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Abstrac t  

In this paper, the theory of constructions is reinterpreted as a type 
theory of "sets" and "predicates". Following some set-theoretical intu- 
itions, it is modified at two points: (1) a simple new operation is 
added - to represent a constructive version of the comprehension 
principle; (2) a restriction on contexts is imposed - "sets" must not 
depend on "proofs" of "predicates". The resulting theory is called 
theory of predicates. Sufficiently constructive arguments from naive 
set theory can be directly written down in it. On the other hand, 
modification (2) is relevant from a computational point of view, since 
it corresponds to a necessary condition of the modular approach to 
programming. 

Our main result tells that, despite (2), the theory of predicates is as 
powerful as the theory of constructions: the constructions obstructed 
by (2) can be recovered in another form using (1). In fact, the theory 
of constructions is equivalent with a special case of the theory of 
predicates. 

1. I n t r o d u c t i o n  

The foundational role o f  type theory in computer science is comparable with the foundational 

role of  set theory in mathematics. But the "set-theoretical" type theory o f  Russell and Church 

seems to have been less influential than the "logical" conception offormulce-as-types, due to 

Curry and Howard (and traceable back to the Brouwer-Heyt ing-Kolmogorov interpretation o f  

proofs-as-constructions). On the other hand, the experience of  topos theory shows that the 

crucial set-theoretical notions can be given an elegant type-theoretical presentation (cf. Lambek- 

Scott 1986). So it seems worth-while to better explore the conceptual area in the intersection o f  

type theory and set theory. 
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This paper reports on an effort to understand the theory of constructions (Coquand-Huet 1986, 

1988, Hyland-Pitts 1989, Coquand 1990) as a strongly constructive theory of sets and 

propositions. With a similar idea, Ehrhard (1989) has argued that the categorical counterpart of 

the theory of constructions generalizes the notion of topos. Rather than semantically, we shall 

here approach the theory of constructions from another type theory, the theory of predicates. 

Both these theories recognize two sorts of types, which can be understood as sets and 

propositions. So there are two universes. The universe of propositions is a type in the universe 

of sets; propositions appear as terms of this type. Terms in the universe of sets represent 

elements; terms in the universe of propositions are proofs. Viewed in this way, a family of 

propositions a(X) indexed by the elements of a set K is of course a predicate on K. 

The theory of predicates starts from the idea that every predicate a(X) should be comprehended 
in the universe of sets by something like {XeK/c~(X)}. An element of {XeK/ct(X)} would 

be a pair (k,a), where a is a proof of a(k). There may be many different constructive proofs of 

or(k) (i.e. many terms of this type) and the set {XeK/ct(X)}, viewed constructively, may not 

be a subset of K. 

Furthermore, indexing of a family of sets by proofs of a proposition will be forbidden in the 

theory of predicates. Philosophical justifications for this restriction (in the style: "all the 

elements must be created before proofs of propositions about them") become superfluous in the 

light of the main result of this paper, which tells that it really makes no difference - provided 

that predicates are comprehended among sets. We shall prove that the theory of predicates has 

slightly greater expressive power than the theory of constructions (although the latter theory 

imposes no special restrictions on indexing). In fact, the theory of constructions is equivalent 

(modulo a translation) to the strict theory of predicates, the one which satisfies a version of the 

c0-rule, well known from the untyped Z-calculus. Another characteristic of the strict theory of 

predicates is that every predicate o:(X) in it can be recovered from (or even identified with) the 

set {XeK/ix(X)}. In my thesis (1990) it was described how the theory of predicates 

corresponds to some small categories with small sums and products, while the theory of 

constructions and the strict theory of predicates correspond to those such categories which are 

(fully) generated by the terminal object. 

And while conceptually nothing is lost by dumping the sets which depend on proofs, it seems 

that a lot can be gained. Some gains are technical: the imposed restriction reduces contexts to 

two layers (first sets, and then propositions), and many constructions - e.g. term models - 

become essentially simpler. But recent papers by Moggi (1990) and by Harper-Mitchell-Moggi 
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(1990) display this restriction as a sine qua non of  the modular programming. Roughly 

speaking, Moggi understands as programs what I here call propositions, and my sets are for 

him data types. Clearly, a modular approach to programming can be effective only if  the type- 

checking can be performed at compile time, before running actual programs. In other words, 

no type must depend on output of programs. This is called phase  dist inction between the 

compile-time and the run-time. Or between sets and propositions. It is amusing to think that 

this analogy of computational and foundational concepts is not accidental. 1 

2. Type  theor ies  

Keywords.  We shall consider three kinds of expressions: 

- terms, here denoted by metavariables p, q, r, s, t, 

- types, denoted by P, Q, R, S ,  and 

- universes, for which we use the letter "(2. 

The common name for terms and types is construct ions;  while range  denotes a type or a 

universe. And now these expressions form two kinds of  judgements  (or statements): 

- equations, or conversion judgements T=T'  between constructions T,T', and 

- formation judgements T:U, meaning "the construction T has the range U". 

The metavariable J will denote a judgement. The range of a construction can sometimes be 

indicated by a superscript: T U. 

The variables are special atomic terms. We use the letters X, Y, Z for them. If the terms are 

understood as programs, the variables are the input operations. Each term is represented by an 

expression p(Xo,..3Cn), in which the variables indicate the input gates. To supply input means 

to substitute a term q(Yo,...Ym) for a variable Xi: 

p ( X o  .... ,Xi .... ,Xn)[q /X i l  := p ( X o  .... ,X i - l ,q (Yo  .... Ym) .... ,Xn).  

