
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The ABC structure editor. Structure-based editing for the ABC
programming environment

L.G.L.T. Meertens, S. Pemberton, G. van Rossum

Computer Science/Department of Algorithmics and Architecture

CS-R9256 1992

The ABC Structure Editor
Structure-based Editing for the

ABC Programming Environment

Lambert Meertens, Steven Pemberton and Guido van Rossum

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: Lambert.Meertens@cwi.nl, Steven.Pemberton@cwi.nl,
Guido.van.Rossum@cwi.nl

Abstract
ABC is an interactive programming language where both ease of learning and
ease of use stood high amongst its principle design aims. The language is
embedded in a dedicated environment that includes a structure-based editor. To fit
in with the design aims, the editor had to be easy to learn, demanding a small
command set, and easy to use, demanding a powerful command set and strong
support for the user in composing programs, without enforcing a computer-
science understanding of issues of syntax and the like.
Some novel design rules have led to an interesting editor, where the user may
enter and edit text either structurally or non-structurally, without having to use
different “modes”.

1991 Mathematics Subject Classification: 68N15, 68Q50.
1991 CR Categories: D19, D.2.2, D.2.6, H.1.2, H.5.2.
Keywords and Phrases: programming environments, human factors, user interfaces,
editing, structure editing.

2 The ABC Structure Edi tor

1 Introduction
 This article concerns a dedicated structure editor that forms part of the ABC programming
environment. Several novel ideas have been applied in its design. While it is not the case
that all design aspects of the ABC editor generalise beyond the context to which it is
dedicated, many do, and even those that do not still offer points of interest.

ABC is a programming language and environment designed and implemented at the
CWI [6, 12]. The principal design aims were to provide a structured, interactive, and above
all simple language for beginning programmers, as a good alternative to BASIC, in which
“interactive” means that the language is embedded in a dedicated environment [5].

 From the inception of the project we have planned for applying an iterative method to
the design of the language. Indeed, since the first version of ABC (which was originally
called B), the language has been redesigned three more times, based on experiences
with each prior version [8, 9]. The current version of the language [6] is the fourth, and
while remaining true to its original aims, has matured into a language that is a useful and
powerful tool for beginners and experts alike.

An aim of the project was that ABC should be a complete programming
environment [16] offering a single face to the user, where it should not be necessary to
learn a separate command language, editor, file system, compiler, and programming
language, just in order to program.

To achieve this goal, the design of the ABC system was reduced to two elements: the
language, and a dedicated editor. ABC is used as both programming language and
command language, and for tasks where the ABC language is unsuitable, the editor is
used.

The ABC language is not a topic of this paper, but some of its syntactic characteristics
are relevant to some discussion points. The following is a typical piece of ABC code:

PUT 0 IN count
FOR di, dj IN neighbours:

IF (i+di, j+dj) in keys c:
PUT count+c[i+di, j+dj] IN count

SELECT:
count = 3 OR count+c[i, j] = 3:

PUT 1 IN n[i, j]
ELSE:

PUT 0 IN n[i, j]

The commands of ABC have a skeleton of keywords (like “PUT … IN …”) alternating
with expressions. Layout is significant. In particular, each command starts on a new line,
and grouping is indicated by indentation. So the FOR command governs the next two lines,
up to but not including the equi-indented SELECT command. Note that this is not just
automatic prettyprinting; in ABC the layout is not redundant, unlike in a prettyprinted
Pascal or C program.

2 General design aims
The design considerations for the ABC editor, described in the next section, must be
understood in the light of the general design aims for the complete ABC environment,
including the language.

General design aims 3

Of the three design objectives: structured, interactive, and simple, we concentrate
here on the last one. The first was aimed primarily at the language per se, and the second
is too obvious a requirement in relation to editor design — which is the topic of this paper
— to warrant a separate discussion.

Our objective of simplicity refers both to the ease of learning and to the ease of use.
While these two are often perceived as conflicting aims in user-interface design,
necessitating separate forms of support for novices or casual users and for more
seasoned or regular users, we felt that ease of use is also of great importance for
beginning users, and that these two aspects of simplicity are not irreconcilable when
approached in an integrated way. Although this has not always been easy, in retrospect
we feel that we have been successful in combining these aims, if only because the
insistence upon both aspects forced us to reconsider solutions that would otherwise have
been deemed acceptable, to challenge set approaches, and to identify the fundamental
aspects of the issues involved. Thus, solutions have been found that would otherwise
never have surfaced. Other evidence that the needs of a spectrum of users can be
accommodated by a single design is reported on in [7].

The design of the language has largely preceded that of the rest of the environment.
An unusual approach, at least compared with the approach taken in the design of most
other languages, was used for the ABC language: a specific (although not detailed) user
model and the user’s (intended) mental model were the driving force for the design. It is,
perhaps, also unusual that we consciously chose a user model that is somewhat
unrealistic in its extremeness. More precisely, in the design of the language the user
model was that of a naive, pristine, beginning computer user with only positive
expectations of computers. This ideotypical target user is the very antithesis of the
computer sophisticate, who has grown, if not callous, then at least used and resigned to
the many often quite arbitrary limitations and peculiarities of current computer systems. In
terms of this user model our aim can concisely (but simplistically) be formulated as the
wish not to spoil the user’s expectations by confrontation with the “facts of life” of
computerdom, but offering a shock-free, ideal, environment. So, for example, rather than
basing the conceptual model for the language on some machine-oriented implementation
model (the design approach consciously chosen for, e.g., Pascal, ALGOL 68, and C, and
apparently also at least implicitly for most other common languages), we aimed vigorously
at finding those concepts that were most appropriate for the user’s task from a human-
oriented point of view.

To help ourselves in enforcing this approach, consideration of implementation issues
was anathema during a design phase. Only after the completion of a design iteration was
the question of how to implement the design efficiently allowed to be addressed, and could
new implementation methods be researched. (Actually, this stern attitude was only taken
from the third design iteration on, which started in 1980.)

This approach has paid off: it has resulted in a language that can be learned in its
entirety in a couple of hours, and yet offers an order of magnitude improvement in
programming time over traditional languages like C, Pascal or BASIC. Quite naturally
then, we adopted the same approach for the design of the environment.

