Mescal

Requirements and Architecture

Lambert Meertens

CWI Utrecht University Kestrel Institute

Why?

• A piece of a typical calculation:

Can the Flipflop Lemma be applied to hsh(f,g)? Try to express this in the form of $\xi((\xi^{-1}f) \odot (\xi^{-1}g))$ for some ξ :

 $\mathsf{hsh}(f,g)$

. . .

 $= \{ \text{ definition of hsh } \}$

$$(\mathsf{L} f \oplus g) \odot (f \oplus \mathsf{R} g)$$

 $= \{ \text{ definition of } \odot \}$ $Cl \{ x \bowtie y \mid x \in \mathsf{L}f \oplus g, y \in f \oplus \mathsf{R}g \}$ $= \{ \cdots \}$

Program calculation

- This style of calculation is used to derive programs from specifications, typically by "massaging" them into a form so that some theorem applies
- Usually this involves "solving for unknowns" while checking applicability conditions
- Often this only succeeds by creating a local "minitheory" with its own definitions and lemmas

Problems ...

- Finding the minitheory that works may involve much trial and error
- With each revision many earlier steps must be rechecked for validity
- The expressions involved quickly become fairly large
- The resulting program is supposed to be "correct by construction", but trivial calculation errors easily sneak in, in particular when revising an earlier calculation

Using pencil and paper

 Pencil and paper is flexible: notations can be optimized for calculation; compare

$$\frac{\mathrm{d}}{\mathrm{d}\mathsf{x}}FG = \frac{\mathrm{d}F}{\mathrm{d}x}G + F\frac{\mathrm{d}G}{\mathrm{d}x}$$

with

diff(times(F,G),x) =
plus(times(diff(F,x),G),
times(F,diff(G,x)))

- No safeguards against errors
- Most revisions require tedious copying
- Easy to loose track of what still must be proved

Using a prover

- Notationally typically more rigid
- Creating theories is more work than you want to spend on disposable minitheories
- Not always easy to postpone proof obligations
- Easy to loose track of what you are doing
- Revision is still cumbersome

Primary aim of Mescal

- Reduce tedium and chance of clerical errors
- while retaining as much as possible of the flexibility and "lightness" of working with pencil and paper

Some non-requirements

- Mescal finds the proofs for you
- A Mescal- "verified" proof is correct
- Mescal compels its users to follow good mathematical standards

Primary requirements

- WYSIWYG editing*
- Users can define their own notations *
- Notation can be changed on the fly st
- Non-formal and formal text can be freely mixed, just as in a research paper^{*}
- The formal parts may come from multiple formalisms, and may be heterogeneous
- Users can define their own formalisms
- Validity can be checked to the level desired by the user (from not-at-all to fully)
- Validity checking uses "spreadsheet evaluation": once turned on, it is automatically rechecked upon changes to the text

^{*} Features of Mathspad

Some possible formalisms

- Allegorical calculus (*Algebra of Programming*)
- Category theory
- Relational calculus
- Lattice theory
- Polymorphic lambda calculus
- Haskell
- Java
- Analysis, Algebra, Geometry

Mescal as a kernel system

- Mescal has no built-in theories but a meta-formalism that allows the definition of formalisms
- Leverage will have to come from the accumulated creation of libraries of theories
- Mescal has only rudimentary theorem-proving capabilities, but will offer facilities for hooking up to "external engines" (provers, type-checkers, compilers, interpreters, computer-algebra systems, ...)
- Mescal has roughly the native proof-checking power of Automath

Formalisms

- Forms are generated by formation rules of a multi-sorted algebra
- Each form belongs to a formalism
- Forms appear in some *context*
- The context may impose additional requirements on the forms
- Forms may carry *certificates* issued by some formalism
- Certificates are again forms

Examples of certificates

FORM :: CERTIFICATE

- Expression E :: has type τ
- Proposition P :: holds
- Proof f :: is constructive
- Program p :: is type-correct
- Program p :: implements spec S
- Function f :: is uniformly continuous

