stichting

mathematisch

centrum MC
AFDELING INFORMATICA IW 180/81 OKTOBER

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS & J.C. VAN VLIET

MAKING ALGOL 68+ TEXTS CONFORM TO AN OPERATOR-PRIORITY GRAMMAR

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kuwislaan, Amsterdam.

The Mathematical Centre, fgounded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and Lits
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization §orn the Advancement of Pure Research (Z.W.0.).

) Mathematics subject classification: 68F25, 68B20

-Computing Reviews-category: 5.23, 4.22, 4,12

ing ALGOL 68+ texts conform to an operator-priority grammar

.L.T.Meertens & J.C. van Vliet

TRACT

ALGOL 68+ is a superlanguage of ALGOL 68 which is powerful enough to
cribe the standard-prelude. An operator-precedence grammar can,
ough a simple right-to-left transduction scheme, be made to be of type
1). If, in addition, the grammar is an "operator-priority" grammar, an
y and consistent error-recovery mechanism can be applied. In an
lier report, an operator-priority grammar of ALGOL 68+ has been given.
main difference between this grammar and an underlying context-free
mmar of ALGOL 68+ is that (i) symbols represented by the same mark
e been distinguished, and (ii) various symbols have been inserted in
grammar. The present report gives a detailed account of how these
nges can be taken care of during the first phases of an ALGOL 68+
lementation.

WORDS & PHRASES: ALGOL 68+, lexical analysis, syntax-directed
transduction

1. INTRODUCTION

ALGOL 68+ is a superlanguage of ALGOL 68 [1] which is powerful
enough to describe the standard-prelude. Besides this, ALGOL 68+ also
encompasses the official IFIP modules and separate-compilation facility
~as given in [2]. The changes and additions to the language needed to be
able to process a version of the standard-prelude are of a fairly simple
nature; they are described in [3].

For an operator-precedence grammar, at most one of three
relationships (denoted by ¢, =, or ©) may hold between each pair of
terminal symbols. These relationships are called the precedence
"relations. (For a formal treatment of operator-precedence grammars, see
[4].) For an operator-precedence grammar, it is possible to construct a
transducer [5] which, operating from right to left, brings the source
text in prefix form, only knowing the precedence relations between the
symbols.

In general, a number of entries in the table of precedence relations
is empty, i.e., there is no precedence relation between certain pairs of
terminal symbols. For correct input texts, this is no problem, since the
transducer will never need them. For incorrect input texts, however, the
transducer might well ask for them. In order to let the transducer work
for all input texts, it is therefore necessary to define precedence
relations for the empty spots as well. For an arbitrary operator-
precedence grammar, it is not clear how to fill these empty spots in such
a way that a reasonably consistent treatment of incorrect input texts is
obtained. Therefore, some further restrictions on the grammar have been
introduced, leading to the notion of an operator-priority grammar. Such
an operator-priority grammar for ALGOL 68+ is given in [6].

In order to apply the above-mentioned right-to-left transduction
scheme, the parenthesis skeleton should be correct, for, if the
transduction scheme is applied bluntly to a source text with an incorrect
parenthesis skeleton, the result is in general unacceptable. To this end,
one can either try to repair the parenthesis skeleton during lexical
analysis if it turns out to be incorrect (e.g., using the algorithm given
in [10]), or decide to abort the parsing process altogether. In the
discussion below (and especially in section 2.8), it is assumed that all
parentheses match properly.

The right-to-left transduction scheme can also be applied to the
operator-priority grammar. Care has been taken to ensure that the
prefix-form of that grammar is of type LL(1). If a grammar is of type
LL(1), this easily leads to a parsing method for that grammar,
implemented by a set of mutually recursive routines, one for each non-
terminal of the grammar. Using such a parser, there is no need to back
up, since it is decidable which rule to apply (i.e., which routine to
call) by looking at most one symbol ahead. A more formal treatment of
LL(1) grammars and parsers based on them can be found in [4].

[3%]

This combined scheme (a syntax-directed transduction based on an
yperator-priority grammar and a subsequent top-down syntax analysis),
.ogether with the associated consistent treatment of erroneous input
;exts, is further dealt with in [7]. The emphasis in this report is on
:he derivation of an algorithm which transforms ALGOL 68+ texts into
sentences of the language produced by the operator-priority grammar.

The measures taken to make the grammar operator-priority can be
iistinguished in four categories:

1. Trivial rearrangements of the syntax. This has mainly been done by
considering some notions as macros, to be replaced (conceptually) in
the productions in which they occur by their direct productions.
Obviously, this trick can only be used for nonrecursive notions. In
the grammar (see [6]), these notions are indicated by prefixing their
production rules with an asterisk.

>. Distinguishing symbols represented by the same mark. For instance, it
was necessary to distinguish between the up-to-/label-token, the
specification-token and the routine-token. For a complete list of thi
category, see section 2 below.

>. Various symbols have been inserted between notions. For instance, a
"dectag-insert" is placed between a declarer and the following TAG-
token in an identifier-declaration. Again, section 2 contains a
complete account of the modifications from this category.

i. Relaxations in the grammar. For instance, closed-clauses and
collateral-clauses are treated alike.

(The function of the changes in categories a and c is to separate any tw

rotions in a production rule by at least one terminal symbol, which is

nandatory in an operator-precedence grammar. The changes in category b

serve to resolve clashes in the precedence relations. The changes in

category d mainly serve to fulfill the operator-priority requirements an
to allow for the top-down parsing method using the prefix-form of the
operator-priority grammar.)

When actually parsing ALGOL 68+ texts, the same modifications must
be made. Category a does not change the language generated, while
category d only enlarges the set of accepted sentences (which must then
again be catered for during further syntax-analysis). In this report, a
description is given of how the distinctions from category b and the
insertion of additional symbols from category c can be handled.