To assist, specifically, in the difficult design aim of integrating the two aspects of
simplicity, several basic rules were formulated to guide the design, and to measure
particular decisions against. The set of design rules we used was not fixed once-and-for-
all in advance; rather, it evolved during the design process from our attempts to identify
the commonalities in the rationales for various design decisions (although a surprisingly
large subset can already be seen in the discussion of the design objectives in [5]). The
explicit formulation of the principles that appeared to guide earlier decisions was also

4 The ABC Structure Edi tor

helpful in increasing the overall consistency of the design. While these rules were not
intended as hard-and-fast prerequisites of any design decision, they proved to be
extremely useful rules-of-thumb.

Of the rules formulated, we mention here only the most important two:

! Economy-of-Tools Rule:
The number of concepts (functions, features etc.) is small, but the concepts
themselves are powerful and on the appropriate, task-oriented, abstraction level.

! Fair-Expectation Rule:
If a concept may be lawfully used in context X, and the same concept is
(conceptually) applicable in context Y, then it may be lawfully used in context Y,
with the expected meaning.

 It is apparent that these two rules are of a different nature. The application of the first
one requires an understanding of the task domain. The way it was used was as follows.
For “candidate” concepts we asked the question for what (higher-level) tasks they would
be useful, and next what the most appropriate basic concept(s) were for addressing these
specific tasks. While it may not be obvious that this helps to keep the set of “tools” small, it
actually does, in particular in combination with the next design rule, whose application is
fairly straightforward. Other design rules, not elaborated upon here, concern, for example,
uniformity and incremental learnability.

A particular general design requirement for the ABC environment was that it should be
“modeless”. While it is inescapable that the history of the keys struck up to a given point
has a bearing on the interpretation of further key strokes, so that it is not feasible (nor
desirable) to make the system entirely “stateless”, the user of the system should never
have to deal with different modes of operation. In particular, this implies that the user
never “leaves” the editor: all user input to the system is effected through the ABC editor,
whether it be while entering or modifying a program, giving commands to be immediately
executed, or providing input to a running program.

3 Design considerations for the editor
The principal position of the ABC editor in the whole system increases the importance of a
good design. This, in turn, is related to the role played by the editor within the system.

In the first publication concerning this project [5], we find the following statements:
“The B editor should already perform the parsing and detect most syntactical errors. […] If
the editor knows the syntax, this also gives perspectives for simplifying editing
commands.” This was written as early as 1975, when “CRT editors”, as visual screen
editors were then called, were still somewhat of a novelty. At that time we certainly did not
have more than a vague notion of the possibilities. Still, it was clear that it would be of
importance that various syntactic constructions could be locally recognised. A
grammatical framework formalising this requirement [4] was employed for the language
syntax.

A preliminary design of the ABC editor was described in [9]. By that time, 1981,
syntax-directed editing was a widely discussed idea, and it was (to us) an obvious
decision that the ABC editor would be syntax-oriented. As indicated above, the main
advantage over an “unstructured” text-based editor, is that the opportunity for making
syntax errors is dramatically reduced, which is clearly of particular importance to
beginning users who are still in a learning phase. A secondary advantage is (at least
potentially) the easier use of the editor, for example for people who are poor typists.

Design considerat ions for the edi tor 5

To fit in with the basic aims of ABC, the editor had to be simple to learn and yet easy to
use. A problem with several structure-based editors for programming languages is that
they force a top-down, template approach to entering text, corresponding to a pre-order
traversal of the abstract syntax tree [15]. This was not acceptable in the ABC context. In
the first place, it demands some computer-science level knowledge of syntax. Although
this could, conceivably, be taught, we felt that this would be an unacceptable hurdle to
learning to use the editor. Secondly, it inhibits a natural mode of entering text, in particular
being very awkward for formulas and expressions, and can make certain changes
difficult [17]. Had we felt that pre-order tree traversal is, from the user’s point of view, a
good linearisation order for entering text — which we emphatically did not think — we
would simply have chosen it as the textual linearisation order (giving so-called Polish
notation).

The usual solution to the awkwardness of making modifications while respecting the
structure of the abstract syntax tree is a hybrid approach, in which the editor supports both
structure-based and unstructured operations. In most hybrid systems, the user can switch
between two edit modes: structured and unstructured (see, e.g., [1], [2] and [10]). These
two modes are radically different, and in the unstructured mode all advantages of the
structured approach are lost. Another approach is to let the choice between the two
modes be determined automatically (i.e., outside the user’s control) by the grammatical
type of the portion of text; below a certain level the tree nodes consist of unstructured text.
The hybrid approach, in both forms, violates the requirement of modelessness.

Important design aims consistent with the target user and the overall design rules
were of course that the total set of edit operations should be small, and that the execution
of operations should be allowed whenever (to the user) conceptually meaningful. The
second aim goes against the grain of the structure approach in that it is not very likely that
a user’s concept of meaningful changes is as restricted as that of a strictly structure-based
editor. The first aim forbids us to consider the way out of having two sets of mixable
operations, like “change non-structurally” next to “change structurally”. (And even if the
size of the operation set were not a problem, that approach runs into serious problems.)

Still, we did not want to give up the advantages of the structured approach. The desire
then was that the editor should, in a single mode, permit the user to work with equal ease
in a structure-based way as a non-structured, textual, way. A particular consequence was
a requirement that came to be called “the blind typist’s rule”: the user should be able to
enter a program, or a program fragment, just by typing it character for character from left
to right and get, in a more laborious way, exactly the same result as the typist who took
advantage of the editor’s structured support. Somewhat more generally, we aimed at a set
of operations for the editor that, although having a structure-based meaning, would also
support a not particularly structured approach of the editing task.

Since our imagined typical user was someone with little or no knowledge of
computers, we tried where possible to base the elements of the conceptual model on real-
world examples, rather than computer-science examples. A good example of this is the
fact that rather than editing a copy of a document in a buffer, that periodically and at the
end has to be saved, the user is always considered to be editing the document itself. The
one real advantage of the copy-in-a-buffer model is that a user can always abandon the
changes and revert to the original copy. This is offset in the ABC system by providing a
(conceptually) unbounded Undo operation, where each Undo undoes the effect of exactly
one keystroke (other than Undo itself), whether it changed the document, moved the
cursor, or whatever. This form of Undo has the added advantage that users are
encouraged to try actions out to see their effect; if some action does not do what was
wanted, it can always be undone.