Of course, q must have the same type as Xi. The type of a term-as-program is the type of its 

output data. Note that a data type may also vary, i.e. it may need some input before it is 

evaluated. A term must vary with its type. The universes will always remain constant - no 

variables can occur in them. 

The actual objects of study in type theory are sequents 

Xo:P 0 ..... X n : e n ~ J  (n~ o3). 

IAdded in proof: Other such analogies can be found in Meseguer 1989. 
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An array Xo:Po .... ,Xn:P n is called context and abbreviated by letters F or zi. It can be 

understood as the' list of  declarations of the data used for constructions in J. All the variables 

occurring in these constructions must, of  course, be declared. But a variable occurring only in 

the context of a construction, and not in the expression which actually names this construction, 

can not always be safely omitted. Intuitively, a program with some superfluous data among the 

declarations may change when this data is removed: if the superfluous data does not exist - if 

its type is empty- ,  a program containing it may never become executable. 2 

Sequents are derived using some rules, generally in the form 

F, zio=,Yo (...) F, zln~Jn 

F ~ J  

The sequents above the line are premises, the one below is the conclusion. The variables from 

zt0,...zi n are said to be bound in the conclusion. Conventionally, we often omit the context F 

common to all the sequents in a rule. The rules by which the theories studied here are built up 

will be listed in Appendix I. 

Derivations are trees built iteratively using the conclusions of  some (instances of) rules as 

premises for other rules. This proces starts from axioms, which can be regarded as rules with 

empty set of premises. 

A construction or a context is said to be well-formed (or valid, or legal) i f  it occurs in a 

derivable sequent. The name of  a universe and the empty context are assumed to be well- 

formed. 

A construction is closed when its context is not bigger than the context of  its range. Thus, a 

closed type must have empty context (since the range of  a type is a universe). A type is 

inhabited when it possesses a closed term. 

If we allow not only the empty context, but also the "empty judgement", and assume the empty 

sequent ~ (empty on both sides!) as an axiom, then we can show that a context F is well- 

formed iff  the sequent / "~  is derivable. (We can extend the notion of  axiom to the rules with 

at most one premis, checking whether a context and a range am well-formed.) 

In fact, the empty context and the empty judgement are a type - j u s t  as zero is a number. (This 

is essential for some proofs below.) In every universe 22 we shall assume a unit type 1: 22, 

2When is this the case and when not is a rather subtle matter: its categorical formulation leads 
into theory of  descent. A forthcoming paper will explore this connection. 
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inhabited by a unique term ¢:1. The empty context and the empty judgement can now be 

written ¢:1 orX:l, which boils down to the same thing, since X1=¢. 

Common to all type theories are also the structur~al rules, which govern manipulation with 

variables. The rules Replacement and Typing tell that equal constructions can replace each 

other: all the operations must preserve the convertibility relation (=). The rule Assumption tells 

that there is always a fresh variable of each well-formed type. Let me stress that this does not 
imply that each type must be inhabited (i.e. that data of  each type must exist)! 

To get an algebra from an algebraic theory, one can add some generators and equations (to the 

constants and equations included in the theory), and derive the well-formed expressions, which 

are then partitioned in the equivalence classes induced by equations. A type theory can similarly 

be extended by generators and additional equations. Generators must be given with well- 

formed contexts and ranges; equations may be imposed only on constructions with the same 

range and context. We call system the class of derivable formation sequents of an extended 

type theory; letters Jvl., ~ denote systems. (For convenience, we shall assume that a system 

also includes the names of universes.) Building a system is a dynamical process, since an 

atomic construction - a generator - can have a complex context and range, and can be thrown 

in only when they have been derived. 

The convertibility relation (=) is extended from constructions to sequents in an obvous way - 

component-wise - modulo a renaming of variables (c~-rule). Let us spell this out. By 

definition, 

(Xo:eo ..... Xm:em T:U) = (X'o:P'o ..... :U') 
mean~ that 

- m=n, and 

- the following sequents are derivable 

Yo:P"o ..... Yj:P"j ~ Pj+I[ ~ / ~ I=P)+E i¢ /~ 7, for allj<n; 

Yo:e"o ..... Yn:e"n ~ U[iC / ~  ]=UTi¢ / ~  7; 

Yo:P"o ..... Yn:P"n ~ 7"[~/~1=T7i~/~7;  

where P'~:=Pj[ ~ / ~  ], while ~ :=(Yo ..... Yn) are fresh variables. 

Partitioning a system of a type theory by the convertibility relation gives a term model for this 

theory. In the usual abuse of language, we often write T for whole sequent F~T:U,  and even 
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for its equivalence class; the context and range are meant to be kept implicite, and can be 

recovered by CX(T) = F and R G(T) = U. 3 

The algebraic aspect of type theory is the study of the convertibility (=) G JExdt'L. Its proof- 

theoretical aspect concerns the relation of derivability (l-9 _~JCL *xdl'L, transitive closure of all 

the instances of the given formation rules (together with the axioms and generators taken as 

rules), where ,/¢t, ~:= U dCL i. 
iE to 

Theories of constructions and of predicates, The theory of constructions is a (Martin- 

1.6f-style) type theory of sums and products - in two universes: 

S - its types are called sets, its terms elements (or functions); 

P -  its types are propositions, terms are proofs. 

