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COMPLETENESS WI TH FINITE SYSTEMS OF INTERMEDIATE
ASSERTIONS FOR RECURSIVE PROGRAM SCHEMES*

KRZYSZTOF R. APT  t AND LAM BERT G. L.  T. MEERTENSt

Abstract. I t  is proved that in the general case of arbitrary context-free schemes a program is (partially)
correct with respect to given initial and final assertions if and only if a suitable finite system of intermediate
assertions can be found. Assertions are allowed from the extended state space V x V. This result contrasts
with the results of [2], where it is proved that if assertions are taken from the original state space V. then in the
general case an infinite system of intermediate assertions is needed. The extension of the state space allows a
unification in the relational framework of [2], of the (essence of the) results of [2], and of [4], 151 and [6], and
provides a semantic counterpart of the use of auxiliary variables.
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1. Introduction. De  Bakker and Meertens proved in [2] that an infinite system of
intermediate assertions is needed to prove the completeness of the inductive assertion
method in  the case o f  an arbitrary system of (mutually) recursive parameterless
procedures. On the other hand, Gorelick in [5] extended the results of [3] and obtained
a completeness result for a Hoare-like axiomatic system (see [7]) for a fragment of
ALGOL 60 in which (deterministic) systems of recursive procedures are allowed. Thus
any true asserted statement is provable. (Observe, however, that the axiomatic system
uses an oracle determining the truth o f formulas from the underlying assertion
language.) From the proof we can extract all intermediate assertions about atomic
substatements of the original program. Since proofs are finite, we obtain a finite system
of intermediate assertions, thus apparently contradicting the result of [2]. Also [4] and
[6] avoid the necessity of an infinite number of assertions by using an extension of the
inductive assertion method.

The purpose of this paper is to investigate this issue in the 'relational framework of
[2] and to obtain, within that framework, a unification of the (essence of the) results of
[2] and of [4], [5] and [6]. The solution of the apparent contradiction lies in the fact that
in [4], [5] and [6] auxiliary variables are used (to store the initial values of variables).
These auxiliary variables have no semantic counterpart in the relational framework of
[2]. Semantically, the use of auxiliary variables corresponds to the use of states which
have an additional coordinate (from a space inaccessib le  to a program. We shall call
the domain 'V x 11
1 o f  
s u c h  
s t a t e
s  
a n  
e x t e
n d e d  
s t
a t
e  
s p
a c
e .

We prove that if one allows intermediate assertions from the extended state space
V x V, then one can always find a finite system of intermediate assertions. More
precisely, a program is partially correct with respect to given initial and final assertions if
and only if a suitable finite system of assertions from the extended state space can be
found. Thus for the space 'kV one can take the original state space 7/
.
. T h e o r e m  4 . 4  o f  
[ 2 ]

shows that for IV one could also take the set of all so-called index-triple sequences, so
that these two completeness results differ only in the choice of the extended state space.
Our choice is both more economical and easier to use in the concrete proofs.
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In [2] it is proved that in the case of regular declaration schemes (corresponding
to flow-chart programs) one can always find a finite system of intermediate assertions
taken from the original state space. In more syntactical terms this can be interpreted as a
statement that auxiliary variables are not needed for correctness proofs in the case of
flow-chart programs. They are needed in the general case o f  arbitrary systems of
(parameterless) procedure declarations.

In the relational framework any subset of the state space can be taken as an
assertion. This is not the case with a more syntactical approach in which assertions are
formulas from an assertion language. These two different approaches lead to different
types of completeness results. Thus one should be cautious in translating results from
one framework into the other because there can exist subsets of the state space which do
not correspond to (are not defined by) any formula from the assertion language. This
problem within the relational framework could be resolved by defining a language over
the state space in which assertions could be expressed. However, a natural question
then arises as to which formulas (subsets) should be accepted as assertions. This
problem has been studied in [1].