6 The ABC Structure Edi tor

4 The basic “grammar’’ of the edit operations
Editing consists mainly of a sequence of tasks of the form “perform <action> on
<selection>”, where <action> may for example denote insertion, deletion or replacement,
and the <selection> may be a character, word, line, or some other textual entity.

In several editors the basic operations provided correspond directly to such tasks.
Ideally, for an operation set defined “orthogonally’’, if there are M kinds of actions and N
kinds of selections, the operation set consists then of M x N operations. In editors using
this approach (e.g. both the modeless emacs and the modeful vi , to mention just two
common tools in the UNIX environment), the design is usually not purely orthogonal. Next
to what we consider as unalloyed quirks, there are usually some specialised operations
combining a specific action always with a specific selection (e.g., for vi, there is an
operation to capitalise the next character, an action not available for any other kind of
selection). In addition, there are operations for moving the cursor without performing an
action on the contents on the document.

In editors with this approach, the “syntax’’ of the operations typically obeys the verb
object order: first the action is specified, and then the selection. To specify the selection,
the user has to indicate the entity (like character, word, or line), typically with an optional
count, as in “three lines”, and a direction (forward or backward from the cursor position).
Apart from problems with the size of the set of operations and the complexity of the
resulting syntax, a problem here is the lack of easy visual confirmation that the selection
specified is the one intended. For example, in the operation “perform deletion on the next
five words”, the user never gets to see the selection, but only the result after the operation.
Since it is easy to make mistakes in the specification of a selection, this is an annoying
ergonomic problem.

The approach described only makes sense if the operations are viewed as a
“linguistic” channel through which the user gives commands to an edit serf who executes
them; at least for people with a natural-language background with the verb object order
(like in English) there is something “natural’’ to the approach. (It is possibly less natural to
users whose mother tongue has an object verb order, such as Japanese.) We contend
that even “modeless’’ editors in this class are not truly modeless from the user’s
conceptual point of view: next to the master serf mode of editing, there is a direct-
manipulation mode of editing, namely when text is entered. The fact that this may be
forced to fit formally within the “perform <action> on <selection>” master serf mode,
namely by describing the entering of the character ‘A’, say, as “perform insertion-of-‘A’ on
position-in-front-of-the-cursor”, is irrelevant.

 From the direct-manipulation viewpoint, it is more natural to decompose the edit tasks
into: “make <selection>”; “perform <action>” (namely on the current selection). Operations
for moving the cursor are then subsumed by the selection operations. This was the first
design decision taken. At the time we did not have experience with editors using such a
decomposition; now this is of course a common approach. Next to the better uniformity of
the mode of editing, we saw several further advantages. The first is that it becomes
impossible to introduce unorthogonalities in the design process, since the factorability
implied by the notion of orthogonality is built-in into the approach. Secondly, the
factorability extends immediately to learning to understand the editor: the notion of a
“syntax’’ for the edit operations either disappears, or whatever syntax remains becomes
less complex. A final important issue is the possibility of visually confirming the selection.
(The last point is in fact not only a nice possibility; with the direct-manipulation approach it
becomes mandatory.)

An additional advantage, not to the users but to the designers, is of course also that
the task of designing the editor has become factored into two fairly independent subtasks:
designing the selection operations, and designing the action operations.

The design of the select ion operat ions 7

5 The design of the selection operations
5.1 The allowed selections
The “current selection” in a document will often be called the “focus’’. In the presentation
on the screen, the focus is highlighted.

In a purely unstructured text editor, a selection may consist typically of any portion
between two positions in the text. In a strict-structure editor for textually presented objects,
there is a (not specifically visually presented) deep tree structure, the syntax tree, and
selections may consist only of a complete subtree of the full tree. The selection operations
are then operations to “navigate’’ through the tree.

As noted before, making changes in a strict-structure editor may be awkward. There
are, at least potentially, some further problems specific to the structure approach. A rather
general problem here is that a given language does not have a single unique grammar.
The structure of the syntax tree may therefore be different from the user’s mental view of
the structure of the text. For example, here are two different fragments of BNF grammar
that define the same ‘“language”, namely a non-empty comma-separated list of “items’’:

<item list> ::= <item>| <item list>, <item>
<item list> ::= <item>| <item>, <item list>

 They correspond to different ways of imposing a tree structure on item lists, and
would make a good deal of difference in the behaviour of a structure editor. In a language-
defining report the choice between these two forms is neutral. Given that a choice
between the two must be made — we argue below that both are bad — most users would
prefer the second version.

Suppose that the second is chosen, and consider the task to bring the focus on the
item “i3” in the list “i1, i2, i3, i4”, starting from a situation in which “i2” is
selected. A sequence of tree-navigation operations is needed like: select-parent; select-
right-child; select-left-child. To revert back to the focus on “i2”, the sequence would be:
select-parent; select-parent; select-left-child. The asymmetry revealed by the
implementations of these tasks, conceptually each other’s mirror image, makes it clear
that this is unlikely to correspond to the mental structure a user will have. It would
therefore be an obstacle in using (and learning to use) the editor, until the user has
become so proficient that the sequences have been “chunked” into conceptually basic
operations, in user interface terminology, when they have become committed to muscle
memory. The other choice has of course the same problem.

Finally, in a strict-structure editor, it is impossible to focus on a comma from an item
list, because it is not part of the (abstract) syntax tree — only of the more concrete parse
tree. From the strict-structure point of view this makes perfect sense: there is no
structurally sound operation that can be performed on such a comma. Supposing that
there is also a notion of “item sequences”, being a semicolon-separated sequence of
items, the change of the item list “i1, i2” into the item sequence “i1; i2” (without re-
typing the items, which might be complicated expressions) is a major structural change,
and accordingly awkward for the user to implement. The complexity of the following sketch
of a possible implementation is not at all exaggerated.
! First, find a ‘“harmless” place in which a construction that may contain an item

sequence is allowed.
! Enter the template for that construction, and refine it till there is an item sequence

with two empty slots for items.

8 The ABC Structure Edi tor

! Bring the focus on the first item of the item list, make a copy in the copy buffer,
focus on the first slot, and paste.

! Similarly for the second item.
! Focus on the whole item sequence and copy.
! Focus on the item list and replace it.
! Delete the construction that was created in the second step.

There are real-world examples that provide a metaphor for this. Given a sauce pan
with gravy, and the task to replace the contents of the sauce pan with the gravy after
straining, an extra temporary container is needed one way or another. The existence of a
real-world example does not make it any less awkward, however.