Some of these changes can be dealt with quite easily during lexical
analysis. Others, however, require a more global knowledge of the input-
text. For example, in a context like "p a;", a "dectag-insert" must be
placed between "p" and "a" only if p is a mode-indication. Much more
complicated examples can be found when various constructs enclosed by th
symbols "(" and ")" are considered. In such cases, as much information a
possible is gathered during lexical analysis, and the final decision as
to which change applies can then be made in the input routine of the
actual transducer, by inspecting the various indicant tables. (The
indicant tables must be partly filled by the lexical analyzer with

ormation concerning defining occurrences of mode-indications, module-
ications and operators. They may be pre-filled if pieces of a program
compiled separately.)

The global (but very incomplete) scheme of the first three passes of
parser now looks as follows:

"PASS 1 PASS 2 PASS 3

reading B input
N tokens routine

D
K; LL(1)-parser
global actual
parsing {— transducer [~
algorithm

\

indicant
tables

,C and D are streams:

contains the ALGOL 68+ input text;

contains lexical units (like identifiers), and is the partly
transformed version of the input text;

contains the completely transformed version, i.e., conforms to the
operator-priority grammar;

contains the prefix-form of C and can thus be parsed top-down.

Taking the example "(R a)", the various streams might look as
lows:

A: ... (pa) ...

: ... (p “dectag(p) a) ...
C: ... (p “dectag a) ... or ceo (pa) <.
D: ... (’dectag p a) ... or «eo (pa) ...

e, "“dectag (p)" stands for: place the dectag insert ‘dectag if p is a
e-indication, and ignore this otherwise.

In the next section, a detailed analysis is given of how and where
various changes and inserts should be effected. In order to be able
fully appreciate this analysis, a fairly thorough knowledge of the
tax of ALGOL 68+ is necessary. Section 3 combines the results of these
lyses into a global parsing algorithm to be included in the lexical
lyzer.

2. RECOGNIZING SPECIFIC

be applied are the follo

The adjustments to

® On the lowest level, a

as open-mark and a
as choice-in and c
as close-mark and
as is-defined-as-t
as colon-mark, spe
as skip-token and

Ve Il ~— ——~

e On the lowest level, a
occurrences of operato
applied occurrences (i

® Besides the and-also-t

a

list, there is a var

separates lists.

® The grammar contains i

the loop-insert mark
the ssecca-insert ma
clause;

the dectag-insert is
TAG-token in a decla
declaration;

the opdec-insert is
defining-operator in
the cast-insert is p
clause of a castj;
the clice-insert is
parameters-pack or i
the row-insert is pl
following declarer o
the formals-insert i
brief-pack or declar
PROCEDURE-plan or ro
the invoke-insert is
ENCLOSED-clause in a

AND PLACING INSERTS

e before the actual transducti
see also [6]):

nction is made between
ce-start;

out;

ice-finish;
egg-defined-as-token and opera
tion-token and routine-token;
rator.

ction is also made between def
priority- and operation-decla
ulas and ldec-sources).

which separates the individual
the separate-and-also-token, w

beginning of a loop;
e end of the revelation of an

d between a declarer and the f
s FIELDS-portrayer or identifi

between the MODINE-plan and t
eration-declaration;
between the declarer and the E

between the primary and the a
-bracket of a call or slice;
etween the ROWS~rower-bracket
WS-of-MODE-declarator;
ed between a PARAMETERS-joined
brief-pack and the following d
text;

d between the revelation and t
ss-clause.

Recognizing choice-symbols

Obviously, when an input-text of the form
(® e 0 l e e @)

encountered, one can not decide that this concerns a choice-clause

il the symbol "|" is met. An easy way to solve this is to distinguish
ice-in- and choice-out-symbols (both of which may be represented by

) and to recognize the choice-finish-symbol represented by ")" during
ical analysis, which is straightforward. Since the transducer operates
m right-to-left, the "(" can subsequently be recognized by its input
tine in a similar way.

Placing the loop-insert

The loop-insert marks the start of a loop-clause. A loop-clause may
rt with one of the symbols for, from, by, to, while and do. Except for
first one, all those symbols may also appear in the middle of a

p-clause. If one of these symbols,
ple procedure to decide which case
s 3 by ... " it clearly marks the
obviously in the middle of one in

In general, the following can be

say by, is encountered, we want a
applies. In a context like

start of a loop-clause, while we
the context " ... +2 by ... ".

stated: the symbol by marks the

rt of a loop-clause if it is the first symbol of an enclosed-clause,
is thus preceded by a symbol which may appear just before an
losed-clause. Obviously, the same holds for the symbols from, to,

le and do.

On the other hand, the symbol by

does not mark the start of a loop-

use if it is preceded by a for-part or from-part, and thus by a tag or
nit, respectively. Something similar holds for the symbols to and

le; the symbol from may only be preceded by a tag in this case. If the
bol do does not indicate the start of a loop-clause, it must be

ceded by a tag, unit or enquiry-clause, the last one of which ends in
nit again. It is therefore reasonable in all cases to test for symbols

ch may mark the end of a unit.

An enclosed-clause may be preceded by one of the following symbols:

iz ! 1=s ! sé: ! =1 :) ; [t e 2 begin
if then elif else case in ouse out of from!
by ! to ! while do (| |) 1 def postlude

operator 1 mode-indication

module-indication

Remarks:

1) The symbols with superscript 1 may only precede a SORT MODE ENCLOSED
CLAUSE. Since a loop-clause is only allowed in a (strong-) void
context, they are disallowed here. Therefore, the symbol ~, when used
to represent the operator not, is not allowed in this context.