2. Preliminaries. As in [2] we shall use binary relations over the state space to
provide an interpretation for systems of mutually recursive procedures. More precisely,
given a set 9  = {Pi, • • • , Pn} of procedure symbols, we define a language o f "state-
ments" , 9 ' ()  as follows: let s i  = {I, AI, A2, • • ' } be a  set o f  "elementary action"
symbols, A  = {ti, t2, • • •} a set of "Boolean expressions." 9*(P) is then the least set
containing si U U  9 that is closed under the operations " ; "  (sequencing) and "  "
(nondeterministic choice).

By a declaration scheme we mean a set 2  = {Pi 4S1, • • • , w h e r e  for
i = 1, • • • , n, P, E g, S, E ( 9 )

In [2] a theory of partial correctness and inductive assertions has been worked out
in a relational framework. The meaning of a program is viewed as a binary relation over
the state space, i.e., a set of pairs of initial and final states, whereas an assertion is viewed
as a subset of the state space, i.e., the set of states satisfying the assertion. We  recall
some definitions from [2] which are used below.

Let V be the domain of states. Letters R, R
I
. ,  •  •  •  d e n o t e  
b i n a r y  
r e l a t i o n s  
o v e r  
V ;

p, q, r subsets of V; x, y, z elements of VI
R
i
;  
R
2  
=
f
(
X
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Y
)
:  
J
.
Z
[
X
R
1
Z  
A  
Z
R
A
I
,

p, { (x ,  x): x E p},
p =  {31: 3x[x Ep A xRy]},

R = {(x, y): yRx},
denotes the empty set.

Throughout the paper we use the convention from [2] that in  any expression
involving programs and assertions built up by using ; , U o r w e  suppress the sub-
script " ," .

So, for example, if  we write p;Rg_Thq we actually mean p „ ; Rg . R;  q , ,  i.e.,
Vx, y[(x Ep A xRy)-i y e q], or (informally speaking) that the program R is partially
correct with respect to p and q. We shall need the following results proved in [2].LEMMA 1.

(i) (Ri;  R2); R3 = Ri; (R2; R3) ( =  Ri; R2; R3, from now on),
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Let 0  = {Pi S i ,  • • • , Pn b e  a declaration scheme. By an interpretation i
9into a state space 'V we mean a mapping from 9'(g) into relations over V such that:
(a) fo r each A E 6 ( A )  is a binary relation over V;
(b) 6  (/) = {(x, x): x e
(c) f o r each t  E ( t )  is a subset of 'V;
(d) fo r each F
e  P ,  i
( P )  
i s  
a  
b i n
a r y  
r e l
a t i
o n  
o
v
e
r  
'
V
;

(e) i  (S i ; S2) = ie (Si); ie(S2);
(f) i2 (S1U S2) = ( S t ) U  i2(S2);
(g) ( j
e
t  
( P
i ) ,  
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(
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)
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t
h
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(ie(Pi), • • • , =  (lo(S1), • • • , le(Sn)) holds.
The above definition is the usual denotational semantics of recursive program schemes.
Its justification a n d  equivalence with  operational semantics i s  an  immediate
consequence of the results proved in [21

Observe, f o r example, that i f  • [ ] ; '  t
t
;  t 2 1 ,  t h e n  
d u e  t o  
t h e  
c o n v e n t i o
n

mentioned above ie (P) = ig (ti)+; ie (t2)-f-
In the sequel we shall always consider programs with respect to a given declaration

scheme. We shall freely identify statements and their interpretations, hoping that no
confusion will result from this.

3. Extending the state space. We now want to use the assertions from the
extended space V  x V. In order to do this we have to extend (in an obvious way) several
operations from V  into 'V x V. Let a, b denote subsets of 'V x V used as assertions and
cr, 1
- 
e l
e
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n
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The operations ; and , mentioned above retain their meaning when applied to subsets of
(V  x V) x x  'V) and 'V x 'V respectively, so obviously Lemma 1 holds in the case of
the extended state space V  x VI We shall use in  the sequel "mixed" expressions
involving assertions from 'V x V and programs from 'V x V. While doing so we shall
always mean the ir "extensions" to  (V  x V) x (V x 'V), which can be obtained by
attaching the subscript , to assertions and the superscript t
t o  p r o g r a m s .  F o r  
e x a m p l e ,  
i f

we write Ri;  a; R2, we actually mean RI;  a
+
;  R I .  T h e  
r e a d e r  
s h o u l d  
c o n v i n c e  
h i m s e l f

that the convention of omitting brackets (as indicated in Lemma 1) does not lead now to
any ambiguities, since (R
i
;  R
2
)
1
'  =  
R I ;  
R I .