We return now to the wish to “coalesce’’ structure-based and non-structured editing
into a single mode. The key issue here is which selections are possible. If the ABC editor
were to allow any selection between two text positions, it would be virtually
undistinguishable from a structure-less editor. If only complete subtrees could be
selections, it would be too awkward to use: there are too many useful potential selections
that do not correspond to a complete subtree. On the other hand, there are also many
selections which are very unlikely that a user would want to make. For example, in

IF (i+di, j+dj) in keys c:
PUT count+c[i+di, j+dj] IN count

it is unlikely that a user would want to select the portion “) in keys c: PU”. Considering
which kinds of selections not corresponding to a full subtree were useful and therefore
likely to be desirable from the user’s point of view, we identified the following points. First,
it is necessary to consider the parse tree rather than the abstract tree, in the sense that
the skeletal parts of the various constructions (like the “PUT” and “IN” of a “PUT”
command) should be explicitly represented in the tree. Otherwise, many useful selections
(like the comma above, in order to change it into a semicolon) are impossible. In one
respect, however, we take a more abstract view. In our trees, parents are not allowed to
have a single child; if this is the case, the two nodes involved are fused into a single node.
Secondly, it is then possible to represent any potential selection uniquely by the smallest
collection of nodes in the tree such that the selection corresponds precisely to the “leaves’’
of the subtrees descending from these nodes. In strikingly many cases, these node
collections turned out to be a (contiguous) segment of sibling nodes, i.e., nodes with the
same parent node. Note that this includes all “empty selections”, which correspond to an
empty segment of siblings. Notable exceptions were, for example, a selection like
“i2, i3” within the list “i1, i2, i3, i4”, and “a+n*” in the formula “a+n*p[i]”.

 We turned this into a principle by postulating that the parse tree should be such that
the exceptions would no longer be exceptions, but be covered as well by the sibling-
segment criterion. This can be accomplished by a mild and in fact fairly common
extension to the original BNF grammars. In a production rule of a strict BNF grammar, the
right-hand side consists of a sequence of alternatives (separated by the choice operator
“|”), each of which consists of a sequence of terminal or non-terminal symbols (where the
concatenation operator is, traditionally, not explicitly represented by a symbol, but denoted
by juxtaposition). Now choice and concatenation are two of the operators allowed in so-
called regular expressions, but in addition a repetition operator (usually denoted by a
postfix “*”) is allowed, and, moreover, subexpressions may be parenthesised as in
standard mathematical notation, so that the choice operator may occur within the operand
of a concatenation. The mild extension referred to is now to allow the operations of regular
expressions in their full generality in the right-hand side of a production rule. This does not
change the formal expressive power of the BNF-type of grammar (they can still describe

The design of the select ion operat ions 9

precisely the context-free languages), but makes them somewhat more convenient as a
formalism when defining a language. Notationally it is a true extension: each strict BNF
grammar is allowed in the extended formalism, since its right-hand side has the form of a
(particular kind of) regular expression. With this extension, the grammar rule for item-lists
can be expressed as

<item list> ::= <item> (, <item>)*

We use this extension now for another purpose, namely to redefine the notion of parse
tree in the desired direction. (In fact, a redefinition is needed in any case, since the original
definition depends on the restricted form for the right-hand sides.) Although there still is
an asymmetry in the grammar rule above, it must not find its way into the tree. It is
possible to give a precise formal definition of the new parse trees, but the idea is so
obvious that we only sketch it. Let N be a nonterminal symbol. What possible children can
a node labelled with N have in a parse tree? If, for a moment, we consider the nonterminal
symbols in a right-hand side as terminal symbols, then for the original, strict BNF
grammars, the possible sequences formed by the labels of the children of an N-node in
the parse tree are exactly the sentences of the regular language described by (the regular
expression which is) the right-hand side. Here, we consider a leaf node representing a
terminal symbol (terminal in the grammar itself) to be labelled with that symbol. This way
of viewing “traditional’’ parse trees gives us the definition for the extended BNF grammars:
take, as the children of an N-node — and therefore all on the same level — again a
sentence produced by the regular expression in the right-hand side. Now a potential
selection like “i2, i3” consists of a segment of sibling nodes, and is therefore an
allowed selection. For formulas, it is fairly easy to give a regular expression, ignoring the
“structural information” provided by the priorities of the operators.

Of course, with this approach it is still, and even more so, the case that a given
language does not have a unique grammar. Choosing the grammar has now become an
even more important part of the editor design process. The first attempt was revised
several times, mainly to incorporate some useful selection initially overlooked.

5.2 The selection operations
If a pointing device like a mouse is present, the ABC editor allows its use for quick
positioning. Clicking at a position selects the largest structural entity starting at that
position. Furthermore, the arrow keys, if any, can be used, always resulting in an empty
selection.

Among the further selection operations we have “traditional’’ ones for structured tree-
navigation. In the following, “moving to” or “selecting’’ a node (or a collection of nodes) is
used as an abbreviation for “bringing the focus on the selection formed by the text covered
by the (sub)trees descending from the node(s)”. For “moving up” in the tree, there is an
operation . (The operation names have been chosen to correspond to the “visual’’
effect in the textual representation, rather than some abstract tree view, in which moreover
the convention for what is called “up’’ and what is “down’’ is quite arbitrary. The notation
used reflects the intention that such operations correspond — at least conceptually — to a
single keystroke. On keyboards without function keys it is, unfortunately, necessary to
map most operations to key combinations. Which key or keys are used to effect the

 operation and other operations may be customised by the user, taking account
of what is convenient given the characteristics and peculiarities of the keyboard. On, e.g.,
the Macintosh implementation of ABC, the operations can also be selected from a menu.
From now on, we will refer to operations as if they were keys on the keyboard. To narrow
(move down), a possibility in conventional BNF grammars is to have as many operations
as there are possible children. If there are more than just a few children, however, this

widen

widen

10 The ABC Structure Edi tor

becomes inconvenient. With the extended-BNF approach there is no bound on the
number of children. Instead, just two narrowing operations are provided:
and . To move to other children than the first or last one, the operations

 and allow moving from a node to an adjacent sibling.
Thus far, the selection operations described can only be used to make selections that

are also allowed selections in a strict-structure view (except for the possibility of selecting
“skeletal’’ nodes). To enable the selection of a sibling segment with more than one node,
the operation has been provided. Its meaning is: extend the current selection
(being a segment of siblings) with the next sibling to the right. With these five selection
operators, any allowed selection can be made. However, we also need an (automatic)
“normalising step” for the view in terms of nodes. For according to the meanings given it
could happen (by followed by a suitable number of s) that the selected
sibling segment would come to consist of all children of some node. Actually, the selection
is not a collection of nodes (although it is represented internally thus in our
implementation, but that is besides the issue), but a “portion’’ of the document. The same
portion is the selection corresponding to the common parent of the siblings, and only the
latter gives the unique representation mentioned in the previous subsection, since it is a
singleton collection of nodes and therefore strictly smaller. As expected, there is no need
to explain any of this to the users; it already conforms naturally to their mental model.