Each of these universes is closed under all sums and products. Clearly, there are four possible 

kinds of indexing: S ~ , ~ ,  P ~ P ,  S ~ P ,  P ~ S  - and four kinds of  sums and products, 

two for each universe. The sums and products of propositions indexed over sets ( S ~ P )  are 

quantifiers. They will be written 3 and V. 

The axiom P :3 is assumed: "The universe of propositions is a set". It follows that every 

proposition is at the same time a type in P and a term in S .  So there are three levels of 

constructions: 

a ,b , c  a, fl,~,. 
proofs x ,y ,  z : propositions ~, r / , ( "  sets P K  := K ~ t 9. 

Of course, sets which are not in the form P K  may also be introduced. We denote by A,B,K 

sets in general, and their elements byf ,  g,k; the general element-variables remain X,Y,Z. We 

shall reserve ¢:1 for the singleton, unit of S; the truth, unit of/9,  will be denoted by *,: 7-. 

The intended meaning of the operation of extent t is to assign to each proposition the set of its 

proofs. A constructive version of the comprehension principle should be captured in this way. 

The selection operator t, which Alonzo Church introduced in his simple theory o f  types 

(1940), is the classical ancestor of our t - though based on a quite different idea. On the other 

hand, one version of the calculus of constructions (Coquand 1990) contained an operation T, 

which was meant to replace a proposition by the set of its proofs. But a proposition in the 

calculus (or theory) of constructions is, in a sense, nothing but the set of its proofs. 

Conceptually, the operation T does not do much; it is actually a syntactical device, introduced 

3This is a notational convention. In general, a construction need not determine a unique context 
and range. 
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to secure the uniqueness of derivations. If all the t-rules (T had only the introduction rule) 

would be added in the theory of constructions, the extent operation would just switch a 

proposition from universe to universe. 

This operation is more interesting when combined with the phase distinction, the requirement 

that sets and elements never depend on proofs. (I.e., the indexing 2 : ' ~ S  is forbidden.) The 

(implicite) context in all the extent rules - listed in Appendix I -  must now consist of sets only: 

otherwise, a proposition contained in the context of a proposition tz would be passed in the 

context of  the set to~. Therefore, only a predicate - a proposition indexed only by sets - can 

have an extent. The elements of the extent ttx now correspond to the logically closed proofs of 

tz, i.e. to those proofs which do not depend on other proofs (and have only some element- 

variables in their contexts). - This combination of the extent operation and the phase distinction 

characterizes the theory of predicates. 

The fragments obtained by removing the ,S-operations from type theories will be called calculi 

here. We shall abbreviate by COC the calculus of constructions, and by COP the calculus of 

predicates. TOC and TOP will be the theory of constructions and the theory of predicates. 

3. What can be expressed by predicates? 

Now we shall list some facts which might offer an impression of the power of predicates, and 

of questions arising from them. The proofs are omitted; they are beyond the scope and the 

intention of this section. (Some of them can be found in my thesis.) 

The notations are explained in Appendix I (or in section 2). "PoP means that "ix is inhabited". 

31. For every pair of functions f ,  g:A -~B, and elements h,h':A, all in the same context, the 

following statements are true: 

I = VX:A..fX - g X  

t= 3Z: {X:A/ fX ~- gX} .h - IroZ 

I ~ VXX':A.fX.=-fX'~X - X '  

I ~ VY:B3X:A.gX - Y 

iff f=-g ; 

iff fh=gh 
iff ./h=fh' implies h=h' 

iff g is a quotient function, i.e. 

for every k:A ~ K, such that /= VXX':A.gX .~ gX' ~ kX - kX' there is 

unique ~:B -~K such that k=7~og. 

32. Writing A in place of x ,  define 

3.tX:K.~(X) := :TX:K.XX) A VXY:K.(~(X)A~(Y)) ~ X  ---Y. 
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Now consider the principle of function coprehension: 
I = VX:A3!Y:B.tz(X,Y) iff i=a(X,Y) ~ - , fX-Y  for some f. 

In other words, the functions may be identified with the total and single-valued relations, as in 

set theory. The if-direction of the function comprehension is true in TOP: the graph/X-Y of a 

function f is provably total and single-valued. The th~n-direction, however, requires an 

operation bY which would extract singletons, in the sense that 

whenever 1=5!X:K.~(X), then there is tX.7(X) : g  with I=~(tX.y(X)). 

In Church's simple theory of types (1940), the operation tX was derivable using the selector I. 

(The logical systems of Frege, of Russell-Whitehead, of Hilbert-Bernays also contained 

operations like by.) Constructively, however, the function comprehension is independent from 

the set comprehension. It is not derivable in the theory of predicates 't , but it can be neatly 

introduced. For instance- by a slight intervention on the phase distinction: 

i I 

[Predicate 7can occur in the context o f  a set only i f  I=~(X)AT(X')~X -X'[ 

Given P=S=K, Q=7 and closed proofs b:~(:K.Tand C:~(X)AT(X')~X-X, the term 

tX.~(X) := ~ob 

can now be formed by Y.E and proved to be independent of b and c. (We assume that the 

condition (S_~Q) is omitted from ~E in TOP. To introduce by in TOC, it is sufficient to 

strengthen ~E by extending this condition to (S_<Q or hQ(X)AQ(X')-~X-X3.) 

