wedge\left(a_{1}, b_{1}\right) \sqsupseteq_{\times}\left(a_{0}, b_{0}\right) \\
\equiv & \left\{\text { definition of } \sqsupseteq_{\times}\right\} \\
& a_{0} \sqsupseteq a_{1} \wedge b_{0} \sqsupseteq b_{1} \wedge a_{1} \sqsupseteq a_{0} \wedge b_{1} \sqsupseteq b_{0} \\
\equiv & \left\{\text { reshuffling, reflexive-antisymmetry of } \sqsupseteq_{A} \text { and } \sqsupseteq_{B}\right\} \\
& a_{0}=a_{1} \wedge b_{0}=b_{1} \\
\equiv & \{\text { equality of pairs }\} \\
& \left(a_{0}, b_{0}\right)=\left(a_{1}, b_{1}\right)
\end{array}
$$

(Transitivity)

$$
\begin{array}{cc}
& \left(a_{0}, b_{0}\right) \sqsupseteq_{\times}\left(a_{2}, b_{2}\right) \\
\equiv & \left\{\text { definition of } \sqsupseteq_{\times}\right\} \\
& a_{0} \sqsupseteq a_{2} \wedge b_{0} \sqsupseteq b_{2} \\
\Leftarrow & \left\{\text { transitivity of } \sqsupseteq_{A} \text { and } \sqsupseteq_{B}\right\} \\
& a_{0} \sqsupseteq a_{1} \wedge a_{1} \sqsupseteq a_{2} \wedge b_{0} \sqsupseteq_{B} b_{1} \wedge b_{1} \sqsupseteq_{B} b_{2} \\
\equiv & \left\{\text { reshuffling, definition of } \sqsupseteq_{\times}\right\} \\
& \left(a_{0}, b_{0}\right) \sqsupseteq_{\times}\left(a_{1}, b_{1}\right) \wedge\left(a_{1}, b_{1}\right) \sqsupseteq_{\times}\left(a_{2}, b_{2}\right)
\end{array}
$$

End of proof.

14 The binary partial-order product can be generalized to the product of any indexed collection of partial orders, at the same time generalizing lifted relation \doteq.

To define it we use a notation for " I-tuples", where I is the index set, that generalizes function comprehension. Let $\forall\left(i: i \in I: a_{i} \in A_{i}\right)$. Then $(i: i \in I$: a_{i}) denotes the corresponding element of $\Pi\left(i: i \in I: A_{i}\right)$.

Let a poset $\left(A_{i}, \sqsupseteq_{i}\right)$ be given for each $i \in I$. Then $\Pi\left(i: i \in I: \sqsupseteq_{i}\right)$, denoted below by \sqsupseteq_{Π}, is a partial-order relation on $\Pi\left(i: i \in I: A_{i}\right)$ defined by

$$
\left(i: i \in I: a_{i}\right) \sqsupseteq_{\Pi}\left(i: i \in I: b_{i}\right) \equiv \forall\left(i: i \in I: a_{i} \sqsupseteq_{i} b_{i}\right)
$$

The proof that this gives a partial order runs along the same lines as the proof just given for the binary version.

15 If $\left(i: i \in I: a_{i}\right) \sqsupset_{\text {п }}\left(i: i \in I: b_{i}\right)$, then there is some $i \in I$ such that $a_{i} \sqsupset_{i} b_{i}$.

Proof.

$$
\begin{array}{cc}
& \exists\left(i: i \in I: a_{i} \sqsupset_{i} b_{i}\right) \\
\equiv & \text { \{definition of } \sqsupset\} \\
& \exists\left(i: i \in I: a_{i} \sqsupseteq_{i} b_{i} \wedge a_{i} \neq b_{i}\right) \\
& \{\forall \text {-instantiation }\} \\
& \exists\left(i: i \in I: \forall\left(i: i \in I: a_{i} \sqsupseteq_{i} b_{i}\right) \wedge a_{i} \neq b_{i}\right) \\
\equiv & \left\{\wedge \text { - } \begin{array}{c}
\text {-distribution }\}
\end{array}\right. \\
& \forall\left(i: i \in I: a_{i} \sqsupseteq_{i} b_{i}\right) \wedge \exists\left(i: i \in I: a_{i} \neq b_{i}\right) \\
\equiv & \left\{\text { definition of } \sqsupseteq_{\Pi}, \text { equality of tuples }\right\} \\
& \left(i: i \in I: a_{i}\right) \sqsupseteq_{\Pi}\left(i: i \in I: b_{i}\right) \wedge\left(i: i \in I: a_{i}\right) \neq\left(i: i \in I: b_{i}\right) \\
\equiv & \{\text { definition of } \sqsupset\} \\
& \left(i: i \in I: a_{i}\right) \beth_{\Pi}\left(i: i \in I: b_{i}\right)
\end{array}
$$