It would have been more uniform to provide a mirror version of as well, since
the other operations also come in symmetrical pairs. However, the mirror version turned
out to be in low demand, mainly due to the extension in meaning described in the next two
paragraphs. So, as we wanted to keep the operation set small, it was removed.

In designing the functionality of any non-trivial system, the design process proceeds,
starting from a vague sketch, through various refinement stages until the desired level of
detail and precision is reached. In particular, various “features’’ (here: the editor
operations) will initially be defined in terms of their behaviour for a “typical’’ situation. In the
refinement process, the question will arise what meaning (possibly including “user error”)
to ascribe to them in an “atypical’’ situation that is not catered for by the original, loose
definition. For example, what is the meaning of if there is no next sibling because
the focus is on the last child? In the design of the ABC language we used the Fair-
Expectation Rule to answer such questions (though we do not mean to suggest that this
design rule can be consulted like an oracle.) The question we asked is: given the
conceptual high-level meaning of the feature, what might the intention of a user invoking it
(within the bounds of fair reason) have been? If the answer was sufficiently unambiguous,
we made sure that the meaning in the particular situation would cover that intention. Now
in the design of a programming language, this rule has to be used very carefully. In that
context, something has to be very unambiguous before it is “sufficiently’’ unambiguous.
Before extending the meaning to previously undefined cases, the intended meaning has
to be clear beyond all reasonable doubt. (To make the scope not entirely vacuous, we
have to ascribe, for the purpose of wielding this rule, to our model user not any specific
knowledge but a fair amount of clear-headedness and intelligence.) For an interactive
editor, “reasonably likely” is a sufficient level of unambiguity. Unlike the programming-
language case, the user always can see the effect immediately, so any misunderstandings
(between the designers with their idea of “the’’ user and the actual user) can immediately
be remedied. All operations can be undone with one keystroke, and typing errors are
common enough to make any (mainly initial) “ill effects” of possible misunderstandings
disappear in the statistical noise. Further, even if the meaning ascribed by us is not exactly
that hoped-for by the user, there is a very fair chance that the effect is at least a step
towards the goal the user wants to achieve.

first
last

previous next

extend

first extend

extend

next

The design of the act ions 11

Although the Fair-Expectation Rule, as a design principle, is of a general nature, we
mention it here because the possibility and desire to extend an initial meaning manifested
itself mainly with the selection operations. Except for for which this is already
defined, we must answer for all cases what the meaning is of an operation when the focus
is on a segment of two or more siblings. For the meaning is: focus on the
common parent node of the siblings. This extends in a uniform way the meaning for a
single-node focus. The meaning of this operation is in fact only a “user error” (resulting in
a beep) if the focus is on the root node (thus selecting the whole document). Note that the
“normalisation step” mentioned above is important for the meaning of this operation; in
fact, this operation and are the only ones in the operation set of the ABC editor
for which normalisation can make a difference. This is partly by design: for “guessing’’
extended meanings for the other operations, a useful trick was to consider their meaning
in terms of an unnormalised representation. For the operation on a multi-sibling
focus, the meaning is: focus on the first of these siblings (and similarly for of
course). If the focus is on a (singleton, childless) leaf node, the operation focusses on the
empty selection just preceding that node. In a situation in which there is no next
sibling is handled as if preceded by the least number of s needed to give
the focus a right sibling. Thus, if there is anything to the right of the focus, the operation
will move the focus to the right, with the left edge at the position of the previous right edge.
Finally, when there are no further siblings to the right, will start taking in siblings
to the left. Thus, the mirror effect of the very common operation
sequence … is obtained by …

By “popular demand” two more selection operations have been added, namely
and its mirror image . The ABC language is easy enough to learn so

that in a one-day course the attendants can be taught the language and get some hands-
on experience with it. Unfortunately, editors are not easy to teach “in class”, even not if as
simple as the ABC editor. The interactive learning is indispensible, and takes some time.
For the very first phase, it is easier for the novices to make changes on a line-oriented
basis, simply retyping whole lines to make a correction. It is important to note here that
ABC program lines tend to be short, and that the grammar is such that a line is always a
valid selection. These two operations then select the whole next or previous line; they can
be used as a complete navigation-cum-selection toolkit.

6 The design of the actions
Some basic editing tasks are to delete a selection, to replace its contents by another text,
and to insert (add) new text. Of these three, strictly speaking only replace is needed:
deletion can be modelled as replacing the selection to be deleted by empty text, and
insertion as replacing an empty selection by new text.

This would, however, require a separate user action to signal the completion of the
replacement action (as in “make <selection>”; “begin replace”; “enter <text>”; “end
replace”); otherwise, deletion could not be expressed. This would mean that “end replace”
would take a dual conceptual role: meaning delete if issued immediately after making a
selection, and a no-op, annoying if required, otherwise. Better, then, to have an
explicit operation.

It is clear now that insertion and replacement can be expressed (given deletion and
the selection operations) in terms of each other. This can be done in a reasonably
convenient way, as will be shown below, so only one of the two has to be provided as a
primitive. For both possible choices it is not necessary to provide an explicit key-bound
operation. The default meaning of the user entering text could be “insert <text> in front of
current selection”, at the same time narrowing the focus to an empty selection following
that text. (This is required to make this work in a reasonable way if the action is repeated.)

extend

widen

extend

first
last

next widen

extend

first extend extend last extend extend

downline upline

delete

12 The ABC Structure Edi tor

This option we call auto-insert; it is the default in the emacs editor. Another possible
default meaning is “replace current selection by <text>”, again narrowing the focus as
before. This we call auto-replace; it is the default in, e.g., most word-processors for the
Macintosh.