Certificates

- are created by *certification rules* (which are like logic inference rules, but may involve arbitrary computations)
- identify "assumptions" used from the context
- usually identify a *witness* (or the information needed to reconstruct it)

Live constraints

 $X \quad -(\mathsf{R}) - Y$

Objects X and Y are "linked" by constraint R:

- At all times $X(\mathbf{R}) Y$ holds
- When X changes, Y is made to change (if necessary) as well, so that the validity of X (R) Y is restored.
- Likewise when Y changes

Example: $X - (\leq) - Y$

- 🛃 indicates "spontaneous" change
- indicates constraint-restoring change

Constraints may form a network

• Example:
$$X - (\leq) - Y - (SQ) - Z$$

Constraints may involve structure

• Example: X - (MAP(SQ)) - Y

Implementation of constraints

- Let $R : A \sim B$ be a ditotal relation
- A maintainer of R is a pair of functions

such that for all $x \in A$ and $y \in B$

 $(x \triangleleft y)(\mathsf{R})y$ and $x(\mathsf{R})(x \triangleright y)$

- After a change to y, x := x ⊲ y is executed, and likewise for x
- In addition, the change should be "as small as possible"

The certification rules

- are embodied in "edit steps" which may be performed on forms
- An edit step takes zero or more forms as parameters and then computes (if possible) a new form as result
- The edit step may use the parameters, as well as any certificates they carry, to compute a certificate for the new form
- The computation procedure is expressed as and recorded in the form of a constraint network

Example edit step in calculation

• Edit focus is on:

 $f(x) \le f(y)$

- Apply command "MONOTONICITY"
- Result:

$$\begin{array}{l} f(x) \leq f(y) \\ \Leftarrow & \{ \ f \ \text{is monotonic} \ \} \\ x \leq y \end{array}$$

Edit step "MONOTONICITY"

- take term XRY where R is an order
- determine lsg $\langle C[-], x, y \rangle$ such that X = C[x], Y = C[y]
- determine appropriate domain order r
- create proof obligation $\pi :=$ "is-monotonic(C)"
- produce new term $XRY \leftarrow \{\pi\} x r y$
- set up the constraint network
- if OK, replace term by new term

Resulting term with constraints

• The term:

$$\begin{array}{c} XRY \\ \Leftarrow \quad \{ \pi \} \\ xry \end{array}$$

• The constraints:

$$\begin{array}{ll} \langle X, Y \rangle & -(\mathsf{LSG}) - & \langle C[_], x, y \rangle \\ \langle C[_], x, y \rangle & -(\mathsf{ADO}) - & r \\ \langle C[_], R, r \rangle & -(\mathsf{PrObl}_{\mathsf{M}}) - & \pi \end{array}$$

Specifying the edit step

- Can fully be done by supplying
 - template terms for source/result
 - the constraint network in symbolic form
 - constraint definitions
- ADO = Appropriate Domain Order
 - use knowledge about $C[_]$
 - and/or type of x and y
 - obtain from prover or use heuristic

Discharging proof obligations

- In principle the task of the user
- Dispatch lazily to some prover (represented as a constraint)
 - "internal" prover
 - external prover(s)
 - the user
- Internal prover for trivial cases:

 (if f has attribute "is-monotonic" this counts as a proof)
 and maybe less trivial ones:
 (if f and g are monotonic, so is f(g(_)))
- Edit step in theorems/lemmas: add obligation to the assumptions

Other views

• The approach is not specific to the calculational proof style: the term:

$$\begin{array}{c} XRY \\ \Leftarrow \quad \{ \pi \} \\ xry \end{array}$$

may also be presented thus:

$$\frac{\pi \quad x \, r \, y}{XR \, Y}$$

Major open issues

- A convenient "scripting language" for giving constraint definitions
- A convenient "scripting language" for specifying hook-up to external engines (protocol!)
- Facilities for formal diagrams