End of proof.
16 Given two posets $\left(A, \sqsupseteq_{A}\right)$ and $\left(B, \beth_{B}\right)$, the lexical ordering $\sqsupseteq_{A} \rtimes \sqsupseteq_{B}$, denoted below by $\sqsupseteq \rtimes$, is a relation on $A \times B$ defined by

$$
\left(a_{0}, b_{0}\right) \sqsupseteq \rtimes\left(a_{1}, b_{1}\right) \equiv a_{0} \sqsupseteq_{A} a_{1} \wedge\left(a_{0} \sqsupset_{A} a_{1} \vee b_{0} \sqsupseteq_{B} b_{1}\right)
$$

It is again a partial-order relation, and a weakening of the product ordering.
Proof. (Reflexive antisymmetry)

$$
\begin{aligned}
&\left(a_{0}, b_{0}\right) \sqsupseteq \rtimes\left(a_{1}, b_{1}\right) \\
& \equiv \quad \wedge\left(a_{1}, b_{1}\right) \sqsupseteq \rtimes\left(a_{0}, b_{0}\right) \\
&\{\text { definition of } \sqsupseteq \rtimes\}
\end{aligned}
$$

$$
\begin{aligned}
& a_{0} \sqsupseteq a_{1} \wedge\left(a_{0} \sqsupset a_{1} \vee b_{0} \sqsupseteq b_{1}\right) \wedge \\
& a_{1} \sqsupseteq a_{0} \wedge\left(a_{1} \sqsupset a_{0} \vee b_{1} \sqsupseteq b_{0}\right) \\
& \left.\equiv \quad \text { \{reshuffling, reflexive-antisymmetry of } \sqsupseteq_{A}\right\} \\
& a_{0}=a_{1} \wedge\left(a_{0} \sqsupset a_{1} \vee b_{0} \sqsupseteq b_{1}\right) \wedge\left(a_{1} \sqsupset a_{0} \vee b_{1} \sqsupseteq b_{0}\right) \\
& \equiv \quad\left\{\wedge-\vee \text {-distribution, strong antisymmetry of } \sqsupset_{A}\right\} \\
& \left.a_{0}=a_{1} \wedge b_{0} \sqsupseteq b_{1} \wedge b_{1} \sqsupseteq b_{0}\right) \\
& \equiv \quad\left\{\text { reflexive-antisymmetry of } \sqsupseteq_{B}\right\} \\
& a_{0}=a_{1} \wedge b_{0}=b_{1} \\
& \equiv \quad\{\text { equality of pairs }\} \\
& \left(a_{0}, b_{0}\right)=\left(a_{1}, b_{1}\right)
\end{aligned}
$$

(Transitivity)

$$
\left.\begin{array}{cc}
& \left(a_{0}, b_{0}\right) \sqsupseteq \rtimes\left(a_{2}, b_{2}\right) \\
\equiv & \{\text { definition of } \sqsupseteq \rtimes
\end{array}\right\}
$$

(Weakening)

$$
\left.\begin{array}{cc}
& \left(a_{0}, b_{0}\right) \sqsupseteq \rtimes\left(a_{1}, b_{1}\right) \\
\equiv & \{\text { definition of } \sqsupseteq \star
\end{array}\right\}
$$

$$
\left(a_{0}, b_{0}\right) \sqsupseteq_{\times}\left(a_{1}, b_{1}\right)
$$

End of proof.
17 Let $(A, \sqsupseteq)=\left(\Pi\left(i: i \in I: A_{i}\right), \Pi\left(i: i \in I: \sqsupseteq_{i}\right)\right)$, where $\left(A_{i}, \sqsupseteq_{i}\right)$ is a poset for all $i \in I$. Below we omit the subscripts on the order relations \sqsupseteq_{i}.

To select the element indexed by i from I-tuple $x \in \Pi\left(i: i \in I: A_{i}\right)$ we write $x . i$, so

$$
x=\left(i: i \in I: a_{i}\right) \equiv \forall\left(i: i \in I: x . i=a_{i}\right)
$$

The tuple-update notation $x[. j \mapsto u]$, for $j \in J, u \in A_{j}$ is then defined by:

$$
\forall(i: i \in I \wedge i \neq j: x[. j \mapsto u] . i=x . i) \wedge x[. j \mapsto u] \cdot j=u
$$

Let further $F: A \rightarrow A$ be a monotonic function, and assume A is well-roofed.
We give a procedure as in $\mathbf{1 1}$ for the iterative computation of μF.