Clearly only one of the two can be adopted. If insertion tasks dominate, auto-insert is
more convenient, whereas auto-replace is preferable if replacement is the more common
tasks. The following table shows the implementation of the two tasks for each of the two
options:

The “*’’ following means that the operation has to be repeated until the focus is
an empty selection.

For the ABC editor we chose the auto-insert option. The rationale is as follows. It is
hard to say which task type, insertion or replacement, is the more frequent one. In the “life
cycle” of a document, initially insertion is (obviously) more common, but after some time
replacements may start to dominate. Whether this actually happens may depend on the
user’s style of working. Some users happily throw a program together that they know to be
full of errors, confident that they will be able to debug it. Other users may carefully develop
their programs, and have little need of later changes. Although ABC does not enforce a
style of working, we cared more for providing support for the careful user than the happy-
go-lucky one; in fact, providing support for a structured approach to programming was the
first objective of the whole project, and the ABC environment does not contain any
“debugging tools”. Accordingly, we chose the option that makes the composition task
easier, namely auto-insert, rather than the one making modifications easier.

We did not perform controlled experiments to validate this decision. The difference in
convenience, if any, is probably small, so that a rather large group of subjects would be
needed to provide analysable data. Also, as indicated above, the best choice may be
(high-level) task-dependent. One further advantage of auto-insert should be noted,
namely that the now composite task “replace <text>” has a fixed implementation, which is
therefore easily stored in “muscle memory”. For auto-replace, the insertion task becomes
composite, but requires a variable, context-dependent number of operations. (In
another project in which we needed a structure-based editor we copied many parts of the
design of the ABC editor. However, since from our task analysis it was clear that
replacement would be the dominant task there, we chose auto-replace as the default
option for that editor, but providing an extra selection operation to select, in one go, an
insertion point in front of the focus.)

While text is entered, the editor performs a continual incremental syntax check, on a
character-by-character basis. The algorithms used are fairly complex, and a detailed
exposition would go beyond the scope of this paper. Basically, in the entity under
construction, the general situation can be sketched as

<accepted piece of text> <“future’’ piece of text>

insert point

if auto-insert: if auto-replace:

to insert <text>: <text> * <text>

to replace <text>: <text> <text>

first

delete

first

first

The design of the act ions 13

This situation is “acceptable’’ if there is some piece of text, such that if it is inserted
between the accepted and the future pieces, the whole becomes a valid ABC diction (in
the given context), and a character is accepted at the insert point if adding it to the already
accepted piece results again in an acceptable situation. (This description is in two
respects a simplification of the actual situation, as will be explained in the next section.)
The main problem here was to decide which structural part of the text among several
possibilities will be considered to be “the’’ entity under construction, and to give formal,
algorithmically expressible, criteria for that choice. Our reasoning here was similar to that
related above for the choice of the allowed selections, but the resulting criteria are not
easy to formulate without the support of some formal-language theory. One of the criteria
— actually a consequence of one of the main criteria — is however easily explained.
Various pairs of “brackets” can occur in ABC expressions: “(…)”, “[…]” and “{ …
}”. In a complete program they are always pairwise matched, with nesting allowed. We
required then that brackets would also be matched in an acceptable incomplete program,
and in any acceptable incomplete structural entity. This limits the scope of choice for the
entity to be considered in a very effective way. Next to the “visible’’ brackets mentioned
below, indentation also provides implicit bracket pairs: increase-indentation and decrease-
indentation, and the requirement extends to these as well. The astute reader will have
noted that the criterion implies that it is impossible to enter a single bracket, since that
would turn an acceptable situation and therefore with matched brackets into one with ill-
matched brackets and therefore unacceptable. This is correct: brackets must always be
entered in pairs. This is described in the next section.

Given the notion of acceptability, not all attempted deletions can be allowed. A
selection may only be deleted if the resulting situation is acceptable. Thus, it is not
possible to delete one bracket of a bracket pair. In general, it is impossible to create, using
the ABC editor, a bracket mismatch.

Next to entering text from the keyboard, it must be possible to copy or move an
existing piece of text. The operation, when performed on a non-empty selection,
makes a copy of it into an internal copy buffer. To paste such a copy into an insert point,
we could have provided a separate paste operation, but instead we decided to let copy do
double duty: if invoked on an empty selection, it functions as a paste operation. This is
possible only by virtue of the preceding choice for auto-insert. Although this choice does
away with one operation, it is debatable if this is truly a simplification of the kind aimed at
by the Economy-of-Tools Rule. A (not perfectly matching) metaphor from the real world is
provided by the case of a single push-button serving for the two tasks light on and light off.
Not considering power failures and burnt-out bulbs, whatever the situation, only one of the
two makes sense, so they can be mapped onto the same physical operation. In this
example a unifying task description is “change lighting status”; such a unification is not so
easily constructed for the double-duty operation.

An attempted paste will succeed when the resulting situation is acceptable; an
equivalent description (in view of the blind typist’s rule) is: it will succeed when the text
could have been entered (without causing error messages) from the keyboard.

There are a few more operations not yet mentioned, the most important one of which
will be described in the next section. The other ones are mentioned here for the sake of
completeness (and also to show that the entire operation set of the editor is indeed small
). Next to mentioned before, there is also “unbounded “, which undoes
the effect of an Undo operation. Together, they allow the user to “travel through time” in
two directions. The operations (a “toggle’’) and allow the user to
store a task consisting of a sequence of operations and repeat it several times. This is
only useful for experienced users. Finally, there are some “meta-operations’’ that are not
edit operations in the true sense, so that we just mention them: one for refreshing the
screen if it gets corrupted (e.g. by transmission faults), one for “help”, and one for exiting

copy

copy

undo redo

record playback

14 The ABC Structure Edi tor

the document being edited, upon which some static-semantics checks are performed that
do not make much sense for an incomplete document, such as a check for uninitialised
variables.

7 Structured support for entering text
An orthogonal design decision to the choice of edit actions is the manner that text is to be
entered. With the same reasoning as for the structured selection operations, we had two
main requirements. We wanted more than just “flat’’ text entering; in particular, we wanted
the editor to have some sort of template facility, so that it could offer help in the entering of
syntactically-correct text, and reduce the amount of typing necessary for what is a
somewhat wordy language. On the other hand, as pointed out earlier, we still required the
option of “flat” text entering (referred to above as the blind typist’s rule), so that the user is
not forced to use any template mechanism. Above all, these two options had to be
available in the same mode. It followed that “flat” text entering had to drive the template
selection.

