Nested Datatypes

Richard Bird ${ }^{1}$ and Lambert Meertens ${ }^{2}$
${ }^{1}$ Programming Research Group, Oxford University Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
bird@comlab.ox.ac.uk
${ }^{2}$ CWI and Department of Computer Science, Utrecht University, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
lambert@cwi.nl

Abstract

A nested datatype, also known as a non-regular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both theoretically important and useful in practice. The aim of this paper is to suggest a functorial semantics for such datatypes, with an associated calculational theory that mirrors and extends the standard theory for regular datatypes. Though elegant and generic, the proposed approach appears more limited than one would like, and some of the limitations are discussed.

Hark, by the bird's song ye may learn the nest.
Tennyson The Marriage of Geraint

1 Introduction

Consider the following three datatype definitions, all of which are legal Haskell declarations:
data List $a=$ NilL $\mid \operatorname{ConsL}(a$, List a)
data Nest $a=$ NilN $\mid \operatorname{ConsN}(a$, Nest $(a, a))$
data Bush $a=$ NilB $\mid \operatorname{ConsB}(a$, Bush (Bush a) $)$
The first type, List a, describes the familiar type of cons-lists. Elements of the second type Nest a are like cons-lists, but the lists are not homogeneous: each step down the list, entries are "squared". For example, using brackets and commas instead of the constructors $N i l N$ and ConsN, one value of type Nest Int is
$[7,(1,2),((6,7),(7,4)),(((2,5),(7,1)),((3,8),(9,3)))]$
This nest has four entries which, taken together, contain fifteen integers.
In the third type Bush a, at each step down the list, entries are "bushed". For example, one value of type Bush Int is

```
[ 4,
    [8,[5],[[3]]],
    [[7],[],[[[7]]]],
    [[[],[[0]]]]
]
```

This bush contains four entries, the first of which is an element of Int, the second an element of Bush Int, the third an element of Bush (Bush Int), and so on. In general, the n-th entry (counting from 0) of a list of type Bush a has type Bush ${ }^{n}$ a.

The datatype List a is an example of a so-called regular datatype, while Nest a and Bush a are examples of non-regular datatypes. Mycroft [17] calls such schemes polymorphic recursions. We prefer the term nested datatypes. In a regular datatype declaration, occurrences of the declared type on the right-hand side of the defining equation are restricted to copies of the left-hand side, so the recursion is "tail recursive". In a nested datatype declaration, occurrences of the datatype on the right-hand side appear with different instances of the accompanying type parameter(s), so the recursion is "nested".

In a language like Haskell or ML, with a Hindley-Milner type discipline, it is simply not possible to define all the useful functions one would like over a nested datatype, even though such datatype declarations are themselves perfectly legal. This remark applies even to recent extensions of such languages (in particular, Haskell 1.4), in which one is allowed to declare the types of problematic functions, and to use the type system for checking rather than inferring types. To be sure, a larger class of functions can now be defined, but one still cannot define important generic functions, such as fold, over nested types.

On the other hand, the most recent versions of Hugs and GHC (the Glasgow Haskell Compiler) both support so-called rank-2 type signatures, in which one can universally quantify over type constructors as well as types (see [20]). By using such signatures one can construct most of the functions over nested datatypes that one wants. We will return to this point below. However, rank-2 type signatures are not yet part of standard Haskell.

The upshot of the current situation is that nested datatypes have been rather neglected in functional programming. However, they are conceptually important and evidence is emerging (e.g. $[3,18,19]$) of their usefulness in functional data structure design. A brief illustration of what they can offer is given in Section 2.

Regular datatypes, on the other hand, are the bread and butter of functional programming. Recent work on polytypic programming (e.g. [2, 9, 15]) has systematised the mathematics of program construction with regular datatypes by focusing on a small number of generic operators, such as fold, that can be defined for all such types. The basic idea, reviewed below, is to define a regular datatype as an initial object in a category of F-algebras for an appropriate functor F. Indeed, this idea appeared much earlier in the categorical literature, for instance in [10]. As a consequence, polytypic programs are parametrised by one or more regular functors. Different instances of these functors yield the concrete programs we know and love.

The main aim of this paper is to investigate what form an appropriate functorial semantics for nested datatypes might take, thereby putting more 'poly' into 'polytypic'. The most appealing idea is to replace first-order functors with higher-order functors over functor categories. In part, the calculational theory remains much the same. However, there are limitations with this approach, in that some expressive power seems to be lost, and some care is needed in order that the standard functorial semantics of regular datatypes may be recovered as a special case. It is important to note that we will not consider datatype declarations containing function spaces in this paper; see $[6,16]$ for ways of dealing with function spaces in datatype declarations.