33. Define 
19 A ~ 2XA y PA.yX : A ~ ~ PA, and 

P f  ~ ZYPBXA. Y(fX) : PB--* PA, for an arbitrary function f.'A--*B. 

In ordinary set theory, for every set A there is a bijection 

A ~- {XE ~ P A / V p p A X  .~ P(PDA)X }. 

In TOP, we have a term u from left to right and-  if the function comprehension is supported- 

a term n from right to left. They satisfy nou=idA, but not uon=id{...}. An intuitive explanation 

can be that the set on the right side contains not just the principalfilters on PA, but also the 

proofs that they are principal filters, and there can be many of those for each of them. 

Similar phenomena are met in encoding other set-theoretical constructions in TOP. E.g., the 

disjoint union can be defined by: 

4To see this, consider a Heyting algebra H as a model for the theory of predicates. The sets are 

interpreted as the members of H. For a,beH, the relation a:~b represents a function from a to 
b. The type P of propositions will be the unit I of / / .  (In terms of my thesis, we are looking at 
the category of predicates id:H---)H.) - The function comprehension fails in this model. 
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Ao+A1 := {X: P(PAoxPA1)[ vp~pao×s,al)X- P( PVao× PVa~)X } 
Of course, there are inclusions xi:Ai ~Ao+A1 (ie2) and the operation [_,_], which assigns to 

each pair of  terms fi:Ai.-gB (ie2) a term [fO,fl] :Ao+A1 ~ B ,  such that [fO,fllotq =fi. 
However, [tO, t¢11 = id need not be true. 

Yet another example: If, except the powersets, no other products of sets were given in our 

theory, we could define them using the extents of some equations, just as above, adapting the 

constructions from topos theory. However, the k-abstraction obtained in this way would not 

satisfy the 1-[ri-mle. 5 

Morale: The constructions with constructive extents are not extensional, because these extents 

are blown up by some constructive proofs. 

4. Comparing theories: the conceptual part 

What  are  we going to do? The starting point of  our reduction of TOC is a simple ob- 

servation, formulated in lemmas 21, Appendix II: 

- the universe of  propositions is embedded in the universe of  sets by the operation 

_×1:29---) S (and _xT: S ---) P is its reflection); 

- this embedding preserves (up to isomorphism) all operations except the existential 

quantifier. 

In particular, every sum or product over a is isomorphic with a sum resp. product over ~xxl. 

This means that the theory of constructions is sufficiently redundant that propositions occurring 

in contexts can be replaced by sets. If we restrict TOC by allowing only sets to occur in the 

contexts - call such a theory T O C s  - and translate TOC-constructions into T O C s -  

constructions: 

(...x:o~...~T(x)) t----) (...X:o:xi...~T(lroX)) 

- nothing will be lost, in the sense that an isomorphic copy of each TOC-type will still be 

generated in TOC3. 

5The exponent A ~ B  could be obtained as a subset of P(AxPB). The sum A+B is a subset of 

P(PAxPB).  Note the resemblance with classical logic, where (A ~ B ) ~  -~(AA'~B) and 

(A v'B) ~ -7( ~AA...tB). 
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But now, TOC3 respects the phase distinction, and can be translated in TOP. So TOC can be 

translated in TOP. On the other hand, TOP can surely be translated in TOC, since the extent 

operation is definable there: 

t o~ .~- oc x l 
~a ~ (a,O) 

ck .= ~rok. 

By this translation, however, many types which were not isomorphic in TOP become 

isomorphic in TOC; the former theory has "more" types. (Out of seven isomorphisms "through 

the border of the universes", which can be extracted from lemma 212 for TOC, only two exist 

in TOP" those from lemmas 222 and 223.) To relate the theories precisely, we added in TOP 
the terms x:o:~t$*x: tO:xT-. They behave just like "(~x,*)" would, if only t~x could be 

formed. These terms force isomorphism of each predicate with (the reflection of) its extent 

(lemma 231). Consequently, the extent operation t:P"--) S becomes an embedding, with the 

same preservation properties as _xJ:P---)S in TOC (lemma 232). 

In the strict theory of  predicates (STOP) - the one with t$*x - the sums and products over 

propositions can be reduced to the sums and products over sets, just like in TOC. So we have a 

subtheory STOPs _~STOP, just like TOC3 _~TOC. Moreover, STOPs and TOC3 are 

isomorphic. The conclusion that STOP and TOC are equivalent can now be made following the 

topological idea that 

two spaces are homotopy equivalent iff they have isomorphic deformation retracts. 

The next proposition shows the strict extents from another angle. 

Proposition. (In STOP.) Let T(x a) and T'(x a) be arbitrary propositions, or proofs of the 

same proposition. The following rule is true: 

to if T(a)=T'(a) for all logically closed proofs a:o~ 

then T(x)=T'(x). 

In the presence of~i* and 8*rl, the o-rule implies 8"13. 

Proof. If T(a)=T'(a) for all logically closed a:a, then it holds for z.X:ct, i.e. 

X:t tx~  T(v((X, , ) , ( X , , ) . ~ ) )  = T(~X) = T ' (a)  = T'(v((X, *),(X,~).~X)). 