Once we had seen this consequence of the requirements, the direction in which to
proceed was clear. The solution used was to let the user type in text, and the editor would
then guess ahead based on what had already been typed, supplying “suggestions’’ for
what was to come, which the user may then accept, or choose to ignore and carry on
typing in the same way. These suggestions are then templates, with holes where other
pieces of text still have to be filled in.

A text-driven approach to template selection was also implemented in the Poe
editor [3]. An important difference with our solution is that in Poe the level of control is
formed by the tokens (like “IF” or “WHILE”), whereas our mechanism is driven at the level
of the characters. Another difference is that Poe allows only strict-structure selections.
Here is an illustration of the suggestion mechanism in action. When the user is using the
editor, the holes are represented on the screen by a question mark. In view of our target
users, we did not feel tempted to represent the hole by a cryptic indication of the
grammatical type of construct expected; our experience is moreover that users who
happen to be computer-scientists also do not perceive the absence of that information as
a lack. So the first thing the user sees is such a hole:

?
Typing a W at this point causes the editor to give a suggestion template. Since only a
command is acceptable at the current position, and since WRITE is the most common
command beginning with a W, the editor “guesses’’ that, and displays:

W?RITE ?

The second hole shows that WRITE has one parameter that must be filled in. Since ABC
has a keyword structure, and the keyword skeleton of commands is always with capital
letters, we extended the guessing principle in the sense that a lower-case w is also
accepted and gives the same effect.

To accept the suggestion, the user can use the operation, which then
positions the focus on the parameter hole:

WRITE ?

accept

Structured support for enter ing text 15

 If the user types an open bracket at this position, the editor suggests the closing bracket:
WRITE (?)

Similarly, if the user had typed a string quote, the editor would have suggested the
matching closing quote:

WRITE “?”
This explains at the same time the question, left unresolved in the previous section, how
the acceptability of the situation is maintained if the user types a bracket. If the user next
types Hello!, the editor displays now:

WRITE “Hello!?”
Now the user can accept the (suggested) closing quote (which means that the
operation skips over the quote), but the blind typist’s rule demands that the user
can equally “flatly’’ type the quote, thus having typed altogether the sequence of
characters “Hello!”. This shows that the editor’s rule for determining the acceptability of
a character has to be somewhat more complicated than the version stated in the previous
section.

The PUT command is ABC’s assignment command, and has two parameters. Typing
a P at the initial position then shows:

P?UT ? IN ?
and brings the focus on the first parameter:

PUT ? IN ?
Typing 0 followed by then gives:

PUT 0 IN ?
where the name of the variable may be typed, followed by a newline. The syntax of the
second parameter does not allow it to start with a digit, and accordingly a digit at that
position is refused by the editor.

If the user does not accept a suggestion but continues typing, the editor always
matches the suggestion incrementally to what has been typed so far. So having typed a W:

W?RITE ?
if the user then types an H, the editor “guesses’’ a WHILE command, and the suggestion
changes to:

WH?ILE ?: ?
which shows that WHILE has two parts that must be filled in: a condition and a command
suite.

It is this process of incrementally matching the suggestion to what has been typed so
far that allows flat text to be typed: having typed a W and then an R, the suggestion still
remains for WRITE:

WR?ITE ?
Indentation is significant in ABC, and is used to show grouping of commands, rather than
using BEGIN-END or similar. If the user has accepted the suggestion for WHILE, and then
types a > 0 followed by a newline, the editor automatically supplies the indentation:

WHILE a > 0:
?

Now the user may type any number of commands here, each followed by a newline, and
the editor will continue to indent at the same level. An extra newline will take the
indentation out one level:

WHILE a > 0:

accept

accept

accept

16 The ABC Structure Edi tor

PUT a-b IN a
WRITE a

?
 The treatment of indentation may be viewed as an exception to the blind typist’s rule:

the indentation itself cannot be explicitly typed in, but end-of-indentation has to be
explicitly indicated. The convenience of this treatment of indentation is, however, so large
that we have not considered giving it up. A unifying description for the effect of typing
newline is: “go to the nearest level of indentation left of (the starting point of) the present
focus”. It turns out that this is perceived as quite natural by surprisingly many users; it
would seem that for them the “go left” aspect of newline conceptually dominates the “go
down” aspect. In fact, we have on a few occasions seen “rank tyro” users, while being
taught the editor’s use hands-on under guidance, spontaneously, without having been
told, hitting newline twice to decrease the indentation level; when asked how they knew or
guessed this, their reaction was invariably a surprised ‘“how else?”. An aditional benefit
over an explicit indent operation is the ability to stutter, especially since newline is a large
key and already firmly in muscle memory.

Suggestions work not only for the built-in commands of the language, but also for
commands defined by the user (which have the same style of keyword structure as the
built-in commands). This is required of course from the point of view of fair expectation for
the user, but in fact had an unanticipated beneficial effect, namely that users were not
frightened of using long descriptive names for their commands, since they generally
needed only a few key strokes to use them:

G?ET LIMITS FOR ? AND ?
 The suggestion mechanism works best if the language being typed is close to LL(1),

since then the editor can guess ahead with more probability of being correct. But even
where there are several possibilities, the editor can still be of help. One technique that we
used was the following: if after each keystroke there is still a number of possible
suggestions that match what has been typed, select another suggestion to the one just
used, so that the suggestions get run through in a cyclic fashion. For instance, to type the
command REPORT (which occurs very infrequently) you get the following. Type an R:

R?ETURN ?
an E:

RE?AD ? EG ?
and a P:

REP?ORT ?
 Initially we considered the possibility of providing a form of adaptiveness, in the sense

that suggestions would be based on the frequency with which the user had used the
constructs being suggested. We decided, however, that the advantage for the user of
being able, after having obtained some experience, to predict the editor’s behaviour, and
being able to type “head down” if required while still taking advantage of the suggestions
using memory-muscle chunks like W for WRITE, and WH for WHILE,
was preferable to saving probably no more than a fractional number of keystrokes per
command on the average.