Observe that cl; R R ; b  means that a , , R
T c R
t
; b , ,  i . e . ,  
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or that the program R is partially correct with respect to a and b.
We shall need the following definition:

a (R) = 1(x, o
-
):  T
[ O R T  
A  
( X
,  
T )
e

In the proofs below we shall use Scott induction to prove inclusions between
relations on 'V x

Scott induction. Le t  g  = {Pi ,
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i
,  •  •  
•  ,  
X p ,  
u s i
n g  
;  
a
n
d  
L
i  
a
n
d  
l
e
t  
t
h
e  
f o
l l
o
w i
n
g  
t
w
o  
c
o
n
d
i
t
i
o
n
s  
b
e  
s
a
t
i
s
fi
e
d
:

(i) W
/
( fl ,  
•  
•  
•  
,  
(
1
)  
W
r
(
n
,  
•  
•  
•  
,  
0
)
,  
a
n
d

(ii) fo r each R 1, • • • , R„ x  'V,
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then g1(.91(R1, • • • , Rn), • • • , Sn(R11 • • • 1 Rn))
g g r ( S I ( R b • — , R J , . . . , S n ( R b . — , R r ) ) .
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Then gl(P1, • • • 'PO g-gr(P1, • • • , P,2).
The proof is analogous to the proof of the version formulated in [2].

4. Completeness result. The general context-free declaration scheme is

( I )  { P i  S o U  Si,21..) • •  •  U
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where A(i, j, k)E U  P ( i ,  j, k) e {PI, • • • , PO, and K
i
,
i i s  a n  i n t e g e r  
O  ( i f  K
1 1  =  
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A
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j
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)
)
.

In the above declaration scheme each P(i, j, k) is some element of {Pi, • • • , PO.
Define a function h by: h(i, j, k )
-
-=  I  i l l  P ( i ,  
j ,  k )
=

The general inductive assertion method calls for suitable intermediate assertions
preceding and succeeding each statement in the program. The theorem presented
below states soundness and completeness of a particular version of the method in which
intermediate assertions from the extended state space are used. The theorem shows that
the global correctness property p; P
1 P i ;  q  
c a n  
a l w a y s  
b e  
e s t a b l i s h
e d  
b y  
fi n d i n
g

intermediate assertions of the special form a', a(i, j, k), b' and b(i, j, k).
THEOREM, Assume the declaration scheme (1). For any two assertions p,

P; Pi P i ;

i f  there exist assertions b  c  clix V (i {1 ,  • • • , n}) and relations R
i
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t
,
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(2) a '  ; A(i, j, 0) A ( i ,  0 ) ;  a(i, j, 1),
b(i, j, k); A(i, k ) g  A(i, j, k); a(i, j, k +1), k  =1, • • • , K
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„ — 1  i f  K
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I n  (19 x p)g a
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.

Here by definition a(i, j, k)=  a
h (
' ' ' '
k )
( R
i k
)  a n d  b
( i ,  
j ,  
k )
= h
b

Proof. To make the argument more readable we shall prove the theorem in the
case of the declaration P A I ;  P; A2; P; A3 U A4. The proof for the case of the general
context-free declaration scheme is analogous and we leave it to the reader. We thus
prove the following.

Assume the declaration P A l ;  P; A2; P; A3 U /44. For any two assertions p, q c
71,

(3)

p ;Pg P;q ,

iff there exist assertions a, b c '11 x Ir and relations R1,R2c I t x  'V such that

a;A1cA1;a(R1),

b (R
1
);  
A
2  
g  
A
2
;  
a
(
R
2
)
,

(4)
b(R2); A3 A 3 ;  b,

a ;  A 4  c.  A 4 ;  b,



and

(5)

(6)
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I  11(p xp )g  a,

b i l (V x p )c q x p .
I f  part. We first prove by Scott induction that

a;P.cP;b.