According to lemma I4 (still Appendix II0, this implies 

Using 8"13, we get 

x:a ~ r~x)= r(v~a,,x,  ~ x , , ) . a ) )  = r ' ( v (a*x ,  C X , , ) . a )  )= T'W. 
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To derive 8"~  from o), note that for 

c (x):-  v(5~x, (x ,~) .b [~ /z l ) )  

and for any logically closed a:a holds 

c(a)=c<~(&))= v(6*z(6a), (X,,).btzX/z]) = v(<~a,,), (X,,) .btcX/z])= 

= b(~(&)) = b(a).. 

Remarks. The last proposition is the type-theoretical version of the fact that the category/9 of 

propositions is generated by the terminal object in the models of  TOC and STOP. This means 

that the operations 

#(x)  P--> t (# ( tx ) )  

b(x) ~ 8(a(tx)) 

are injective. In fact, a TOP-system supports the strict extents iff  the second operation induces 

a bijection between the sets of closed terms of type tx~  ~x' and of toc~ tc~'. (This can be 

deduced from II1.4.3 and IV.2.2 in Pavlovi6 1990). 

The c0-rule owes its name to the fact that it is an infinitary rule (with infinitely many premises). 

In our setting, however, it can be equivalently expressed with just one premis: 

03 
X: ta  ~ T(zX) = T'(¢X) 

x:cx ~ T(x) = T'(x) 

5. Comparing theories: the technical part 

Instanciation. Consider a construction T(X) and terms p and q which can be substituted for 

X. If for every judgement JT(X), involving T(X) and possibly some more occurrences of X, 

JT(P) implies JT(q), 
then we say that T(q) is an insthnce of T(p). 

Usually, T(p) is T(X), and its instances are obtained by substitution. The example of the o)-rule 

shows, however, that this is not the only way to instanciate. (In the m-rule, T(q) is T(x)!) In 

the sequel, we shall actually use instanciation as the common name for the substitution and the 

ca-rule. 

Equivalences. Let jVt. and ~/' be two systems. A translation of systems is a mapping 

F:.34. ---> ,IV' which preserves the derivability (~-) and the convertibility (=). Moreover, it should 

be coherent, in the sense that 
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r(r r:u) : (r'=T':U') I 
F(F=U:V) = ( 1 " =  U":V") ~ imply U' = U". 

Let M and N be two type theories. A translation F'M --->N assigns to every M-system .h£ an 

N-system FjVL and a translation of systems F~:JCc ---)F.#C. 

A subsystem ~ _~ a% is a retract of ~ if there is a translation F:J¢~ ---) ~ ,  which restricts to 

the identity on ~'; moreover, every type Q from ~ must be isomorphic with an instance of 

F(Q). More precisely, there is a chain of instanciations E, which brings F(Q) in the context of 

Q, and 

F(Q)I.EI ~-Q. 

A subtheory N_~M is a retract of M if there is a translation F:M ---)N such that every FJVL is a 

retract of .At by F ~ .  

Theories M and N are equivalent if there are translations F:M---)N and G:N---->M, such that 

for every M-system J~ and N-system ,N', GFJ~ is a retract of .A,I. and FG~f is a retract of ,N'. 

Comments. Recall (from section 2) that a system is assumed to contain its universes, together 

with all "other" derivable formation sequents. The coherence requirement for translations 

applies therefore not only when U is a type, but also when it is a universe. 

Usually, a subobject/": ,N' c..__> ~ is called retract of ~ when there is a map F:jV~ ---) ~ such 

that Fof=id.~. The above definition requires toF =id~t too. Because of this, ,/V' can be 

understood as a deformation retract of JM.; and our notion of equivalence can be understood as 

the homotopy equivalence. Note that each deformation retract of a system is equivalent to that 

system. 

The idea is that theories should be equivalent if  they have the same class of models. 6 For 

instance, the theory of Boolean algebras is equivalent with that of Boolean rings. The theory of 

Boolean algebras with the signature (v, ~,0) is a retract of the one using (V,A, ~,  -~,0,1). The 

cut elimination is a retraction of a sequent calculus. 

Eliminating redundancies from a theory is like removing synonyms from a natural language. It 

becomes harder to speak, but easier to understand - closer to semantics. E.g., the cut- 

elimination yields unnatural proofs, but offers a crucial insight into what is provable. 

~The morphisms which they induce on this class can be different. 
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As far as type theory is concerned, we want to consider as synonymous exactly those 

isomorphic types that would be identified semantically. (A complete semantics for the theory of 

predicates has been given in Pavlovi6 1990.) 

Theorem. The theory of constructions (TOC) and the strict theory of predicates (STOP) are 

equivalent. 

Proof. As explained in section 4, we shall define the following translations 

T(X2 

TOC S ~ 

STOP 

'~ STOP s 
% 

The subtheories which we consider are obtained from TOP resp. STOP by the restriction 

TOCs, STOPs [....Only sets may occur in contexts. I 

In TOCs, however, a provision must be made for the operation _xl: P---) S 

TOCs [The context of t:  S may contain propositions.] 

Translation E. For an arbitrary TOC-system J~, we simultaneously define two translations, 

D and E:J~ ~ J~: 
D(.. .X:Q.. .~r:u) .-- (..x:LQJ...~LrJ..LuJ[dQx/xI), 
e( . . .x:a. . .~T:U) .= (..x:Le_l...~fT 7..Fu 7[aQx/xl) 7, 

where/-_ 7 and L--J translate expressions as follows. ¢ denotes an atom, and t3 stands for z~ 

or H. 