2) A program [8)] was used to determine the above set of symbols from the
context-free grammar of ALGOL 68+ as given in [9]. The set of symbols
with superscript 1 was determined manually by inspecting the original
syntax of ALGOL 68+.

3) It should be noted here that pragmats are not taken into account. In
ALGOL-68 terminology this means that we consider “tokens”, rather than
“symbols”.

A unit may end with one of the following symbols:

end fi esac] nil od) skip {~}

tag format-text denotation mode-indication.

Taking remark 1 into account, the two sets may be called disjoint,
except for the mode- and module-indication (which can not be
distinguished at this level). In order to give a decisive answer in the
case of a mode- or module-indication, a more complicated reasoning is
needed.

Given the context at hand (a bold word followed by, say, to), there
are three possibilities:
i) we are concerned with an access-clause, as in "... access m to ...";
ii) we are concerned with a cast, as in "... ; m to ...";
iii) we are concerned with a generator, as in "... locm to ...".

In the first two cases, the start of a loop-clause is indicated; in
the latter case we are inside a loop-clause. It is possible to decide
which case applies by considering the symbol immediately preceding the
bold word.

In the case of an access-clause, the module-indication is preceded
by one of the following symbols

access ’ pub

In the case of a cast, the mode of the declarer of that cast is
VOID, so the declarer consists of a single mode-indication. That mode-
indication therefore is the first symbol of the cast, and is preceded by
a symbol which may immediately precede a cast. The symbols that may
precede a cast are the same as those that may precede an enclosed-clause,
with the exception of the close-symbol, mode-indication and module-
indication.

In the case of a generator, the set of symbols which may precede the
mode-indication consists of the symbols loc and heap, plus those symbols
which may immediately precede a mode-indication in an actual-MODE-
declarer. By inspecting section 4.6.1 of the Revised Report, we arrive at
the following set:

loc heap ref)] proc flex

In this way, the loop-insert can be placed at the symbol-level
during lexical analysis, by expecting the two preceding symbols. In case
one cannot give a decisive answer (i.e., there is an error in the input
text, as in the case of "... op by «++"), we have decided to place a
loop-insert provisionally. During an eventual correction phase of the
parenthesis skeleton (see [10]), this provisional insert can be removed
again, if such comes out better.

2.3 Recognizing the separate-and-also-token

The separate-and-also~-token serves to separate common-declarations,
common-declaratives, common-portrayers and module-calls. To be able to
distinguish these, it is necessary to know which of the bold words that
are defined in the program are mode-indications, module-indications and
operators, respectively. Since this is in general not known until at the
end of the lexical phase, this problem can most easily be dealt with in
(the input routine of) the next phase.

An and-also-token must then be changed into a separate-and-also-
token if it is followed by one of the symbols mode, op, prio, module, pub
and ‘“ldec, or a construct of the form

declarer, dectag insert, identifier.

This last case can be recognized if some additional information (viz.,
the fact that a dectag-insert has been placed) is obtained from the
actual transducer. The joined-module-call must be treated in a special
way; it can easily be dealt with during the input routine of the
transduction phase (see section 2.4 below).

2.4 Ssecca-insert and invoke-insert

In a context like

module a = access b, ¢ def ... fed, module d = ...

both and-also-tokens will be transformed into a separate-and-also-token.
However, they occur at different levels in the parse tree. So, in order
to let the transducer work properly, we must ensure that the first and-
also-token is viewed to occur within some nested parenthesized construct.

We may consider a parenthesized construct of the form
access ... def ... fed. Since the revelation of a module-text (the part
"access b, c") is optional, we then have to recognize the start of a
nodule-text, just like we had to recognize the start of a loop-clause
(section 2.2 above).

Revelations may also appear in ENCLOSED-clauses, for instance in a
context

int i = access b, ¢ (...), real z:= ...

Again, both and-also-tokens will be transformed into a separate-
and-also-token, and again they occur at different levels in the parse
tree. If we consider a construct of the form "access ... (...)" as one
parenthesized construct, it will be necessary to recognize the start of
almost every parenthesized construct, which is clearly undesirable.

We therefore decided to introduce an explicit closing parenthesis to
match access (and termed it ssecca-insert). This in turn leads to
problems with regard to the operator-precedence requirements. Therefore,
an additional invoke-insert is placed after the ssecca-insert.

Both inserts can be placed already during lexical analysis. However,
technical complications then arise when trying to place some of the other
inserts between parenthesized constructs. We therefore decided to place
only the ssecca-insert during lexical analysis, and to incorporate the
invoke-insert in the scheme used to handle sequences of parenthesized
constructs (see section 2.8 below).

2.5 Recognizing the egg-defined-as-token

The egg-defined-as-token is the equals-mark from the stuffing-
definition (see [2]). Therefore, the equals-mark must be recognized in a
context like

egg "a" = ...

This can easily be accomplished during lexical analysis.

2.6 Dectag-insert, opdec-insert and is-defined-as-token

These are all concerned with the begin pieces of "declarations"
(which also includes declaratives and portrayers). The dectag-insert is
placed between a declarer and the following identifier in a declarative,
portrayer, identity- and variable-declaration. The opdec-insert is placed
immediately after the MODINE-plan in an operator-declaration. The is-
defined-as-token replaces the equals-mark when it is used as such in the
grammar of ALGOL 68+ (except in a stuffing-definition; see section 2.5
above).

Since it is generally not known during lexical analysis whether a
1 word is used as mode-indication, module-indication or operator, both
dectag-insert and the is-defined-as-token are in general placed
Jitionally. In the input routine of the next phase, this condition is
wn and the decision can be taken.

In a number of cases the decision can be taken on the basis of the
adiate context:

-—> ; real ‘dectag a
-=> mode m “idat

3
o
)
[
"

other cases, like " ... , i = ... ", the input text (and especially
larations) must be analyzed globally. A precise description of this
sing algorithm is given in section 3 below.