Assume that a; X  c_ X; b for some X  c 7 r ,  i.e., that

y, of((x, o-)E a A xXy)-* (y, cr) 101
Thus for any relation R,

y ,  Gr, T [ CT RT  A (X,  T )  e  a  A  x X y  7 )  b ] ,

i.e., according to our notation,

(7) a ( R ) ;  X g_ X ; b(R).

669

Now, due to the assumptions, Lemma 1 and (7),
a; (A l;  X; A2; X; A3)=(2; Al);  X; A2; X; A3c.A1; a(Ri); X; A2; X; A3

c A l ;  X ;  b ( R 1 ) ;  A 2 ;  X ;  A 3  g  A l ;  X ;  A 2 ;  a  ( R 2 ) ;  X ;  A 3  c 4 4 1 ;  X ;  b ( R
2
) ; A
3
c (A l ;  X; A2;X; A3); b.

Hence, by Lemma 1 and the assumptions,

a; (A l;X ;A2 ;X ;A3 L JA4 )c(A l;X ;A2 ;X ;A3 L JA4 );  b.

Since obviously a; 11 c 11; b, by Scott induction, (6) holds.
We are now ready to prove p; P P ;  q. Suppose that x E p and xPy for some

x, y e er. We have to show: y E q. By the assumptions (x, x)E a. By (6), (y, x)E b. Since
x E p, by the assumptions (y, x)E
,
q  x p ,  s o  y  
E  q .

Only if part. Put a = I, b P  and let R
i =  A l  a n d  
R 2  =  
A l ;  
P ;  
A z  
W e  
a r e  
t o  
p r o v
e

that (4) and (5) hold.
Let x, y, cr be arbitrary elements of V.

(i) We have to show: a ; A ig  o ( I R  1), i.e., (x, cr)E a and x i l
l
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By the definition of a, o- = x, so by the definition of R
i
,  c r R l y .  H e n c e ,

since (y, y) E a, we get 3 7 -[ o
-
Rir A  ( y ,  r )  
E  a ]  
b y  
p u t t i n g  
T  
y .

(ii) We have to show: b (R1); A2 g- A2; a (R2), i.e., 37-[(TR
i
r A  ( x ,  7 - )  E  
b l a n d  x A 2 Y

implies 3 1
-
1 [ o
-
R 2 r 1  
A  
( Y /  
7
1 ) E  
a ]
.  
S u
p p
o s
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R
i
r
,  
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,  
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xA2y. By the definition of R1 and b,crA
i
r a n d  r P x ,  
s o  c r ( A
l
;  P ;  
A 2 ) y .  
B y  
t h e

definition of R2 , a
-
R2 y ,  s o ,  
s i n c e  
( y ,  
y )  
E  
a ,  
w
e  
g e
t  3 T
1
[ a R
2
7
,
1  
A  
(
y
,  
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a
]  
b
y

putting T
1 =  
y .

(iii) We have to show: b (RD; A3 g A3; b, i.e., IT[cTR2-r A (X, T)E b] and xA3Y
implies (y, cr) E b. Suppose that for some 1-, c r R
2
T , ( x ,  7 - )  E  b  
a n d  x A 3 y .  
B y  
t h e

definition of R2 and b, a (Al;  P; A2)T and TPx, so a
-
( A l ;  P ;  A 2 ;  P ;  
A 3 ) y .  
T h u s ,

oPy, which means (y, cr) E b.
(iv) We have to show: a; A4 C A4; b, i.e., (x, cr) E a and .x,44y implies (y, a) E b.

Suppose (x, cr) E a and x / t
4
y .  T h e n  
c r  =  
x  
a n d  
x P y ,  
i . e . ,  
( y ,  
1 7 )
E  
b
.