8 Experience and future plans
Like the language, the editor has been designed iteratively. The incremental suggestion
mechanism was already described in the first, preliminary, design of the editor [9], but the
navigation operations given there are strict-structure ones. An initial pilot study was

accept accept

Experience and future plans 17

programmed on top of the programmable editor Emacs by Dick Grune. After that there
have been two major iterations. The first one [11] resulted in a prototype that already
implemented all the major ideas, including in particular the extend operation. It was written
in 1984 by Guido van Rossum, and we were so satisfied by its functionality (and speed)
that it was released for public use. For the second iteration an important concern was
formed by the modifications made necessary by the last iteration in the language design.
Apart from this, the changes in the functionality were minor ones. The present version of
the ABC editor was realised by Timo Krijnen, working from Van Rossum’s prototype.

The editor is used by a wide range of users, from school children to professionals, and
we are satisfied that the basic design is a good one; the editor is easy to learn (with a good
“learning curve”) and offers a lot of much appreciated support in the construction of ABC
programs.

When the suggestion mechanism was invented, we were worried about the possibility
that the ever-changing suggestions would be distracting to novice users. This has not
turned out to be a problem.

The current implementation of the module of the ABC system for executing programs
has grown, by evolution, from a prototype written in 1981. Although the received wisdom
in software engineering is that building upon a prototype is an ill-advised approach, we
have never regretted it. For the editor we followed the same approach, but here, alas, we
feel with the power of hindsight that we took the wrong decision. A major problem with the
current version is that it is still too ad hoc. Ideally the whole editor should be parametrised
with a syntax of the language and no more. Unfortunately, much ABC-specific knowledge
is hard-wired into the code. Worse, several design decisions are “spread out” over the
code, making it hard to ensure uniformity of its behaviour, and to experiment with different
policies. Although the general principles appear to be fine, there remain many small
issues for which the editor could do with a further polish.

A major policy change that we would like to experiment with is to let the focus moves
relate more to the abstract syntax tree rather than the concrete tree. For instance, to get
from:

PUT a+b IN a
to:

PUT a+b IN a

the user has to type (taking the focus to PUT) and then . However, in
practice, the user almost always wants to work on the expression, and almost never on
the keyword PUT. It would be far more useful if the operation took the user to the
first abstract sub-node, in this case the expression, and similarly, if took the user
to the next abstract-tree sibling. Some way of reaching the skeletal parts must still be
provided, and the arrow keys could serve for that.

Another problem with the current version is that while it lets the user edit in both
structured and unstructured ways, there are certain unstructured changes it refuses (on
the grounds that the result would be “unacceptable’’) which are nevertheless useful and
conceptually reasonable. In some cases the problem could be remedied by modifying the
extended BNF grammar, but in most cases it is the notion of acceptability that is still too
restrictive. The presently implemented notion was to some extent obtained by
(insufficiently) exhaustive consideration of all possible kinds of situations, instead of being
derived fully from formulated principles.

However, rather than go on to another iteration of the ABC editor, we are now working
on the design of a generic structure editor, also for graphical and mixed-media documents,
and allowing hypertextual facilities and “active’’ documents and elements within

first next

first
next

18 The ABC Structure Edi tor

documents. For the techniques to describe document structure and presentation we are
leaning heavily on those developed for the Grif editor [14], but the way the user interacts
with the new editor will be based on the principles learned from our experience with the
design of the ABC editor, but generalised [13].

9 References
[1] Rolf Bahlke and Gregor Snelting, The PSG system: from formal language definitions

to interactive programming environments, ACM Transactions on Programming
Languages and Systems 8, 4, October 1986, 547—576.

[2] P. Borras et al., CENTAUR: the system, in Proceedings ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments
(P. Henderson, ed.), joint issue: Soft. Eng. Notes 13, 5, November 1988, and
SIGPLAN Notices 24, 2, February 1989, 14—24.

[3] C. N. Fischer et al., The Poe language-based editor project, in Proceedings ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, joint issue: SIGPLAN Notices 19, 5, and Soft. Eng.
Notes 9, 3, May 1984, 42—48.

[4] Leo Geurts and Lambert Meertens, Keyword Grammars, in Implementation and
Design of Algorithmic Languages (J. André and J.-P. Banatre, eds) 1—12. IRIA,
Rocquencourt, 1978.

[5] Leo Geurts and Lambert Meertens, Designing a beginners’ programming language,
in New Directions in Algorithmic Languages 1975 (S. A. Schuman, ed.), 125—138.
IRIA, Rocquencourt, 1976.

[6] Leo Geurts, Lambert Meertens and Steven Pemberton, The ABC Programmer’s
Handbook. Prentice-Hall, Englewood Cliffs, New Jersey, 1990. ISBN 0-13-000027-2.

[7] Merle P. Martin and William L. Fuerst, Using computer knowledge in the design of
interactive systems, International Journal of Man-Machine Studies 26, 1987, 333—
342.

[8] Lambert Meertens, Issues in the design of a beginners’ programming language, in
Algorithmic Languages (J.W. de Bakker and J. C. van Vliet, eds), 167-148. North-
Holland Publ. Co., Amsterdam, 1981.

[9] Lambert Meertens, Draft Proposal for the B Programming Language, Mathematical
Centre, Amsterdam, 1981. ISBN 90 6196 238 2.

[10] J. R. Morgan and D. J. Moore, Techniques for improving language-based editors, in
Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, joint issue: SIGPLAN Notices 19, 5,
and Soft. Eng. Notes 9, 3, May 1984, 21—29.

[11] Aad Nienhuis, On the Design of an Editor for the B Programming Language, Report
IW 248/83, Mathematical Centre, Amsterdam, 1983.

[12] Steven Pemberton, An alternative simple language and environment for PCs, IEEE
Software 4, 1, January 1987, 56—64.

[13] Steven Pemberton, The Views Application Environment, Report CS-R9257, CWI,
Amsterdam, December 1992.

References 19

[14] Vincent Quint and Irène Vatton, Grif, an interactive system for structured document
manipulation, in Text Processing and Document Manipulation (J.C. van Vliet, ed.)
200—213. Cambridge University Press, 1986.

[15] T. Teitelbaum and T. Reps, The Cornell Program Synthesizer: a syntax-directed
programming environment, Communications of the ACM 24, 9, September 1981,
563—573.

[16] Jeroen van de Graaf, Towards a Specification of the B Programming Environment,
Report CS-R840, CWI, Amsterdam, 1984.

[17] R.C. Waters, Program editors should not abandon text oriented commands,
SIGPLAN Notices 17, 7, July 1982, 39—46.