Recognizing the specification-token and routine-token

The specification-token is the colon-mark from the specification of
r0ice-using-UNITED-clause; the routine-token is the colon-mark from a
tine-text. The specification-token can not be recognized until the
asduction phase, since the type of the parenthesized construct just
ceding it determines whether or not it concerns a specification (see
5> section 2.8 below). The routine-token is in general placed
ditionally during lexical analysis. The condition here is: is the bold
i just preceding it a mode-indication? If it is preceded by a
sible" declarer (like, e.g., real) the routine-token can be placed
ing lexical analysis unconditionally.

Cast-insert, clice-insert, row-insert, formals-insert and
invoke-insert

The cast-insert serves to separate the declarer and the enclosed-
ise of a cast, like in "real(x)". The clice-insert is placed between
primary and the actual-parameters-pack or indexer-bracket of a call
slice, like in "sin(3.14)" or "a[1]". The row-insert separates the
S-rower-bracket and the following declarer of a ROWS-of-MODE-
larator, as in "[1:3] int i". The formals-insert is placed between a
AMETERS-joined-declarer-brief-pack and the subsequent declarer of a
CEDURE-plan or routine-text, as in "(real x) void: p". Finally, the
ocke-insert serves to separate a revelation from the following
losed-clause in an access-clause, like in "access a (... .

These inserts have two aspects in common: Firstly, they are all
cerned with parenthesized constructs. In general, a sequence of
enthesized constructs must be considered, and a sequence of (possibly
ferent) symbols must be inserted. For example, in

ref [l real (...) [...]

10

a row-insert, a ca
order from left to

Secondly, the
on the fact whethe
Consider, for exam

(p a), (b), (c)

(|

Xy

Depending on the t
be inserted at the

i) if both p and
ii) if p is an op

iii) if p and q ar
iv) if p is a mod
p and g is a

The type of t
lexical analysis.
that may arise bec
routine of the tra
which inserts must
gathered during le
parenthesized cons
P, ... P, this in

1 n
i) The "protostat
ii) The "prototype

The prefix "p
on the type of the
start of the next
"protostate" and "
finite-state autom
obtained.

Given the ini
a sequence a.,; «.-
state automaton as
and a new state b
insert a, and a ne
determinés the ins
to P;; a will b

appl%ingnfﬁe trans

ert an

se typ
ven bo
n inpu

p and
s indi

mode
and q
opera

cation
-indic

ious b
er to
f this
ion ph
aced o
analys
. For
ion co

t prio
ach P.
i

serves

words
so it

ype" l

iven b

tate b
of in
ws: Th
equent
e b,

ust be

to be
indica

inatio
zZ3

x=for
y=z2=r
ion, t
X=y=2
X=y=cC
z=emp
tor, o
put-te

neral
compli
11 be
on nec
ch bol
r the
arenth

the i
pes ar
n imme
11 type"
the st

oo 3 P
determ

etermi
p,) d
’ ghe
11 be
e P/ i

i

11

In the sequel, the term "pack" will be used, rather than
"enthesized construct". It will be used to denote any construct of the
n

access ... Ssecca

def ... fed
“loop ... od
if oo Fi
case .+ €8ac

irks:

fﬁg—single parallel-symbol is considered as a pack. This leads to a
"easonably simple, albeit somewhat ad hoc, treatment.

fhe constructs struet (...) and union (...) are supposed to be
:ransformed into some kind of mode-standard during lexical analysisj;
-hey are not taken into account by the scheme developed here.

\ pack of the form "def ... fed" will be termed a "module-pack" in the
3equel.

If, in the underlying context-free grammar of ALGOL 68+ [9] and in
corresponding operator-priority grammar [6], each parenthesized
struct occurring in the right-hand-side of a production rule is
laced by some terminal symbol, regular languages L and L are
1ined, respectively. The finite-state automaton given below is
'isely the automaton which transforms L into L°. In the discussion
W, only the various possible states and types will be given, together
1 the transition-matrix which drives the finite-state automaton. Most,
10t all, of these transitions will be obvious.

As concerns the state just prior to the pack-sequence, the following
3s are distinguished:

) "cliceable", i.e., there occurs a simple primary: an identifier or a
string-denotation;

) "decl"™, i.e., there occurs a mode-indication (which includes the
mode-standards!);

) "decpref", i.e., we are clearly about to start a declarer, as for
instance after loc or heap;

) "modtext", i.e., we are about to start a module-text, the right-
hand-side of a module-declaration;

) "rest", all other cases (which also includes the possibility that we
are about to start a declarer which is not yet recognized as such).

12

As concerns the type of a pack, the following cases are distinguished:

i)

ii)
iii)
iv)
v)
vi)

vii)

"par", for a pack consisting of a single parallel-symbol;
"formals", for a pack consisting of a list of declarers, portrayers
or declaratives, surrounded by an open- and close-mark;

"prief pack", for any other construct surrounded by an open- and
close-mark;

"subbus", for a construct surrounded by a brief-sub- and brief-bus-
symbol;

"revel™, for a revelation, i.e., a construct of the form

access ... Ssecca; '

"deffed", for a module-pack, i.e., a construct of the form
def ... fed;

"bold pack", for any other pack.

In certain cases, this information obviously depends on the type of

a given bold word. In such cases, the bold word is included in the
information to be passed on to the input routine of the transduction
phase, which then determines the actual state or type. This in fact mean

that
word
will

the state "decl" and the type "formals" are conditional. If the bol
in question turns out to be an operator or module-indication, they
be transformed into the state "rest" and type "brief pack",

respectively.