2 An example

Let us begin with a small example to show the potential of nested datatypes. The example was suggested to us by Oege de Moor. In the De Bruijn notation for lambda expressions, bound variables introduced by lambda abstractions are represented by natural numbers. An occurrence of a number n in an expression represents the bound variable introduced by the n-th nested lambda abstraction. For example, $\underline{0}(\underline{1} \underline{1})$ represents the lambda term

$$
\lambda x \cdot \lambda y \cdot x(y y)
$$

On the other hand, $\underline{0}(w \underline{1})$ represents the lambda term

$$
\lambda x \cdot \lambda y \cdot x(w y)
$$

in which w is a free variable.
One way to capture this scheme is to use a nested datatype:

$$
\begin{aligned}
& \text { data Term } a=\text { Var } a \mid \operatorname{App}(\operatorname{Term} a, \text { Term } a) \mid \operatorname{Abs}(\operatorname{Term}(\text { Bind } a)) \\
& \text { data Bind } a=\text { Zero } \mid \text { Succ } a
\end{aligned}
$$

Elements of Term a are either free variables (of type Var a), applications, or abstractions. In an abstraction, the outermost bound variable is represented by Var Zero, the next by Var (Succ Zero), and so on. Free variables in an abstraction containing n nested bindings have type $\operatorname{Var}\left(S u c c^{n} a\right)$. The type Term a is nested because Bind a appears as a parameter of Term on the right-hand side of the declaration.

For example, $\lambda x . \lambda y \cdot x(w y)$ may be represented by the following term of type Term Char:

$$
\operatorname{Abs}(\operatorname{Abs}(\operatorname{App}(\operatorname{Var} \operatorname{Zero}, \operatorname{App}(\operatorname{Var}(\operatorname{Succ}(\operatorname{Succ} ‘ w ’)), \operatorname{Var}(\text { Succ Zero })))))
$$

The closed lambda terms - those containing no free variables - are elements of Term Empty, where Empty is the empty type containing no members.

The function abstract, which takes a term and a variable and abstracts over that variable, can be defined in the following way:

$$
\begin{array}{ll}
\text { abstract } & ::(\text { Terma } a) \rightarrow \text { Terma } a \\
\text { abstract }(t, x) & =A b s(\operatorname{lift}(t, x))
\end{array}
$$

The function lift is defined by

$$
\begin{array}{ll}
\text { lift } & ::(\text { Term } a, a) \rightarrow \operatorname{Term}(\text { Bind a }) \\
\text { lift }(\operatorname{Var} y, x) & =\text { if } x=y \text { then Var Zero else Var }(\text { Succ } y) \\
\operatorname{lift}(\operatorname{App}(u, v), x) & =\operatorname{App}(\text { lift }(u, x), \text { lift }(v, x)) \\
\text { lift }(\text { Abst }, x) & =\text { Abs }(\text { lift }(t, \text { Succ } x))
\end{array}
$$

The β-reduction of a term is implemented by

$$
\begin{aligned}
& \text { reduce } \quad::(\text { Term } a, \text { Term } a) \rightarrow \text { Term a } \\
& \text { reduce }(\text { Abs } s, t)=\operatorname{subst}(s, t)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\text { subst } & ::(\operatorname{Term}(\text { Bind } a), \text { Term } a) \rightarrow \text { Term a } \\
\text { subst }(\operatorname{Var} Z e r o, t) & =t \\
\operatorname{subst}(\operatorname{Var}(\operatorname{Succ} x), t) & =\operatorname{Var} x \\
\operatorname{subst}(\operatorname{App}(u, v), t) & =\operatorname{App}(\operatorname{subst}(u, t), \operatorname{subst}(v, t)) \\
\operatorname{subst}(\operatorname{Abs} s, t) & =\operatorname{Abs}(\operatorname{subst}(s, \operatorname{term} \operatorname{Succ} t))
\end{array}
$$

The function $\operatorname{term} f$ maps f over a term:

$$
\begin{array}{ll}
\operatorname{term} & ::(a \rightarrow b) \rightarrow(\operatorname{Term} a \rightarrow \operatorname{Term} b) \\
\operatorname{term} f(\operatorname{Var} x) & =\operatorname{Var}(f x) \\
\operatorname{term} f(\operatorname{App}(u, v)) & =\operatorname{App}(\operatorname{term} f u, \operatorname{term} f v) \\
\operatorname{term} f(\operatorname{Abs} t) & =\operatorname{Abs}(\operatorname{term}(\operatorname{bind} f) t)
\end{array}
$$

The subsidiary function $\operatorname{bind} f$ maps f over elements of Bind a :

$$
\begin{array}{ll}
\text { bind } & ::(a \rightarrow b) \rightarrow(\text { Bind } a \rightarrow \text { Bind } b) \\
\text { bind } f \text { Zero } & =\text { Zero } \\
\text { bind } f(\text { Succ } x) & =\text { Succ }(f x)
\end{array}
$$

It is a routine induction to show that
reduce (abstract $(t, x), \operatorname{Var} x)=t$
for all terms t of type Term a and all x of type a.
Modulo the requirement that a and Bind a be declared as equality types (because elements are compared for equality in the definition of lift) the programs above are acceptable to Haskell 1.4, provided the type signatures are included as part of the definitions.

3 Datatypes as initial algebras

The standard semantics (see e.g. $[8,10]$) of inductive datatypes parametrised by n type parameters employs functors of type $\mathbf{C} \times \cdots \times \mathbf{C} \rightarrow \mathbf{C}$, where the product has $n+1$ occurrences of \mathbf{C}. For simplicity, we will consider only the case $n=1$. The category \mathbf{C} cannot be arbitrary: essentially, it has to contain finite sums and products, and colimits of all ascending chains. The category Fun (also known
as Set), whose objects are sets and whose arrows are typed total functions, has everything needed to make the theory work.