Given input x_{n}, output x_{n+1} is computed non-deterministically as follows:
Putting $y_{n}=F . x_{n}$,
(Case A) $\quad \exists\left(j: j \in I: y_{n} \cdot j \sqsupset x_{n} \cdot j\right): \quad x_{n+1}=x_{n}\left[\cdot j \mapsto y_{n} \cdot j\right]$
(Case B) otherwise : $\quad x_{n+1}=x_{n}$
The procedure is non-deterministic by its freedom to pick j. Note that, possibly, not all components of the I-tuple y_{n} have to be computed, but only as many as are needed to find an "infraction" of the form $y_{n} . j \sqsupset x_{n} . j$.

We have to show that the conditions imposed in $\mathbf{1 1}$ on x_{n+1} are fulfilled, which, given the definition of y_{n}, are:

$$
\begin{aligned}
& y_{n} \sqsupseteq x_{n+1} \sqsupseteq x_{n} \\
& y_{n}=x_{n} \Leftarrow x_{n+1}=x_{n}
\end{aligned}
$$

Proof. Various parts of the proof proceed by case analysis. In the scope of a "Case A" clause, j is the index of some infraction $y_{n} \cdot j \sqsupset x_{n} \cdot j$.

First we prove an auxiliary lemma, namely

$$
y_{n} \sqsupseteq x_{n+1} \Leftarrow y_{n} \sqsupseteq x_{n}
$$

(Case A)

$$
\begin{aligned}
& y_{n} \sqsupseteq x_{n+1} \\
& \equiv \quad\left\{\text { definition of } x_{n+1}(\text { Case A) }\}\right. \\
& y_{n} \sqsupseteq x_{n}\left[. j \mapsto y_{n} . j\right] \\
& \equiv \quad\left\{\text { definition of } \sqsupseteq_{\Pi}\right\} \\
& \forall\left(i: i \in I: y_{n} . i \sqsupseteq x_{n}\left[. j \mapsto y_{n} \cdot j\right] . i\right) \\
& \equiv \quad \text { \{range split, 1-pt rule }\} \\
& \forall\left(i: i \in I \wedge i \neq j: y_{n} . i \sqsupseteq x_{n}\left[\cdot j \mapsto y_{n} . j\right] . i\right) \wedge \\
& y_{n} \cdot j \sqsupseteq x_{n}\left[. j \mapsto y_{n} \cdot j\right] . j \\
& \equiv \quad\left\{\text { definition of }{ }_{-}\left[. \mapsto_{-}\right]\right\} \\
& \forall\left(i: i \in I \wedge i \neq j: y_{n} . i \sqsupseteq x_{n} . i\right) \wedge y_{n} . j \sqsupseteq y_{n} . j \\
& \equiv \quad\{\sqsupseteq \text { is reflexive }\} \\
& \forall\left(i: i \in I \wedge i \neq j: y_{n} . i \sqsupseteq x_{n} . i\right) \\
& \Leftarrow \quad \text { \{constriction\} } \\
& \forall\left(i: i \in I: y_{n} . i \sqsupseteq x_{n} . i\right) \\
& \equiv \quad\left\{\text { definition of } \sqsupseteq_{\Pi}\right\} \\
& y_{n} \sqsupseteq x_{n}
\end{aligned}
$$

(Case B)

$$
\equiv \begin{aligned}
y_{n} & \sqsupseteq x_{n+1} \\
& \left\{\text { definition of } x_{n+1}(\text { Case B })\right\} \\
y_{n} & \sqsupseteq x_{n}
\end{aligned}
$$

Now we deal with the components of the conditions on x_{n+1}.
For part " $x_{n+1} \sqsupseteq x_{n}$ " the proof proceeds by case analysis.
(Case A)

$$
\begin{aligned}
& x_{n+1} \sqsupseteq x_{n} \\
& \equiv \quad\left\{\text { definition of } x_{n+1} \text { (Case A) }\right\} \\
& x_{n}\left[. j \mapsto y_{n} \cdot j\right] \sqsupseteq x_{n} \\
& \equiv \quad\left\{\text { definition of } \sqsupseteq_{\Pi}\right\} \\
& \forall\left(i: i \in I: x_{n}\left[. j \mapsto y_{n} \cdot j\right] . i \sqsupseteq x_{n} \cdot i\right) \\
& \equiv \quad \text { \{range split, 1-pt rule }\} \\
& \forall\left(i: i \in I \wedge i \neq j: x_{n}\left[. j \mapsto y_{n} . j\right] . i \sqsupseteq x_{n} . i\right) \wedge x_{n}\left[. j \mapsto y_{n} . j\right] . j \sqsupseteq x_{n} . j \\
& \equiv \quad\left\{\text { definition of } _\left[. _\mapsto-\right]\right\} \\
& \forall\left(i: i \in I \wedge i \neq j: x_{n} . i \sqsupseteq x_{n} . i\right) \wedge y_{n} . j \sqsupseteq x_{n} . j \\
& \equiv \quad\{\sqsupseteq \text { is reflexive }\} \\
& y_{n} . j \sqsupseteq x_{n} . j \\
& \Leftarrow \quad\{\text { definition of } \sqsupset\} \\
& y_{n} . j \sqsupset x_{n} . j \\
& \equiv \quad\{\text { Case A\} } \\
& \text { true }
\end{aligned}
$$