From the five possibilities given above for the state just prior to

the pack-sequence, only the state "cliceable" is left as a possible stat
after the pack P,. The other four possibilities only serve as possible
entries for the automaton. However, seven new possibilities occur as a
possible state after the first pack of the pack-sequence:

i)

ii)

iii)

iv)

v)

vi)

vii)

"par", i.e., we have just treated a single parallel-symbol;
"rower", i.e., starting with a state "decpref" we have processed a
rower (a pack with type "subbus" or "brief pack");

"formals", i.e., we have just treated a pack with type "formals";
"ocliceable or rower" (or "cor" for short), i.e., we cannot yet
decide between "cliceable" and "rower". The final decision will
depend on the fact whether or not the pack-sequence is followed by
mode-indication. A temporary insert ‘clicerow’ is placed; we will
come back to this case later on;

"acliceable", i.e., we have just treated a revelation; eventually,
there has to follow a call or slice, but any number of revelations
is allowed in between;

"deffed", i.e., we have just treated the revelation of a module-
declaration;

"done", i.e., the pack-sequence should be ended; we will come into
this state after a pack following par, and after a module-pack.

13

Table 1

93e3S MOU 8yl saATH suTIT wo3zjoq syl STTUM
‘peoerd aq 03 3a9sSuUT 9y3z sa3edTpuT aurT doz ay3x ‘Axjus yoes 04

auop
auop
)oAuT, pajJap
9Tqe»oTTo® 9TqeeOTITO 9TQqeadTTO Jed
93)0AUY 9)0AUT, 830AUT, 93){0AUT, 9TqeadTTo®
J00 J00
MOJ®DTTO, MOJ?DTTO, J00
J9MOJU JI9MOU
STEeWJ0J, STeuWdo], STeWJ0J
J9MOJd Jd9MOJ
MoJ, MOJ, J9MO U
auop auop
3 3 Jqed
9TQqea0TITO 9TQeadTTO
901710, 90TTO, 9T1QeadTTO
auop pajjep
3 3 3Xaqpou
J9MOJ J9MOJd STeWJIo]
3 3 3 Jauadoap
aTqeadTIo® 9TqeadITo J400 J00 sTewJoJ Jed
3 3 3 3 3 3 3884
9Tqea0TTo® 9TqQeaoTITO 9TQqea0TTO Jed
3s®0, 3880, 3se0, 31se0, To9p
pajJop 19A8d soed pToq snqqns doed Jotuq sTewJdod Jed
D31I°°*° 18D B S83d0e pua uTdaa r 1 rafe /P TerAa.T) _1od A

'he finite-state automaton which, given an initial state b, and

p], ees s DP_, determines the inserts a., ... , a_, is driven by the
tion matrix given in Table 1. The insert an+ is determined in a

1l way from the final state Db 3 this will be further dealt with
Obviously, this automaton is+only capable of handling pack-

ices which are correct at this level; a slight modification which

, a reasonable treatment of erroneous pack-sequences is given at the

' this section. Entries in Table 1 which are marked with an e

ite that no insert is placed; this is only possible when it concerns

isert just prior to the pack-sequence, or after a parallel-symbol.

'or the tuple ("rest", "subbus"), Table 1 indicates a transition to
.ate "cor". However, it is sometimes possible to distinguish between
i\ "eliceable" and "rower" here. We have decided not to make this
ment; rather, the decision on which insert is to be placed is based
ither or not the pack-sequence is followed by a mode-indication.
)robably leads to a better treatment of incorrect input texts.

je the input contains something like

[3]:= x3

the scheme of Table 1, and the algorithm for determining the final
, a and for refining the temporary clicerow-inserts, which is
beTgw, the above text will be treated as

‘wrongtag ‘clice [3]:= x;
.ype of error-recovery needs further investigation.

Jhat remains now is the algorithm to determine the insert an from
.nal state b 1° We may end in any state except the ones that serve
entry to the automaton: "cliceable", "par", "rower", "formals",

, "acliceable", "deffed" and "done".

f the final state is "done", there is no symbol to be inserted
the pack-sequence, so an+1 = €,

inding in one of the states "par", "deffed" and "acliceable" means
:here definitely is something wrong: there should at least have

ved yet another pack. The further treatment of these cases should be
juring syntax analysis, and an+1 = €.

[f the final state is "cliceable", there also is no symbol to be

ed after the pack-sequence, so an+1 = €.

[f the final state is "rower", an additional row-insert must be

i: a = ‘row.
n+1

15

If the final state is "formals", three cases are distinguished:

The pack-sequence is followed by a mode-indication or otherwise
visible declarer (like "ref ... "). It then obviously concerns a

procedure-plan or routine text, and an+ = ‘formals;
When the pack-sequence is followed by a colon-symbol, it concerns a
specification, so a = €. Moreover, that colon-symbol must be

transformed into a sﬁecification—token (see also section 2.7);
In all other cases there is something wrong. One (reasonable)
possibility is to assume that a mode-indication is missing, so
a q° ‘formals. :

If the final state is "cor", two cases are distinguished:

The pack-sequence is followed by a mode-indication or otherwise
visible declarer. We may then decide that it concerns a rower, so
a1 F ‘row. Moreover, each clicerow-insert must be changed into a
row-insert;
In all other cases we may assume that it concerns a call or slice,
so an+1 = €. Now each clicerow-insert is replaced by a clice-insert.
As mentioned earlier, the transition scheme given in Table 1 is only
ble of handling correct pack-sequences. The changes needed to handle
rrect pack-sequences also are fairly simple, however. It is
onable, and in any case consistent, to partition the pack-sequence
e Pn into two sequences P, ... Pi- and Pi oo Pn as soon as no
isition is possible for a state bi ané type pi, where b, and pi are
state arrived at after pack P, and the type of pack P.,
iectively. We may then act as %Gilows: *

'he sequence P, ... Pi- must be finished off, i.e., we must decide on

. final insert a.. Thé algorithm for determining the final insert

ne1? 28 given above, can be applied here. In the final states

?3rmals“ and "cor" we now have to choose a, = “formals (case iii) and
- . . L1 .

g T e (case ii), respectively. If i = 1, ive., the entry state is

'rong already, there is no need to place a final insert;

'he sequence P, ... P_ is further treated, starting in a state "rest",

ince there is'no furgher information.