To illustrate, the declaration of List as a datatype is associated with a binary functor F whose action on objects of $\mathbf{C} \times \mathbf{C}$ is defined by

$$
F(a, b)=1+a \times b
$$

Introducing the unary functor F_{a}, where $F_{a}(b)=F(a, b)$, the declaration of List a can now be rewritten in the form
data List $a \stackrel{\alpha_{a}}{\longleftrightarrow} F_{a}($ List $a)$
in which $\alpha_{a}:: F_{a}($ List $a) \rightarrow$ List a. For the particular functor F associated with List, the arrow α_{a} takes the form $\left(N i l L_{a}, C_{\text {Cons }}^{a}\right.$), where $N i l L_{a}:: 1 \rightarrow$ List a and ConsL ${ }_{a}:: a \times$ List $a \rightarrow$ List a. This declaration can can be interpreted as the assertion that the arrow α_{a} and the object List a are the "least" values with this typing. More precisely, given any arrow

$$
f:: F_{a}(b) \rightarrow b
$$

the assertion is that there is a unique arrow $h::$ List $a \rightarrow b$ satisfying the equation

$$
h \cdot \alpha_{a}=f \cdot F\left(i d_{a}, h\right)
$$

The unique arrow h is denoted by fold f. The arrow h is also called a catamorphism, and the notation $(\llbracket f)$ is also used for fold f. In algebraic terms, List a is the carrier of the initial algebra α_{a} of the functor F_{a} and fold f is the unique F_{a}-homomorphism from the initial algebra to f.

A surprising number of consequences flow from this characterisation. In particular, fold α_{a} is the identity arrow on List a. Also, one can show that α_{a} is an isomorphism, with inverse fold $\left(F\left(i d_{a}, \alpha_{a}\right)\right)$. As a result, one can interpret the declaration of List as the assertion that, up to isomorphism, List a is the least fixed point of the equation $x=F(a, x)$.

The type constructor List can itself can be made into a functor by defining its action on an arrow $f: a \rightarrow b$ by

$$
\operatorname{list} f=\text { fold }\left(\alpha_{b} \cdot F(f, i d)\right)
$$

In functional programming list f is written map f. Expanding the definition of fold, we have

$$
\text { list } f \cdot \alpha_{a}=\alpha_{b} \cdot F(f, \text { list } f)
$$

This equation states that α is a natural transformation of type $\alpha:: G \rightarrow$ List, where $G a=F(a$, List $a)$.

The most important consequence of the characterisation is that it allows one to introduce new functions by structural recursion over a datatype. As a simple example, fold (zero, plus) sums the elements of a list of numbers.

Functors built from constant functors, type functors (like List), the identity and projection functors, using coproduct, product, and composition operations,
are called regular functors. For further details of the approach, consult, e.g., [12] or [1].

For Nest and Bush the theory above breaks down. For example, introducing $Q a=a \times a$ for the squaring functor, the corresponding functorial declaration for Nest would be

$$
\text { data Nest } a \stackrel{\alpha_{a}}{\longleftarrow} F(a, N e s t(Q a))
$$

where F is as before, and α_{a} applies NilN to left components and ConsN to right components. However, it is not clear over what class of algebras α_{a} can be asserted to be initial.

4 A higher-order semantics

There is an appealing semantics for dealing with datatypes such as Nest and Bush, which, however, has certain limitations. We will give the scheme, then point out the limitations, and then give an alternative scheme that overcomes some of them.

The idea is to use higher-order functors of type

$$
N a t(\mathbf{C}) \rightarrow N a t(\mathbf{C})
$$

where $\operatorname{Nat}(\mathbf{C})$ is the category whose objects are functors of type $\mathbf{C} \rightarrow \mathbf{C}$ and whose arrows are natural transformations. We will use calligraphic letters for higher-order functors, and small Greek letters for natural transformations. Again, the category \mathbf{C} cannot be arbitrary, but taking $\mathbf{C}=$ Fun gives everything one needs. Here are three examples.

Example 1. The declaration of List can be associated with a higher-order functor \mathcal{F} defined on objects (functors) by

$$
\begin{aligned}
& \mathcal{F}(F)(a)=1+a \times F(a) \\
& \mathcal{F}(F)(f)=i d_{1}+f \times F(f)
\end{aligned}
$$

These equations define $\mathcal{F}(F)$ to be a functor for each functor F. The functor \mathcal{F} can be expressed more briefly in the form

$$
\mathcal{F}(F)=K 1+I d \times F
$$

The constant functor $K a$ delivers the object a for all objects and the arrow $i d_{a}$ for all arrows, and $I d$ denotes the identity functor. The coproduct $(+)$ and product (\times) operations are applied pointwise.

The action of \mathcal{F} on arrows (natural transformations) is defined in a similar style by

$$
\mathcal{F}(\eta)=i d_{K 1}+i d \times \eta
$$

Here, $i d_{K 1}$ delivers the identity arrow $i d_{1}$ for each object of \mathbf{C}. If $\eta:: F \rightarrow G$, then $\mathcal{F}(\eta):: \mathcal{F}(F) \rightarrow \mathcal{F}(G)$. We have $\mathcal{F}(i d)=i d$, and $\mathcal{F}(\eta \cdot \psi)=\mathcal{F}(\eta) \cdot \mathcal{F}(\psi)$, so \mathcal{F} is itself a functor.