(Case B)

$$
\begin{array}{ll}
\equiv & \begin{array}{c}
x_{n+1} \\
\\
\\
\\
\\
\\
x_{n} \sqsupseteq x_{n} \\
\\
\\
\\
\text { true }
\end{array}
\end{array}
$$

For part " $y_{n} \sqsupseteq x_{n+1}$ " the proof proceeds by induction.
(Basis)

$$
\begin{aligned}
& y_{0} \sqsupseteq x_{1} \\
& \Leftarrow \quad \text { \{auxiliary lemma\} } \\
& y_{0} \sqsupseteq x_{0} \\
& \equiv \quad\left\{\text { definition of } x_{0}\right\} \\
& y_{0} \Perp \sqsupseteq \Perp \\
& \equiv \quad\{\Perp \text {-characterization }\}
\end{aligned}
$$

true
(Step)

$$
\begin{aligned}
& y_{n+1} \sqsupseteq x_{n+2} \\
& \Leftarrow \quad \text { \{auxiliary lemma\} } \\
& y_{n+1} \sqsupseteq x_{n+1} \\
& \Leftarrow \quad\{\sqsupseteq \text { is transitive }\} \\
& y_{n+1} \sqsupseteq y_{n} \wedge y_{n} \sqsupseteq x_{n+1} \\
& \left.\equiv \quad \text { \{definition of } y_{n}\right\} \\
& F . x_{n+1} \sqsupseteq F . x_{n} \wedge y_{n} \sqsupseteq x_{n+1} \\
& \equiv \quad\left\{x_{n+1} \sqsupseteq x_{n} \text { (proved above), } F \text { is monotonic }\right\} \\
& y_{n} \sqsupseteq x_{n+1}
\end{aligned}
$$

Remark. Since we now have proved both $y_{n} \sqsupseteq x_{n+1}$ and $x_{n+1} \sqsupseteq x_{n}$, by the transitivity of \sqsupseteq we also have $y_{n} \sqsupseteq x_{n}$.

For part " $y_{n}=x_{n} \Leftarrow x_{n+1}=x_{n}$ " the proof proceeds again by case analysis. (Case A)

$$
\begin{aligned}
& \begin{array}{ll}
y_{n}= & x_{n} \\
\Leftarrow \quad & \text { \{propositional calculus }\}
\end{array} \\
& \text { false } \\
& \equiv \quad\{\text { definition of } \sqsupset\} \\
& y_{n} . j=x_{n} . j \wedge y_{n} . j \sqsupset x_{n} . j \\
& \equiv \quad\{\text { Case A }\} \\
& y_{n} . j=x_{n} \cdot j \\
& \equiv \quad\left\{\text { definition of } _\left[.-\mapsto_{-}\right]\right\} \\
& x_{n}\left[. j \mapsto y_{n} \cdot j\right] . j=x_{n} . j \\
& \equiv \quad\left\{\text { definition of } x_{n+1}(\text { Case A) }\}\right. \\
& x_{n+1} \cdot j=x_{n} \cdot j \\
& \Leftarrow \quad\{\text { Leibniz }\} \\
& x_{n+1}=x_{n}
\end{aligned}
$$

(Case B)

$$
\begin{aligned}
& y_{n}=x_{n} \\
& \equiv \quad\{\text { definition of } \sqsupset \text { \} } \\
& y_{n} \sqsupseteq x_{n} \wedge y_{n} \not \supset x_{n} \\
& \equiv \quad \text { \{remark above }\} \\
& y_{n} \not \neg x_{n} \\
& \Leftarrow \quad\{\text { by contraposition of } \mathbf{1 5}\} \\
& \neg \exists\left(j: j \in I: y_{n} . j \sqsupset x_{n} . j\right) \\
& \equiv \\
& \text { \{Case B }\} \\
& \text { true }
\end{aligned}
$$

End of proof.

[^0]: *This work was performed while visiting Kestrel Institute, Palo Alto.