The above scheme can be implemented straightforwardly. It is also
iible to fill in the empty entries from the transition matrix in such
iy that the effect is the same. For each empty entry (b, p), the
:rts follow from the algorithm above, and the new state is that given
‘able 1 for the entry ("rest", p), with the addition that
"deffed") leads to a state "done" for each b. The thus adjusted
me is given in Table 2.

Table 2

rosTe soousnbes-yoed
3091100UT bBurTpuey Jo o7qedes ‘sWLYDS UOTITSURI} BYL

auop 9TqeaoTIo® 9TQBaOTTO 400 J00 sTeuwJoJ aed
3 3 3 3 3 3 3 auop
auop 9TqeedTTo® 9TqeadTITO J00 J00 STeuJdo0J aed
93){0AUT, 3 3 3 3 3 3 pajJjep
auop 9TyT®A0TTo® 9TQqeadTTo J0D 9TqeeOTITO sTewJdo] Jed
3 930AUT, 93OAUT, 3 9)0AUT, 3 9)0AUT 9TQqea0TITO®
auop 9TqeadTTo® 9TqeaoTTo J00 J00 STeWJd0J aed
3 3 3 MOJDTTO, MOJSDTTO, 3 3 J00
auop 2TqeaoTTo® 8TQqeadTITo JaMOoJd J9MOJ STewWJdoJ aed
STewIoF STewdo], sTewdo], STBUJOJ, STRUJ0J, STewdo], sTeuwJdoJ, STewJdoJ
auop 9TQea0TTO® 9TqeadTITo J9MOJ JI9MOJ sTewJoJ Jed
moua, MOJ, MoJ, MOJ, MOJ, MOJ, MOJ, J3MOJ
auop 9TqeadTTo® auop J00 auop sTeuJoJ Jed
3 3 3 3 3 3 3 Jed
auop 9TqQea0TTo® 9TQqeadITO 9TQqeedITO 9TQqeadTTo STeWJd0J Jed
3 3 3 90TTO, 90TTO, 3 3 8TqeadTTo
auop pajJjap 9TQqea2TTo J00 J00 sSTewJdoJ Jed
3 3 3 3 3 3 3 3Xxa3poul
auop 9Tqea0TTo® 9TqQeadTTO J9MOJ J9MOJ sSTewJaoJ Jed
3 3 3 3 3 3 3 Jaudoap
auop 9TqesdTTo® 9TqeedTITO J00 J00 STewuJdoJ Jed
3 3 3 3 3 3 3 3s8d
auop 9TqeaoTIo® 9TQBeOTTO J00 9TQqea9TTIO STewJoJ aed
3 185®0, 3s®e0, 3 3s®eo, 3 35eD, To9p
pajJjap T92A84 yoed ptoq snqqns Joed Jotuq sTewJa0J aed
paje*°Jep B S§8300® pus utdaq [1] (afe) (e TBdJ) Jed A

ajeals

17

iE GLOBAL PARSING ALGORITHM

In this section, the global parsing algorithm to be included in the
2al analysis phase of the compiler is described in some detail. The

2 ends of it, such as the various mode-declarations, input- and
it-routines, are not given; they suggest themselves quite easily from
given texts.

Many routines, like “go on token’, will return true if the symbol(s)
asted by the name of the routine appear next in the input stream, and
s otherwise. If the routine returns true, the lexical unit(s) it

is for will be copied to the output stream. As a consequence, a

ine like “pack sequence’ will consume a complete pack-sequence, etc.

One of the tasks of the algorithm is to collect information on
-definitions, operator- (& priority-) definitions and module-
nitions. This information is collected in "indicant tables", which
subsequently inspected (and amplified) by the following phases of the
iler. During lexical analysis, minimal information on these defining
rrences is collected:

or each bold word or operator defined, it is recorded whether it is a
ode-indication, module-indication or operator. For operators, the
riority is recorded as well. For modes and operators, it is recorded
hether they are declared public. Finally, the module-indications in a
evelation are recorded together with their publicity.

or each of these, the range in which they occur is recorded.

The range is not really determined; rather, for each opener or

ler a new range is started. The precise structure of the indicant
es, and therefore the body of routines like ‘put in mode table’, is
given. It is easy to verify that the above information is sufficient
ssociate the proper defining occurrence with each applied occurrence
n operator, mode- or module-indication during the subsequent phases
he compiler.

The most important entity that must be paid attention to is the
-sequence. As has been explained in section 2.8, information on the
e just prior to the pack-sequence and the type of each of its packs

be gathered. Assuming that some output stream is produced which
ains the tokens recognized, this information might as well be
rporated in the output stream also. Since the transducer processes

stream in reverse order, it is convenient to output the information
everse order as well. This leads to:

PROC pack sequence = (STATE state) BOOL:
IF TYPE p; pack(p)
THEN treat remaining sequence;

leave info(p); leave info(state); TRUE
ELSE FALSE
FI;

18

PROC treat remaining sequence = VOID:

IF TYPE p; pack(p)

THEN treat remaining sequence; leave info(p)
FI;

Inside a pack, it is necessary to recognize declarations. In the
scheme given below, a pack is viewed as a series of entities, separated
by middlers (symbols like "|"), completion-tokens, colon-tokens, go-on-
tokens and postlude-tokens, and surrounded by parentheses. Each of these
entities then potentially is a declaratlon, and may be described as a
"unit-list or declaration".