The previous declaration of List can now be written in the form
data List $\stackrel{\alpha}{\leftarrow} \mathcal{F}($ List $)$
and interpreted as the assertion that α is the initial \mathcal{F}-algebra.
Example 2. The declaration of Nest is associated with a functor \mathcal{F}, defined on objects (functors) by

$$
\begin{aligned}
& \mathcal{F}(F)(a)=1+a \times F(Q a) \\
& \mathcal{F}(F)(f)=i d_{1}+f \times F(Q f)
\end{aligned}
$$

where Q is the squaring functor. More briefly,

$$
\mathcal{F}(F)=K 1+I d \times(F \cdot Q)
$$

where $F \cdot Q$ denotes the (functor) composition of F and Q. Where convenient, we will also write this composition as $F Q$ for brevity.

The action of \mathcal{F} on arrows (natural transformations) is defined by

$$
\mathcal{F}(\eta)=i d_{K 1}+i d \times \eta Q
$$

where $\eta Q:: F Q \rightarrow G Q$ if $\eta:: F \rightarrow G$.
Example 3. The declaration of Bush is associated with a functor \mathcal{F}, defined on functors by

$$
\mathcal{F}(F)=K 1+I d \times(F \cdot F)
$$

and on natural transformations by

$$
\mathcal{F}(\eta)=i d_{K 1}+i d \times(\eta \star \eta)
$$

The operator \star denotes the horizontal composition of two natural transformations. If $\theta:: F \rightarrow G$ and $\psi:: H \rightarrow N$, then $\theta \star \psi:: F H \rightarrow G N$ is defined by $\theta \star \psi=\theta N \cdot F \psi$. In particular, if $\eta:: F \rightarrow G$, then $\eta \star \eta:: F F \rightarrow G G$.

Consider again the declaration of Nest given in the Introduction, and rewrite it in the form

$$
\text { data Nest } \stackrel{\alpha}{\longleftarrow} \mathcal{F}(\text { Nest })
$$

The assertion that α is the initial \mathcal{F}-algebra means that for any arrow φ :: $\mathcal{F}(F) \rightarrow F$, there is a unique arrow $\theta::$ Nest $\rightarrow F$ satisfying the equation

$$
\theta \cdot \alpha=\varphi \cdot \mathcal{F}(\theta)
$$

The unique arrow θ is again denoted by fold φ.
We can express the equation above in Haskell. Note that for the particular functor \mathcal{F} associated with Nest, the arrow φ takes the form $\varphi=(\varepsilon, \psi)$, where $\varepsilon:: K 1 \rightarrow F$ and $\psi:: I d \times F Q \rightarrow F$. For any type a, the component ε_{a} is
an arrow delivering a constant e of type $F a$, while ψ_{a} is an arrow f of type $(a, F(a, a)) \rightarrow F(a)$. Hence we can write

$$
\begin{array}{ll}
\text { fold }(e, f) \text { NilN } & =e \\
\text { fold }(e, f)(\operatorname{Cons} N(x, x p s)) & =f(x, \text { fold }(e, f) \text { xps })
\end{array}
$$

However, no principal type can be inferred for fold under the Hindley-Milner type discipline, so the use of fold in programs is denied us. Moreover, it is not possible to express the type of fold in any form that is acceptable to a standard Haskell type checker. On the other hand, in GHC (The Glasgow Haskell Compiler) one can declare the type of fold by using a rank- 2 type signature:

$$
\text { fold }::(\forall f . \forall b .((\forall a . f a),(\forall a \cdot(a, f(a, a)) \rightarrow f a)) \rightarrow \text { Nest } b \rightarrow f b)
$$

This declaration uses both local universal quantification and abstraction over a type constructor. Such a signature is called a rank-2 type signature. With this asserted type, the function fold passes the GHC type-checker.

Observe that in the proposed functorial scheme, unlike the previous one for regular datatypes, the operator fold takes natural transformations to natural transformations. In particular, the fact that Nest is a functor is part of the assertion that Nest is the least fixed point of \mathcal{F}. The arrow nest f cannot be defined as an instance of fold since it is not a natural transformation of the right type.

The typing $\alpha:: \mathcal{F}($ Nest $) \rightarrow$ Nest means that, given $f:: a \rightarrow b$, the following equation holds:

$$
\text { nest } f \cdot \alpha_{a}=\alpha_{b} \cdot \mathcal{F}(\text { nest }) f
$$

We can express this equation at the point level by

$$
\begin{array}{ll}
\text { nest } f \text { NilN } & =\text { NilN } \\
\text { nest } f(\operatorname{ConsN}(x, x p s)) & =\operatorname{ConsN}(f x, \text { nest }(\text { square } f) \text { xps })
\end{array}
$$

where square $f(x, y)=(f x, f y)$ is the action on arrows of the functor Q. The fact that nest is uniquely defined by these equations is therefore a consequence of the assertion that α is a natural transformation.

