
Mescal

Requirements and Architecture

Lambert Meertens

CWI

Utrecht University

Kestrel Institute

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

)

Why?

� A piece of a typical calculation:

Can the Flipop Lemma be applied to

hsh(f; g)? Try to express this in the

form of �((�

�1

f)� (�

�1

g)) for some � :

hsh(f; g)

= f de�nition of hsh g

(Lf � g)� (f �Rg)

= f de�nition of � g

Cl fx 1 y j x 2 Lf�g; y 2 f�Rgg

= f � � � g

� � �

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

)

Program calculation

� This style of calculation is used

to derive programs from speci�cations,

typically by \massaging" them into a form

so that some theorem applies

� Usually this involves \solving for unknowns"

while checking applicability conditions

� Often this only succeeds by creating a

local \minitheory" with its own de�nitions

and lemmas

S

R

I

1

9

9

8

:

1

2

:

0

7

(

3

)

Problems : : :

� Finding the minitheory that works

may involve much trial and error

� With each revision many earlier steps

must be rechecked for validity

� The expressions involved quickly

become fairly large

� The resulting program is supposed

to be \correct by construction", but

trivial calculation errors easily sneak in,

in particular when revising an earlier

calculation

S

R

I

1

9

9

8

:

1

2

:

0

7

(

4

)

Using pencil and paper

� Pencil and paper is exible: notations

can be optimized for calculation;

compare

d

dx

FG =

dF

dx

G + F

dG

dx

with

diff(times(F,G),x) =

plus(times(diff(F,x),G),

times(F,diff(G,x)))

� No safeguards against errors

� Most revisions require tedious copying

� Easy to loose track of what still

must be proved

S

R

I

1

9

9

8

:

1

2

:

0

7

(

5

)

Using a prover

� Notationally typically more rigid

� Creating theories is more work than

you want to spend on disposable

minitheories

� Not always easy to postpone proof

obligations

� Easy to loose track of what you are

doing

� Revision is still cumbersome

S

R

I

1

9

9

8

:

1

2

:

0

7

(

6

)

Primary aim of Mescal

� Reduce tedium and chance of

clerical errors

� while retaining as much as

possible of the exibility

and \lightness" of working

with pencil and paper

S

R

I

1

9

9

8

:

1

2

:

0

7

(

7

)

Some non-requirements

� Mescal �nds the proofs for you

� A Mescal-\veri�ed" proof is correct

� Mescal compels its users to follow good

mathematical standards

S

R

I

1

9

9

8

:

1

2

:

0

7

(

8

)

Primary requirements

� WYSIWYG editing

*

� Users can de�ne their own notations

*

� Notation can be changed on the y

*

� Non-formal and formal text can be

freely mixed, just as in a research paper

*

� The formal parts may come from multiple

formalisms, and may be heterogeneous

� Users can de�ne their own formalisms

� Validity can be checked to the level desired

by the user (from not-at-all to fully)

� Validity checking uses \spreadsheet

evaluation": once turned on, it is

automatically rechecked upon changes

to the text

* Features of Mathspad

S

R

I

1

9

9

8

:

1

2

:

0

7

(

9

)

Some possible formalisms

� Allegorical calculus

(Algebra of Programming)

� Category theory

� Relational calculus

� Lattice theory

� Polymorphic lambda calculus

� Haskell

� Java

� Analysis, Algebra, Geometry

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

0

)

Mescal as a kernel system

� Mescal has no built-in theories

but a meta-formalism that allows

the de�nition of formalisms

� Leverage will have to come from

the accumulated creation of libraries

of theories

� Mescal has only rudimentary

theorem-proving capabilities, but

will o�er facilities for hooking

up to \external engines" (provers,

type-checkers, compilers, interpreters,

computer-algebra systems, : : :)

� Mescal has roughly the native

proof-checking power of Automath

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

1

)

Formalisms

� Forms are generated by formation rules

of a multi-sorted algebra

� Each form belongs to a formalism

� Forms appear in some context

� The context may impose additional

requirements on the forms

� Forms may carry certi�cates

issued by some formalism

� Certi�cates are again forms

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

2

)