F¢7 := ¢ 
['cJx:e.a 7 := ~X: LPJ [-Q 7 
FZX.q 7 := Zx. Fq 7 
Fpq7 .-- Fp7LqJ 
F(p,q) 7 := (LpJ, Fq 7) 
Fv(r, Cx,r).s) 7 := v(Fr 7, ~X,r)./'s 7) 

7people who would prefer to change the name of a variable when translating it into a different 
type should assume a bookkeeping algorithm for variables here. 
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Lp.I := s Ls_I := s 
Lod := I-,~Txz LK.I := Itc7 
LaJ := d'a T, m) Lk.I := I-k7 

Let us define the terms dQ now. We want to substitute dQX for X:Q in order to replace X:Q in 

a context by X:D(Q). So we must have dQ:D(Q).4 Q[AQ1 , where AQ is a sequence of 

substitutions of dpY:D(P) for each Y:P in the context of Q. In other words, AQ brings Q in the 

context of D(Q) and E(Q). 

Note that E(¢) = ¢[41, for a generator F=~,C:U. 

aQ : D(Q) ~QIZlQ] 
da := ea°~.O ~a 
dr, :=eK ~K 

:= zx.(~ ~ , ~  ) 

:='6K 

eQ : E(Q)-+Q[dQ] 

e¢ := id¢ta¢1 

et~x:p.Q := voow 

v,:, . ( ~ :ece) .e~o . ) ) - , (  ~ : e . o . )  
vii:= 27.. eQoZo~e 

v Z := v(Z, (X,Y).(epX, eQY)) 

;¢ := iact~ 
;ox:e.Q := 7~o'~o 

~'/-/:='2Z. EQ oZoep 

~z := v(z, (x,Y).(~ex, "~Qr)) 

w: (c~:D(P).E(Q))--,(t:~:E(P).E(Q)) is the isomorphism from lemma 212; ~ is its inverse. 

This completes the definition of mappings D and E. Clearly, the substitution will be: 

D(T[p/X1) .'= D(T)[D(p)/X1 
E(T[p/XI) := E(T)[D(p)/X1. 

A straightforward inductive argument shows that E and D are translations. The image of E is a 

TOC$-subsystem of J~. Call this subsystem EjI£. Since all dQ are isomorphisms, there are 

substitutions SQ which bring D(Q) and E(Q) back in the context of Q. (EQ puts ~pY:P in 

place of Y:D(P).) From the isomorphisms eQ we get 

eQ[~Q] : E(Q)[~Q] "- Q 

for every type Q from .3'L Hence, EJE is a retract of JE; TOC$ is a retract of TOC. 

Translation H. The approach is completely the same: For an arbitrary STOP-system ,/V', we 

define two translations I,H:N---) N, using/'_ 7 and L-.J just as above: write H in place of E, 

I in  place of D, and iQ in place ofdQ. 
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The definition of f_ 7=-/'- 711 is the same as that of/'_ 7E above, plus: 

/'~,7 := d'~7 
r~a 7 : =  8Fa 7 
&k7 := ~Fk7 

L..JH deviates from Z--Je a bit more: 

LpJ := s LsJ := s 
LaJ :=tF~7 LrJ :=FK7 
l aJ := 8FaT LkJ := Fk 7 

A real difference with respect to the situation in TOC is that there are no terms from 

propositions to sets in STOP - hence no isomorphisms between I(o0 and ix. 

iQ : I(Q)~QfAQI 
ia := hao~ 

iK :=hK 

hQ : H(Q).-gQ[AQ] 

h¢ := id¢[a¢l 7i¢ := id¢lzlcj 

hLa := 8°ha °~ ~ta := S°Tia°Z 

ht:lX:p.Q := vt2ow ~loX:p.Q := ~vo~t2 

va : (t:IX:H(P).H(Q)) --, (£1x:P.Q) is defined exactly as in the E-part, but with h instead of e. 

w : (cz~:I(P).H(Q)) --, (c~:H(P).H(Q)) is the isomorphism from lemma 232. 

By a substitution AQ along the terms ie (for P from the context of Q), each type Q is brought in 

the context of H(Q). The question is now how to get H(Q) back in the context of Q without any 

inverses of ie? 

Note that the variables X:I(tx) occurring in the context of H(Q) are substituted in/ 'Q 7 by 

[iaX/xl. But iaX=ha(zX). We can now instanciate by the o)-rule, and replace zX by x. So we 

put in the context of H(Q) the variable x:H(tx) in place ofX:l(tx) (=tH(tx)); and now we substi- 

tute: ['Q 7[hax/x]. 

If this is done for all propositions tx occurring in the context of H(Q), a chain of instanciations 

OQ is obtained, which brings the term hQ: H(Q) ~Q[AQ1 in a context "parallel" with that of Q. 

The only difference between the two contexts is that instead of Y:P ~ CX(Q), the context of 

hQ[ OQ] contains Y:H(P). 
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The terms hQ and h'Q remained, of course, inverse under the instanciation OQ; hence 

hQ[Of21:H(Q)[OQ1 =Q[zat2,0ol. To get these two terms back in the original context of Q, 

substitute now ~p[OQ]Y for each Y:H(P) in their contexts. Denote this sequence of sub- 

stitutions by ~Q. 