Exactly the same characterisation works for Bush. In particular, the arrow bush f satisfies

```
bush \(f\) NilB \(=\) NilB
bush \(f(\operatorname{ConsB}(x, x b s))=\operatorname{ConsB}(f x\), bush \((b u s h f) x b s)\)
```


5 Examples

To illustrate the use of folds over Nest and Bush, define $\tau:: Q \rightarrow$ List by

$$
\tau(x, y)=[x, y]
$$

Using τ and the natural transformation concat $::$ List \cdot List \rightarrow List, we have concat • list $\tau::$ List • $Q \rightarrow$ List, and so

$$
\alpha_{\text {List }} \cdot \mathcal{F}(\text { concat } \cdot \text { list } \tau):: \mathcal{F}(\text { List }) \rightarrow \text { List }
$$

where $\mathcal{F}(F)=K 1+I d \times F Q$ is the higher-order functor associated with Nest. The function listify, defined by

$$
\text { listify }=\text { fold }\left(\alpha_{\text {List }} \cdot \mathcal{F}(\text { concat } \cdot \text { list } \tau)\right)
$$

therefore has type listify :: Nest \rightarrow List. For example, listify takes

$$
[0,(1,1),((2,2),(3,3))] \text { to }[0,1,1,2,2,3,3]
$$

The converse function nestify :: List \rightarrow Nest can be defined by

$$
\text { nestify }=\text { fold }\left(\alpha_{\text {Nest }} \cdot \mathcal{F}(\text { nest } \delta)\right)
$$

where $\mathcal{F}(F)=K 1+I d \times F$ is the higher-order functor associated with List, and $\delta a=(a, a)$ has type $\delta:: I d \rightarrow Q$. For example, nestify takes

$$
[0,1,2] \text { to }[0,(1,1),((2,2),(2,2))]
$$

For another example, define $\sigma:: Q \rightarrow$ Bush by

$$
\sigma(x, y)=[x,[y]]
$$

Then bush $\sigma::$ Bush $\cdot Q \rightarrow$ Bush \cdot Bush, and so

$$
\alpha_{\text {Bush }} \cdot \mathcal{F}(\text { bush } \sigma):: \mathcal{F}(\text { Bush }) \rightarrow \text { Bush }
$$

where $\mathcal{F}(F)=K 1+I d \times F Q$ is the functor associated with Nest. Hence

$$
\text { bushify }=\text { fold }\left(\alpha_{\text {Bush }} \cdot \mathcal{F}(\text { bush } \sigma)\right)
$$

has type bushify :: Nest \rightarrow Bush. For example, bushify sends

$$
[1,(2,3),((4,5),(6,7))] \text { to }[1,[2,[3]],[[4,[5]],[[6,[7]]]]]
$$

6 The problem

The basic problem with the higher-order approach described above concerns expressive power. Part of the problem is that it does not generalise the standard semantics for regular datatypes; in particular, it does not enable us to make use of the standard instances of fold over such datatypes. To see why not, let us compare the two semantics for the datatype List.

Under the standard semantics, fold $f::$ List $a \rightarrow b$ when $f:: 1+a \times b \rightarrow b$. For example,
fold (zero, plus) :: List Int \rightarrow Int
sums a list of integers, where zero $:: 1 \rightarrow$ Int is a constant delivering 0 , and plus :: Int \times Int \rightarrow Int is binary addition.

As another example,
fold (nil, cat) :: List (List a) \rightarrow List a
concatenates a list of lists; this function was called concat above. The binary operator cat has type cat :: List $a \times$ List $a \rightarrow$ List a and concatenates two lists.

Under the new semantics, fold $\varphi::$ List $\rightarrow F$ when $\varphi:: K 1+I d \times F \rightarrow F$. We can no longer sum a list of integers with such a fold because plus is not a natural transformation of the right type. For fold (zero, plus) to be well-typed we require that plus has type plus :: Id \times KInt \rightarrow KInt. Thus,

$$
\text { plus }_{a}:: a \times \text { Int } \rightarrow \text { Int }
$$

for all a, and so plus would have to ignore its first argument.
Even worse, we cannot define concat :: List . List \rightarrow List as an instance of fold, even though it is a natural transformation. The binary concatenation operator cat does not have type

$$
\text { cat }:: \text { Id } \times \text { List } \rightarrow \text { List }
$$

because again it would have to ignore its first argument. Hence fold (nil, cat) is not well-typed.

On the other hand, $\alpha_{\text {Nest }} \cdot \mathcal{F}($ nest $\delta)$ does have type $K 1+I d \times N e s t \rightarrow N e s t$, so the definition of nestify given in the previous section is legitimate.

Putting the problem another way, in the standard semantics, fold f is defined by providing an arrow $f:: F(a, b) \rightarrow b$ for a fixed a and b; we cannot in general elevate f to a natural transformation that is parametric in a.

7 An alternative

Fortunately, for lists and other regular datatypes, there is a way out of this particular difficulty. Using the isomorphism defining List, the functor List $\cdot F$ satisfies the isomorphism

$$
\text { List } \cdot F \cong(K 1+I d \times L i s t) \cdot F \cong K 1+F \times(\text { List } \cdot F)
$$

Hence List $\cdot F$ is isomorphic to the "higher-order" datatype Listr F, declared by

$$
\text { data Listr } F \stackrel{\alpha}{\longleftarrow} K 1+F \times \text { Listr } F
$$

We can write the functor on the right as $\mathcal{F}(F$, Listr $F)$, where \mathcal{F} now is a higherorder binary functor of type

$$
\operatorname{Nat}(\mathbf{C}) \times \operatorname{Nat}(\mathbf{C}) \rightarrow \operatorname{Nat}(\mathbf{C})
$$