Examples of certi�cates

FORM :: CERTIFICATE

� Expression E :: has type �

� Proposition P :: holds

� Proof f :: is constructive

� Program p :: is type-correct

� Program p :: implements spec S

� Function f :: is uniformly continuous

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

3

)

Certi�cates

� are created by certi�cation rules

(which are like logic inference rules, but

may involve arbitrary computations)

� identify \assumptions" used from the

context

� usually identify a witness (or the

information needed to reconstruct it)

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

4

)

Live constraints

X |

(

R

)

| Y

Objects X and Y are \linked" by constraint R:

� At all times X (R) Y holds

� When X changes, Y is made to change

(if necessary) as well, so that the validity

of X (R) Y is restored.

� Likewise when Y changes

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

5

)

Example: X |

(

�

)

| Y

�

indicates \spontaneous" change

�

�

�

�

indicates constraint-restoring change

X Y

| |

3 4

2 4

�

�

�

1 1

1 4

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

6

)

Constraints may form a network

� Example: X |

(

�

)

| Y |

(

SQ

)

| Z

X Y Z

| | |

3 4 16

�

�

�

�

�

�

5 5 25

�

�

�

�

�

�

4.69 4.69 22

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

7

)

Constraints may involve structure

� Example: X |

(

MAP(SQ)

)

| Y

X Y

|| ||

[1,3] [1,9]

�

�

�

[2,3] [4,9]

�

�

�

[2,3,1] [4,9,1]

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

8

)

Implementation of constraints

� Let R : A �B be a ditotal relation

� A maintainer of R is a pair of functions

/ : A�B ! A

. : A�B !B

such that for all x 2 A and y 2 B

(x / y)(R)y and x(R)(x . y)

� After a change to y, x := x / y

is executed, and likewise for x

� In addition, the change should be

\as small as possible"

S

R

I

1

9

9

8

:

1

2

:

0

7

(

1

9

)

The certi�cation rules

� are embodied in \edit steps"

which may be performed on forms

� An edit step takes zero or more

forms as parameters and then

computes (if possible) a new

form as result

� The edit step may use the parameters,

as well as any certi�cates they carry,

to compute a certi�cate for the new

form

� The computation procedure is expressed

as and recorded in the form of a

constraint network

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

0

)

Example edit step in calculation

� Edit focus is on:

f(x) � f(y)

� Apply command \MONOTONICITY"

� Result :

f(x) � f(y)

(f f is monotonic g

x � y

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

1

)

Edit step \MONOTONICITY"

� take term XRY where R is an order

� determine lsg hC[]; x; yi

such that X = C[x], Y = C[y]

� determine appropriate domain order r

� create proof obligation

� := \is-monotonic(C)"

� produce new term XRY (f�g x r y

� set up the constraint network

� if OK, replace term by new term

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

2

)

Resulting term with constraints

� The term:

XRY

(f � g

x r y

� The constraints:

hX; Y i |

(

LSG

)

| hC[]; x; yi

hC[]; x; yi |

(

ADO

)

| r

hC[]; R; ri |

(

PrObl

M

)

| �

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

3

)

Specifying the edit step

� Can fully be done by supplying

{ template terms for source/result

{ the constraint network in symbolic form

{ constraint de�nitions

� ADO = Appropriate Domain Order

{ use knowledge about C[]

and/or type of x and y

{ obtain from prover or use heuristic

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

4

)

Discharging proof obligations

� In principle the task of the user

� Dispatch lazily to some prover

(represented as a constraint)

{ \internal" prover

{ external prover(s)

{ the user

� Internal prover for trivial cases:

(if f has attribute \is-monotonic

00

this counts as a proof)

and maybe less trivial ones:

(if f and g are monotonic,

so is f(g()))

� Edit step in theorems/lemmas:

add obligation to the assumptions

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

5

)

Other views

� The approach is not speci�c

to the calculational proof style:

the term:

XRY

(f � g

x r y

may also be presented thus:

� x r y

XRY

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

6

)

Major open issues

� A convenient \scripting language" for

giving constraint de�nitions

� A convenient \scripting language" for

specifying hook-up to external engines

(protocol!)

� Facilities for formal diagrams

S

R

I

1

9

9

8

:

1

2

:

0

7

(

2

7

)