A declaration can be further partitioned into COMMON-declarations.
This partitioning cannot easily be accomplished during lexical analysis.
It is not necessary either, as long as we partition a declaration into
pieces separated by and-also-tokens and keep track of some information
which determines the type of COMMON-declaration we are concerned with.
(In parsing a text "i = int" in a context "mode r = real, i = int", it is
important to know that it concerns a mode-declaration.) By partltlonlng
"unit-list or declaration" into smaller entities, separated by and-also-
tokens, each of these smaller entities may be considered as a "unit or
definition".

The following "types" of a "unit or definition" are distinguished:

i) "mode" , i.e., something of the form "mode ...";
ii) "op" , i.e., something of the form "op ...";
iii) "prio" , i.e., something of the form "prio ...";
iv) "module" , i.e., something of the form "module ...";

v) "decl" , i.e., something of the form "d ...", where "d" has been
recognized as a declarer;
vi) "m" , i.e., something of the form "m ...", where "m" is a bold

word whose type is yet unknown. Eventually, this will reduce to case
v) or vii);
vii) "rest", for all other cases, i.e., it concerns a unit.

The information which is transported from one "unit or definition"
to the next can be viewed as the status in which we are going to parse
it. It is manipulated as follows:

1) At the start of a pack, and at a middler, completion-token, colon-
token, go-on-token or postlude-token, it is set to "rest";

2) At an and-also-token, the status is updated if the "unit or
definition" just treated has a type which is not "rest". (This is not
surprising since we have to parse "i = z" in a status "decl" in the
context "real a, b, i = 2", though the type of the entity just treated
(nbn) is "rest".)

We now arrive at the following (in which, for the sake of
legibility, an obvious extension of the ALGOL 68 case-clause is used):

19

PROC pack = (REF TYPE p) BOOL: :
IF parallel token THEN p:= "par"; TRUE
ELIF opener
THEN BOOL no decl pack:= FALSE;
UDTYPE status:= rest, type;
UDTYPE stands for "unit or definition type"
WHILE
WHILE unit or definition(status, type);
IF and also token
THEN (type # "rest" | status:= type); TRUE
ELSE public:= FALSE;
mode token ahead OR operator token ahead OR
priority token ahead OR module token ahead
FI
DO SKIP OD;
IF middler OR completion token OR colon token OR go on token
OR postlude token
THEN status:= rest; no decl pack:= TRUE
ELSE FALSE
FI
DO SKIP ODj;
p:= CASE closer IN

" [;n s Mguybbus" ,
" “secca” ¢ "revel",
"fed" : "deffed",

mym IF no decl pack THEN "brief pack"
ELIF (type # "rest" | status:= type);
status = "decl"
THEN "formals"
ELIF is bold word(status) THEN status
-ELSE "brief pack"
FI
OUT "bold pack"
ESAC;
TRUE
ELSE FALSE
FI;

As has been mentioned before, we must keep track of the openers,
lers and closers, in order to associate the various defining

rrences of mode- and module-indications and operators with the range
hich they occur. To this purpose, it is convenient to maintain a
k of "open" ranges. With each entry of this stack, a list of

nitions in the corresponding range is associated. At each opener or
ler, a new elemant is pushed on the stack with an initially empty
.« For each defining occurrence of a mode- or module-indication or
‘ator, the list associated with the topmost element of the stack is
ted. This is taken care of by the routines “put in mode table’, ‘put
riority table’, ‘put in operator table’ and “put in module table’. At
. middler or closer, one or more elements are popped off the stack.

'he number of elements popped off depends on the contruct at hand: in a
ontext like

IF ... THEN ... ELIF ...THEN ... ELSE ... FI,

-hree elements must be popped off when the symbol "fi" is encountered.
fhis number can easily be determined if for each entry the middler or
spener that the corresponding range started with is maintained as well.
lhen elements can be popped off up to and including the first opener
sncountered. Obviously, the corresponding lists must somehow be saved for
Later use. :

This stack manipulation can be taken care of by the routines
‘opener’, ‘middler’ and ‘closer’. The routine “opener’ can also take care
5f the "ssecca insert": if the topmost element of the stack conforms to a
revelation and the next input symbol is an opener, then a ssecca-insert
is "inserted" in the input stream (and the routine returns false). In a
similar way, it can take care of the loop-insert. The routines ‘middler’
and ‘closer’ can deal with the transformation of choice-symbols, as
described in section 2.1 above. These routines largely have a clerical
task; their bodies will not be given here.

As can be seen from the text of the routine “pack’ above, the
symbols "mode", "op", "prio" and "module" are intercepted at a high
level. These symbols are considered extremely important; even in an
erroneous input text, they will be treated as starting symbols of a
declaration.

The next important routine is ‘unit or definition’. Its main task is
to have a close look at the first part of such an entity; the remaining
part is only very globally analyzed. The first part determines whether it
concerns a (potential) definition. To this end, the following patterns
are recognized:

"

e 00

"

i) "mode
ii) "prio
iii) "op +
iv) "module
v) "locma-= ..."or "ldecmas=..."

vi) "real a = ...", "real: ...", "real(...)",
"(oo Jma = .. "(... m ooy "C oo Im(oLl)Y
vii) "m = ...", when the status is "mode", "op", "prio" or "module",
"mas= ...", "m: ...", "m(...)"
viii) "a = ..." when the status is "decl" or "m",
nan {since it may concern a call or slice}

ix) negg M"a" = ,,."