Over the higher-order datatype Listr F, the natural transformation fold φ takes an arrow $\varphi:: K 1+F \times G \rightarrow G$, and has type fold $\varphi::$ Listr $F \rightarrow G$. If we change Listr F to List $\cdot F$ in this signature, we have a useful fold operator for lists. In particular,

$$
\text { fold (zero, plus) }:: \text { List } \cdot \text { KInt } \rightarrow \text { KInt }
$$

since (zero, plus) :: K1 + KInt \times KInt \rightarrow KInt. The arrow fold (zero, plus) of $\operatorname{Nat}(\mathbf{C})$ is a natural transformation; since List \cdot KInt $=K($ List Int $)$, its component for any a is the standard fold fold (zero, plus) :: List Int \rightarrow Int.

By a similar device, all folds in the standard semantics are definable as folds in the new semantics, simply by lifting the associated algebra to be a natural transformation between constant functors.

More precisely, define Type a to be the least fixed point of a regular functor F_{a}, where $F_{a}(b)=F(a, b)$. Furthermore, define Typer G to be the least fixed point of \mathcal{F}_{G}, where $\mathcal{F}_{G}(H)=\mathcal{F}(G, H)$ and $\mathcal{F}(G, H) x=F(G x, H x)$ for all objects x. Take an algebra $f:: F(a, b) \rightarrow b$, and construct the natural transformation $\varphi:: \mathcal{F}(K a, K b) \rightarrow K b$ by setting $\varphi=K f$. This is type correct since

$$
\mathcal{F}(K a, K b) x=F(K a(x), K b(x))=F(a, b) \quad \text { and } \quad K b(x)=b
$$

Then fold $f::$ Type $a \rightarrow b$, and fold $\varphi::$ Typer $K a \rightarrow K b$ satisfy

$$
\text { fold } \varphi=K(\text { fold } f)
$$

under the isomorphism Typer $K a=K($ Type $a)$.
Thus, not only do we generalise from the defining expression for List by replacing occurrences of List by G, we also generalise by replacing occurrences of $I d$ by a functor F.

However, the same idea does not work for nested datatypes such as Nest. This time we have

$$
\text { Nest } \cdot F \cong(K 1+I d \times(\text { Nest } \cdot Q)) \cdot F \cong K 1+F \times(\text { Nest } \cdot Q \cdot F)
$$

The type Nest $\cdot F$ is quite different from the datatype defined by

$$
\text { data } N e s t r F \stackrel{\alpha}{\leftarrow} K 1+F \times((\text { Nestr } F) \cdot Q)
$$

For example, Nest (List a) is the type of nests of lists over a, so the n-th entry of such a nest has type Q^{n} (List a). On the other hand the n-th entry of a nest of type Nestr List a has type List $\left(Q^{n} a\right)$.

Even more dramatically, the type Nest Int gives a nest of integers, but Nestr KInt b is isomorphic to ordinary lists of integers for all b. More generally, Nestr $K a$ is the constant functor $K($ List $a)$.

On the other hand, we have Nest $=$ Nestr Id, so the higher-order view is indeed a generalisation of the previous one.

8 Reductions

Replacing higher-order unary functors by higher-order binary functors enables us to integrate the standard theory of regular datatypes into the proposed scheme. Unfortunately, while the higher-order approach is elegant and generic, it seems limited in the scope of its applicability to nested datatypes, which is restricted to folding with natural transformations. For example, one cannot sum a nest of integers with a fold over nests. Such a computation is an instance of a useful general pattern called a reduction. It is possible to define reductions completely generically for all regular types (see [15]), but we do not know at present whether the same can be done for nested datatypes.

One way to sum a nest of integers is by first listifying the nest and then summing the result with a fold over lists. More generally, this strategy can be used to reduce a nest with an arbitrary binary operator \oplus and a seed e. For example,

$$
\left[x_{0},\left(x_{1}, x_{2}\right),\left(\left(x_{3}, x_{4}\right),\left(x_{5}, x_{6}\right)\right)\right]
$$

reduces to

$$
x_{0} \oplus\left(x_{1} \oplus\left(x_{2} \oplus \cdots \oplus\left(x_{6} \oplus e\right)\right)\right)
$$

It can be argued that this strategy for reducing over nests is unsatisfactory because the structure of the nest entries is not reflected in the way in which \oplus is applied. Better is to introduce a second operator \otimes and reduce the nest above to

$$
x_{0} \otimes\left(\left(x_{1} \oplus x_{2}\right) \otimes\left(\left(\left(x_{3} \oplus x_{4}\right) \oplus\left(x_{5} \oplus x_{6}\right)\right) \otimes e\right)\right)
$$

By taking \otimes to be \oplus, we obtain another way of reducing a nest.
The above pattern of computation can be factored as a fold over lists after a reduction to a list:

$$
\text { fold }(e, \otimes) \cdot \operatorname{reduce}(\oplus)
$$

With $(\oplus):: Q a \rightarrow a$, the function reduce (\oplus) has type Nest $a \rightarrow$ List a. For example, applied to the nest above, reduce (\oplus) produces

$$
\left[x_{0}, x_{1} \oplus x_{2},\left(x_{3} \oplus x_{4}\right) \oplus\left(x_{5} \oplus x_{6}\right)\right]
$$