It is not hard to see that Q[Z1Q, OQ, ~,QI=Q. Namely, ZlQ substituted ieY for Y:P; OQ replaced 

//,Y with hpY; F,Q put ~pY in place of Y in heY; and he(TieY) = Y. Hence 

hQIOQ,~Q] : H(Q)[OQ,F_,Q] -~ Q 

for every type Q from 37'. HJT' is a retract of ~ ;  STOPs is a retract of STOP. 

Translations F and G. The maps FS: TOCs ---)STOPs and G S: STOPs - - )TOCs are 

easy to guess. The latter rewrites all the expressions from a STOPs-system ~/'S, replacing 

only: 

la l--> ocxl, 
~a t---) (a,¢), 

zk t---) ~rok; 
the former goes the other way around. Note that the rules for t and those for _×1 are 

completely the same. So we have an isomorphism. 

Given a TOC-system ,/¢~, define FJVl. to be the smallest STOP-system containing the STOPs- 

system Fsat'l, S. Given a STOP-system ~ ,  let G~/" be the smallest TOC-system which 

contains G S d~gS. Clearly, GF Jcc ~_ dE and FG d~g ~_ ,IV'. 

Further define for systems dE and ,txg the translations F = Fa~t : dE ----) F . ~  

G = G ~  : Ae---') G ~  as follows: 

F := tHoF$oE and 

G :=/'EoGsoH. 
Using E &E=id, HofH=id, F soG s=id and G soF s=id, we get 

GoF = tEoE and 

FoG = tHoH. 
FoG and GoF are thus retractions, since E and H are. 

and 

Remark. The danger of working modulo isomorphisms is that whole groups (of auto- 

morphisms) can be swept away: reduced to an identity. This will not happen if unique 

canonical isomorphisms are used. The isomorphisms in the preceding theorem are clearly 

canonical, i.e. def'med uniformly for all types. A curious reader will perhaps want to check that 

they are unique. (The assertions to be proved: For every canonical isomorphismfo:E(Q)~Q, 

D(ff2)=idD(O) implies fQ=eO; for every canonical gQ:H(Q) ~Q, l(gQ)=idl(Q) implies gO=hQ.) - 
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For a full precision, the unicity requirement should be put in the definition of retracts. We 

refrained from this for the sake of simplicity. 

6. How to compare calculi? 

In the calculus of constructions, all operations can be reduced to those within the universe of 

sets: the exception from lemma 212 disappears. The restriction of the translation D on COC 

will therefore be a retraction. (Whole D :TOC ---)TOCs is not a retraction because of the 

mentioned exception: D(z2~:K.fl) ;r~-~X:K.fl.) So we can translate expression-wise here: a D- 

image of a sequent is obtained by simply applying L-J  at each expression in it. 

In the calculus of predicates, on the other hand, a new way of making extents strict must be 

invented, since the operation 6"  needs .S. Two possibilities are suggested by proposition 

111.4.3 in my thesis. One is to force t (c~-, f l )-- ' tcz~ tfl (by adding something like 6*); 

otherwise force t x~ f l  ~- VX:ztx.fl. A proof of equivalence of the strict calculus of  predicates - 

which contains these isomorphisms - and the calculus of constructions can be built along the 

same lines as the one presented above. 
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Appendix I 

Rules 

Structure (all type theories) 

Assumption 
F~P: 

1-',X:P~X:P 
(X:P e~ l') 

Weakening 
F,A~J F~P: "U 

F,X:P,A~J 
(x:P ~ r,a) 

Substitution 
F,X:P,A~J F=~p.'P 

F,A[p/XI~J[p/XI 

Replacement 
F,X:P ,A~T:U F=~p=q 

F, Alp~X] ~Tlp/X] = T[ q/X] 

Typing 
r=w:p r=~=Q 

F:=ho : Q 

Equality (all) p=q  p=q q=r 
p=p q=p p=r 

Unit (all) 
1:~ ¢:1 

p:l 
p=¢ 

Universes (COC, COP, TOC, TOP, STOP) 

P:S  
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Products (COC, COP, TOC, TOP, STOP) 

II x'e=~2: ~ 
n X  : P . Q : "12 

I[I x:P=;~q:Q x:P=~Q: 12 
A,X.q : I ' [X:P.Q 

r : I]X:P.Q 
l ie  rp : O[p/X] 

I'I~ (,LY. q)p = q[p/X] 

I-[1" I 2x.  (tx) = t 

p:P 

(X~CX(t) )  

Sums (TOC, TOP, STOP) 

X 
X : P =~Q : "12 

z~X : P . Q : "12 

XI p:P q:Q[p/X] X : P = ~ :  ~2 

(p,q) : ~.X:P.Q 

~,E r.'~X:P.Q X. 'P,Y:Q~s:S[(X,Y) /Z]  Z:z~X:P.Q~S:  ~ (S~_Q) 

v(r,(X,Y).s)  : S[r/Zl 

Xf~ v((p,q), (X,Y).s) = s[p/X, q/Y] 

v(r, (X,Y).t[ (X,Y)/Z]) = t[r/Zl (x,r~ cx(o) 

Comment. S-~Q mean~ RG(S):RG(Q) or RG(S)=RG(Q).  In other words, •E must not be 

applied when S is a set and Q a proposition. Due to the next rule, this cannot happen in (S)TOP 

at all; so that the condition can be omitted there. 
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Phase distinction (COP, TOP, STOP) 

t The context o f  a set  or an e lement  must  contain no proposit ions.  [ 

Extent (COP, TOP, STOP) 

tx:P 
t 

zcz:S 

a:a 
tI 

&:ux 

t~  v ( ~ )  = a 

t T  t T =  1 

k: uz 
tE 

vk : tx 

trl ~(~k) = k 

Strict extent (STOP) 

8" 

5"13 

~5*rl 

a :  ot 

S*a  : t a x T  

v(6~a, (X, *).bl ~ / z ] )  = bla/z] 

Comment. Because of the phase distinction, the (implicite) context in all the extent rules may 

contain only sets; la  and ~ can be formed only in such a context. 