n
+

°
- "
= 200

B -

We thus arrive at the following:

or definition = (UDTYPE status, REF UDTYPE type) VOID:

t = BOOL:
symbol = "=" | skip symbol; leave(is defined as token
| FALSE);
t cond = (TYPE m) BOOL:
symbol = "=" | skip symbol; leave(is defined as token
leave(m); TRUE
| FALSE);

e definition = VOID:

e:= "mode"; bold(m)

ut in mode table(m, public);
t | state:= "decpref")

ority definition = VOID:
es= "prio"; operator(m)
ut in priority table(m, public, (idat | priority unit

ration definition = VOID:
e:= "op"; operator displayety(m)
ut in operator table(m, public); idat

ule definition = VOID:
e:= "module"; bold(m)
ut in module table(m, public);
t | pack sequence("modtext"))

equals = (TYPE m) BOOL:
ahead
eave(dectag insert); leave(m); tag;
t cond(m) | SKIP | state:= "cliceable");
:= m; TRUE
ALSE

ate:= "rest", # initial state for pack sequence #
rest";

¢ token THEN publiec:= TRUE;
¢ = ldec token;

token THEN mode definition
ority token THEN priority definition
rator token

OT operator displayety a
ave(opdec insert); opera
module token THEN modul
leap token OR ldec
declarer;

tag ahead

EN leave(dectag insert);

visible declarer

EN m:= "decl"; TRUE

IF pack sequence("rest")
EN (visible declarer or
SE FALSE

tag equals(m) OR routin
EN SKIP
SE type:=m

bold ahead OR operator

status = "mode" THEN mo
IF status = "prio" THEN
IF status = "op" THEN op
IF status = "module" THE
IF NOT bold(m)
EN SKIP

IF tag equals(m) OR rout
OR in revelation(publ
“in revelation’
stack of open ra
a revelation, th
with its publici
EN SKIP
SE type:=m

tag

((status = "decl"™ | TRU
| idat cond(status) | F
EN type:= status
SE type:= "rest"; state:

egg token
denoter(SKIP); egg de

E junk(state) DO state:=
unit or definition #;

pack sequen
efinition
nition

idat; type:=

) | SKIP | m

n(m) OR pack

yety ahead
inition

ty definitio
n definition
le definitio
ken(m) OR pa
nspects the

If the topmo
le indicatio

ld(status:=
ceable"

as token

n OD

); dec

TRUE

m)

ention
orresp
ded to

23

The routine “junk’” treats the remaining part of a “unit or
nition”. It has to watch for pack-sequences, calls or slices, and
arers; the remaining symbols are just copied to the output stream.

IC junk = (STATE state) BOOL:
' pack sequence(state) THEN TRUE
IF DENTYPE t; denoter(t)
[EN (t = "string" OR t = "char" | pack sequence(cliceable)); TRUE
IF tag THEN pack sequence(cliceable); TRUE
IF STATE m; visible declarer or bold(m)
[EN (pack sequence(m) | SKIP | routine token(m)); TRUE
JIF leap token THEN declarer; TRUE
,IF operator THEN TRUE
Note that this will be a non-bold operator
JIF format text THEN TRUE
IF becomes token THEN TRUE
IF at token THEN TRUE
JIF identity relator THEN TRUE
JIF nil token THEN TRUE
JIF skip token THEN TRUE
IF of token THEN TRUE
IF go to token THEN TRUE
IF code token THEN TRUE
JIF formal nest token THEN TRUE
SE FALSE

9
Most of the remaining routines are of no interest to the algorithm
'r discussion. If we assume that a routine “visible declarer’ exists
h is able to cope with declarers that start with one of the symbols
proc, flex, union, struct or ‘1, or consist of a single mode
idard, then the two remaining routines which affect the algorithm are
'larer” and “visible declarer or bold :

IC declarer = VOID:
'GIN pack sequence(decpref);

visible declarer or bold(LOC STATE)
D3

IC visible declarer or bold = (REF STATE m) BOOL:
'isible declarer | m:= "decl"; TRUE | bold(m));

REFERENCES

(1]

[2]

[3]

(4]

(5]

(6]

(7]

[8]

(9]

VAN WIJNGAARDEN, A. et al, Revised Report on the .

Language ALGOL 68, Acta Informatica 5 (1975)

LINDSEY, C.H. & H.J. BOOM, A modules and separate
facility for ALGOL 68, ALGOL Bulletin 43 (19

MEERTENS, L.G.L.T. & J.C. VAN VLIET, ALGOL 68+, a
ALGOL 68 for processing the standard-prelude
Mathematical Centre, Amsterdam, 1981.

AHO, A.V. & J.D. ULLMAN, The Theory of Parsing, T
Compiling, Vol I: Parsing, Prentice-Hall, 19

LEWIS II, P.M. & R.E. STEARNS, Syntax-directed tr
15, 3 (1968), pp. U465-488.

MEERTENS, L.G.L.T. & J.C. VAN VLIET, An operator-
for ALGOL 68+, Report IW 173/81, Mathematica
Amsterdam, 1981.

MEERTENS, L.G.L.T. & J.C. VAN VLIET, On top-down
68+, Mathematical Centre, Amsterdam, to appe

VAN VLIET, J.C. The programs "Relations concernin
"LL(1)-checker", Report IN U4/73, Mathematica
Amsterdam, 1974.

MEERTENS, L.G.L.T. & J.C. VAN VLIET, An underlyin
grammar of ALGOL 68+, Report IW 171/81, Math
1981.

[10] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing th

skeleton of ALGOL 68 programs: proof of corr
Hedrick(Ed.), Proceedings of the 1975 Intern
on ALGOL 68, Oklahoma State University, Stil
1975 (also registered as Mathematical Centre

thmic
1-236.

lation
p. 19-53.

language of
rt IW 168/81,
tion and

tion, JACM

ty grammar
re,

g of ALGOL

-grammar" and
re,

ext-free
al Centre,

nthesis

s, in G.E.

1 Conference
s June 10-12,
t IW 52/75).