There is no problem with defining reduce. In a functional style we can define

$$
\begin{aligned}
\text { reduce op NilN } & =\text { NilL } \\
\text { reduce op }(\operatorname{ConsN}(x, x p s)) & =\operatorname{ConsL}(x, \text { reduce op }(\text { nest op xps }))
\end{aligned}
$$

In effect, reduce op applies the following sequence of functions to the corresponding entries of a nest:

$$
[i d, \text { op, op } \cdot \text { square op, op } \cdot \text { square op } \cdot \text { square }(\text { square } o p), \ldots]
$$

The n-th element of this sequence has type $Q^{n} a \rightarrow a$ when op $:: Q a \rightarrow a$.
The reduction of a bush proceeds differently:

$$
\begin{aligned}
& \text { reduce }(e, \text { op }) \operatorname{NilB}=e \\
& \text { reduce }(e, o p)(\operatorname{ConsB}(x, x b s))= \\
& \qquad o p(x, \text { reduce }(e, o p)(\text { bush }(\text { reduce }(e, o p)) x b s))
\end{aligned}
$$

At present we see no systematic way of unifying reductions over nested datatypes, nor of relating them to the folds of previous sections.

9 Another approach

There is a way that higher-order folds and the reductions of the previous section can be unified, but whether or not the method is desirable from a calculational point of view remains to be seen. It requires a different and more complicated notion of folding over a nested datatpe, one that involves an infinite sequence of appropriate algebras to replace the infinite sequence of differently typed instances of the constructors of the datatype. We will briefly sketch the construction for the type Nest a.

The basic idea is to provide an infinite sequence of algebras to replace the constructor $\alpha=($ NilN, ConsN $)$ of Nest, one for each instance

$$
\alpha:: F\left(Q^{n} a, \operatorname{Nest}\left(Q^{n+1} a\right)\right) \rightarrow \operatorname{Nest}\left(Q^{n} a\right)
$$

where n is a natural number and $F(a, b)=1+a \times b$. For regular datatypes the application of fold f to a term can be viewed as the systematic replacement of the constructors by corresponding components of f, followed by an evaluation of the result. The same idea is adopted here for nested datatypes. However, whereas for regular datatypes each occurrence of a constructor in a term has the same typing, the same is not true for nested datatypes, hence the need to provide a collection of replacements.

In more detail, consider the datatype NestAlgs defined by

$$
\text { data NestAlgs } G(a, b)=\text { Cons }(F(a, G(Q b)) \rightarrow G b, \text { NestAlgs } G(Q a, Q b))
$$

The datatype NestAlgs is a coinductive, infinite, nested datatype. The n-th entry of a value of type NestAlgs $G(a, b)$ is an algebra of type

$$
F\left(Q^{n} a, G\left(Q^{n+1} b\right)\right) \rightarrow G\left(Q^{n} b\right)
$$

Now for $f s::$ NestAlgs $G(a, b)$, define fold $f s::$ Nest $a \rightarrow G b$ by the equation
fold $f s \cdot \alpha=$ head $f s \cdot F(i d$, fold $($ tail fs $))$
where

$$
\begin{aligned}
\text { head }(\text { Cons }(f, f s)) & =f \\
\operatorname{tail}(\text { Cons }(f, f s)) & =f s
\end{aligned}
$$

Equivalently

$$
\text { fold }(\operatorname{Cons}(f, f s)) \cdot \alpha=f \cdot F(i d, \text { fold } f s)
$$

To illustrate this style of fold, suppose $f:: a \rightarrow b$ and define generate $f::$ NestAlgs Nest (a, b) by

$$
\text { generate } f=\text { Cons }(\alpha \cdot F(f, i d), \text { generate }(\text { square } f))
$$

Then fold (generate f) :: Nest $a \rightarrow$ Nest b, and in fact

$$
\text { nest } f=\text { fold (generate } f)
$$

The functorial action of Nest on arrows can therefore be recovered as a fold. The proof of nest $(f \cdot g)=$ nest $f \cdot$ nest g makes use of coinduction.

As another example, suppose $\varphi:: \mathcal{F}(I d, G Q) \rightarrow G$ is a natural transformation, where $\mathcal{F}(M, N) a=F(M a, N a)$. Define repeat $\varphi::$ NestAlgs G by

```
repeat }\varphi=\mathrm{ Cons ( }\varphi,\mathrm{ repeat }\varphiQ
```

For each type a we have $(\text { repeat } \varphi)_{a}:: \operatorname{NestAlgs} G(a, a)$. The relationship between the higher-order folds of the previous sections and the current style of folds is that

$$
\text { fold } \varphi=\text { fold }(\text { repeat } \varphi)
$$

In particular, fold $($ repeat $\alpha)=i d::$ Nest \rightarrow Nest.
We can also define reductions as an instance of the new folds. Suppose $f:: F(a, a) \rightarrow a$, so $f=\left(f_{0}, f_{1}\right)$, where $f_{1}:: Q a \rightarrow a$. Define redalgs $f::$ NestAlgs Ka (a, b) by

$$
\begin{aligned}
\text { redalgs } f= & \text { red id } \\
& \text { where } \operatorname{red} k=\operatorname{Cons}\left(f \cdot F(k, i d), \operatorname{red}\left(f_{1} \cdot \text { square } k\right)\right)
\end{aligned}
$$

We have fold (redalgs f) :: Nest $a \rightarrow a$, and we claim that

$$
\text { reduce } f=\text { fold }(\text { redalgs } f)
$$

10 Conclusions

The results of this investigation into nested datatypes are still incomplete and in several aspects unsatisfactory. The higher-order folds are attractive, and the corresponding calculational theory is familiar, but they seem to lack sufficient expressive power. The approach sketched in the previous section for Nest is more general, but brings in more machinery. Furthermore, it is not clear what the right extension is to other nested datatypes such as Bush.