P ~ Q  := ITX:P.Q (X~CX(Q)) 

idp := )~(,P. X P 

~o := aZ.v(Z,(X,Y).X) 

P K  := K ~ P  

x ~ Y := V~: $ 'K . ~  ,-, ¢r 

Notations 

P x Q  := ,~X:P.Q (Xc~CX(Q)) 

poq := aX.p(qX) 

~1 := 2Z.v(Z,(X,Y).Y) 

{X:K/ a(X)) := ZX:K.ta(X) 
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Appendix II 

Lemmas 

1. About Y~. Due to the restriction on ZE (in TOC, or to the phase distinction in TOP) the 

projection 7ro:z~:P.Q-~P cannot be formed when P is a set and Q a proposition. The other 

three combinations of P and Q (set-set, proposition-set, proposition-proposition) allow both 

projections. In these situations, EE can be replaced by the projection rules, as in Hyland-Pitts 

1989. (The equivalence of the two presentations follows from 11-13.) 

11. ni (go ,  X l )  = Xi, i e2  

13. s(TroZ, rClZ) = v(Z, (Xo,X1).s) 

12. (~oZ, rClZ) = Z 

14. If s((X,Y))=t((X,Y)) then s=t. 

15. In the case when P is a set and Q a proposition, the rule Y.E can be modified (following 

the idea of 3-elimination) by removing Z:~X:P.Q from the context of S .  In the theories 

considered here, the full ~E-rule is still derivable from this modified instance. (Cf. Pavlovi6 

1990, 1.1.52.) 

2. Isomorphisms are of course terms F ~ p . ' P ' ~ P  and F~p' :P-~P' ,  such that p op'=id and 

p'op=id. We write p:P'~- P to denote that p is an isomorphism, and P'-~ P to say that an 

isomorphism exists. 

21. In TOC. 

211. a × l  -- a 

212. The statement: 

if p:P' z P and Q(X P) ~- Q'(X P) ~hen DX:P. Q(X) ~- ~3X' :P'. Q'[pXTX] 

holds for all types P, P', Q, Q' and for De {z~,/-'/}, with one exception: 

A = a does not imply ,~ :K .A  ~- z~:K.a.  

22. In TOP. 

221.  t ( t a x  T) z ta 

222. ,,~X:ta.t(fl(~X)) ~- t(,Y_x:a.fl) 

223.  I-IX:A.tfl ~- t(VX:A.fl) 

23. In STOP. 

231.  t a x  T ~- a 

232. For u e  {•,]-[} holds: 

¢ ~ x : a . ~ )  = ¢cTx:ta.~) 

nx :a . f l  -- n x : t a ,  fl 

-- ~X:ta.tfl 
z ( ~ x : w : . @  x T 
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Some comments ,  some proofs. 

212. The exception can perhaps be understood by looking at the set A -~o¢ as the extent of ~x. 

The sum ,~SX:K.A is then the set {X:K/o:(X)} of all the witnesses of o~(X), while !~/X:K.cx just 

says that there is a witness. - For a proof that these two types are not isomorphic one should 

consider a model (e.g. in Hyland-Pitts 1989). 

221. The isomorphisms are: 

X:La ~ 8(X,,*) : t ( ~ a x  7-) 

Y:~(~a x -r) ~ ,~v(zY, ( X , , ) . ~ )  : ~a. 

We check one of two identifies that must be proved: 

8v(~Y, (X, .~).(¢~'r.X, . ) )  = ~¢Y = V. 

231. x : a  ~ ¢~'Vx: taxT,  
z: ta  × T ~ v (z ,  (X , , * ) . tZ ) :  a. 

One identity: 

8"v(z, (x, ,,).~x) ~- 

v(z, (x, . ) , ,~.( .a))= ,,(z, (x , . ) .~x , . ) )=z  

232. Everything follows from previous results, plus: 

Z.x : a.fl = BX : w~.fl( ¢X ) and 
tfFlx: o~.~) -- l l x :  ,oc.~(13( ~x )). 

The second isomorphism is obtained using 231 and 

,(1-lx:(tax-c).~x)) -- Flx:za.~(~(x, , ) ) )  
And this last iso is definable in the theory of predicates: 

z :  ,(nx:(,o~xr).~x)) ~ ~x .~( (e ;a , . ; )  : nx: ,~ . , (~a , . ; ) )  
Y:1-lX:ta.t(~((X, •))) ~ 6Zx..v(x, (X, ,* ).'r(YX)): t(l"[x:(ta~7-).y(x)) 

As for the first of the above isomorphisms, we have 

£.x:a.fl - ,(Z.x:a.fl)x T = (ZX: ,a . , f l ) x - r  ~ 5"X:~a.(Lflx-r) = 

= 3X:ta. f l .  

The step (#) is a special case of  :~:(,,~:A.B).7~-._~:A.3Y:B.y. 
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