(v) Obviously /1") (p x p) a .
(vi) We have to show: b ( V  p )  q  p ,  i.e., (x, y) E b and y E p implies x E q.

Suppose (x, y)E b and y E p. Then yPx, and since p; PCP; q, we find x E q.
This concludes the proof.
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The above proof is an analogue of the corresponding completeness proofs in [5] and [6].
However, the relational approach sheds some light on the role of the auxiliary variables
used in [5] to obtain so-called "most general formulas" and in [6], analogously, to
"freeze" the global variables upon entering a procedure call. I t  is clear from the above
proof that completeness is obtained by using the meaning o f  a procedure as an
assertion.

The proof also suggests an alternative, equivalent point o f view at the way of
introducing the extended state space. Namely, the same result can be obtained by
proving first partial correctness of the program a := P  using assertions from its state
space. The condition I fl  (p p )  c.. a is then replaced by the equivalent requirement
p x : =  x a  := a .

In such a way the extension of the state space is caused by a change in the original
program P. The desired global correctness property is then derived by deleting the
assignment a
- : =  x  
t o  
t h e  
" a u x
i l i a r
y  
v a r
i a b
l e "  
a  
u
s
i
n
g  
t
h
e  
c o
r r
e s
p o
n d
i n
g  
p
r
o
o
f  
r
u
l
e  
f
r
o
m

[
8
]
.

5. An application. Having obtained a specific form of the completeness result we
shall illustrate its usefulness by the following example.

Let the state space 'V be the set of natural numbers X. Consider the following
declaration:

(8) P  [ n  -
5 1 0 0 ] ;  
E n  : =  
n  
+ 1 1 ] ;  
P ;  
P  
E n  
>  
1 0
0 ] ;  
[
n  
:
=  
1
0
] ,

where, of course, [n 1 0 0 ]  = fx : x 1001, [n := n 1 1 ]  =f(x, y): y =x +111 and so on.
P is of course McCarthy's well-known 91 function defined in a relational framework.
We want to prove that
(9) [ n  •.5100]; P P ;  [n 9 1 ] .

Observe that the above declaration is of the form P P  A2 ;  P; A3 (-) A4., where

A 1 = [n 15100]; [n := n +
1
1 ] ,
A2= I,

A 3  =

A4 = En >1.00);[n := n — 10].

We can now use the theorem to prove (9). The easiest way to proceed is to define the
required relations and functions as in the proof of the theorem, taking for P [n-
5 1 0 0 ] ;[n 9 1 ] U  [n >1.00];[n := n -
1 0 ] ,  a n d  
t o  
c h e c k  
t h a t  
( 4 )  
a n d  
( 5 )  
h o l
d .

Thus we define

a = {(x, x): x E

b = f(x, y): (x = 91 fl
y  - 5 1 0 0 )  
v  
( x  
=  
y  
—  
1 0  
A  
y  
>  
1 0 0
) 1 ,

R
I  
-
-
{
(
x
,  
y
)
:
x
-
.
„
.
.
1
0
0  
A  
y  
=
x
-
1
-
1
1
}
,

R2 = [ti 1 0 0 ] ;  [n := n + i l l ;  (En-5 1.00];[n := 91]U [n >100]; [n := n — 10])
=-- {( y ) :  (90 x  1 0 0  A y = x +1) v (x <90 A y 91 )1 .

We leave the task of checking that (4) and (5) indeed hold to the reader. Now, by the
theorem, (9) holds.

The above program together with the corresponding assertions can be represented
by the flow-chart (Fig. 1).



- z a( R
1
) )

( 90_cr - 100An= cr - i - 1)
v(cr<90 nn = 91)
- -  -( r - •
-
b ( R
1
) : - -
-
- a
( R
2
) )

n = 9 1 A 0
-
g . - 1 0 0

( b( R2) )  -  -  -
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-  -  n 1 0 0

- n =  cr(r-
- a )

- - (n=91 A c r - 1
,
1 0 0 ) v
( n = c r - 1 0 A c
r > 1 0 0 ) (
,
- = - b )

- - n  =91

FIG. 1
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