We have also ignored one crucial question in the foregoing discussion, namely, what is the guarantee that functors such as Nest and Nestr do in fact exist as least fixed points of their defining equations? The categorical incantation ensuring the existence of an initial F-algebra in a co-complete category \mathbf{C} is that, provided F is co-continuous, it is the colimit of the chain

$$
0 \hookrightarrow F 0 \hookrightarrow F F 0 \hookrightarrow \cdots
$$

The category Fun has everything needed to make this incantation work: Fun is co-complete (in fact, bi-complete) and all regular functors F on Fun are cocontinuous. The proof for polynomial functors can be found in [14], and the extension to type functors is in [13].

Moreover, the category Nat (Fun) inherits co-completeness from the base category Fun (see [11, 7]). We believe that all regular higher-order functors are co-continuous, though we have not yet found a proof of this in the literature, so the existence of datatypes like Nest and Bush is not likely to be problematic.

If we adopt the higher-order approach, then there is a need to give a systematic account of reductions over a nested datatype. If the alternative method of the previous section proves more useful, then there is a need to give a systematic account of the method, not only for an arbitrary inductive nested datatype, but also for coinductive nested datatypes.

Finally, in [4] (see also [5]) the idea was proposed that a datatype was a certain kind of functor called a relator, together with a membership relation. It needs to be seen how the notion of membership can be extended to nested datatypes

Acknowledgements

The authors would like to thank Ian Bayley, Jeremy Gibbons, Oege de Moor, Mark Jones, and Simon Peyton Jones for comments and discussions on the work. A particular debt is owed to Ross Paterson, who commented on an earlier draft of the paper. Thanks are also due to the anonymous referees who suggested numerous improvements.

References

1. R. Bird and O. de Moor. Algebra of Programming. International Series in Computing Science. Prentice Hall, 1996.
2. R. S. Bird, P. F. Hoogendijk, and O. De Moor. Generic programming with relations and functors. Journal of Functional Programming, 6(1):1-28, 1996.
3. R.H. Connelly and F. Lockwood Morris. A generalisation of the trie data structure. Mathematical Structures in Computer Science, 5(3):381-418, 1995.
4. Oege de Moor and Paul Hoogendijk. What is a datatype? Technical Report 96/16, Department of Maths and Computing Science, Eindhoven University of Technology, 1996.
5. Paul Hoogendijk. A Generic theory of Data Types. Ph.D Thesis, Eindhoven University of Technology, 1997.
6. L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with embedded functions. In 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing Machinery, 1996.
7. Peter Freyd. Algebraically complete categories. Springer-Verlag Lecture Notes in Mathematics, vol 1488, 95-104, 1990.
8. T. Hagino. Category theoretic approach to data types. PhD thesis, Laboratory for Foundations of Computer Science, University of Edinburgh, UK, 1987. Technical Report ECS-LFCS-87-38.
9. J. Jeuring. Polytypic pattern matching. In S. Peyton Jones, editor, Functional Programming and Computer Architecture, pages 238-248. Association for Computing Machinery, 1995.
10. J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift, 103:151-161, 1968.
11. Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer-Verlag, 1971.
12. G. Malcolm. Data structures and program transformation. Science of Computer Programming, 14(2-3):255-279, 1990.
13. G. Malcolm. Algebraic Data Types and Program Transformation. Ph.D thesis, University of Groningen, The Netherlands, 1990.
14. E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and Monographs in Computing Science. Springer-Verlag, 1986.
15. Lambert Meertens. Calculate polytypically! In Herbert Kuchen and S. Doaitse Swierstra, editors, Programming Languages: Implementations Logics, and Programs Proceedings Eighth International Symposium PLILP '96, volume 1140 of LNCS, pages 1-16. Springer-Verlag, 1996.
16. E. Meijer and G. Hutton. Bananas in space: extending fold and unfold to exponential types. In S. Peyton Jones, editor, Functional Progamming Languages and Computer Architecture, pages 324-333. Association for Computing Machinery, 1995.
17. A. Mycroft. Polymorphic type schemes and recursive definitions. In International Symposium on Programming, volume LNCS 167, pages 217-228. Springer-Verlag, 1984.
18. C. Okasaki. Purely Functional Data Structures. Ph.D thesis, School of Computer Science, Carnegie Mellon University, 1996.
19. C. Okasaki. Catenable double-ended queues. In Proceedings of the 1997 ACM SIGPLAN International Conference on Functional Programming (ICFP '97), pages 66-74. ACM, 1997.
20. S. Peyton Jones and J. Launchbury. Explicit quantification in Haskell. See: http://www.dcs.gla.ac.uk/people/personal/simonpj/.
