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Abstract

Protocols may be derived from initial components by composition, refinement, and transfor-
mation. Using a higher-order extension of a previous protocol logic, we present an abstraction-
instantiation method for reasoning about a class of protocol refinements. The main idea is to
view changes in a protocol as a combination of finding a meaningful “protocol template” that
contains function variables in messages, and producing the refined protocol as an instance of the
template. Using higher-order protocol logic, we can develop a single proof for all instances of a
template. A template can also be instantiated to another templates, or a single protocol may
be an instance of more than one template, allowing separate protocol properties to be proved
modularly. These methods are illustrated using some challenge-response and key generation
protocol templates that also require adding symmetric encryption and cryptographic hash to
the protocol logic. We show additional uses of the methodology and suggest future directions
by exploring a design space surrounding JFK (Just Fast Keying) and related protocols from
the TKE (Internet Key Exchange) family. This exploration reveals some trade-offs between
authentication, identity protection, and non-repudiation; shows how counter-examples may be
transferred from one protocol to another using derivation steps; and produces some interesting
protocols that appear not to have been previously studied in the open literature.

1 Introduction

Many network protocols with security objectives are designed using a smaller set of common pro-
tocol concepts, such as challenge-response, Diffie-Hellman-like key agreement, and “cookies” to
reduce potential denial of service. In previous work [5, 6, 7], we proposed a protocol derivation
framework based on the use of composition, refinement, and transformation. In this framework, a
protocol designer may choose two initial protocol components, refine each of them, compose the
results to get a candidate protocol, then apply one or more transformations to improve efficiency
or resist particular forms of attack. Ideally, we would like each such derivation to induce an associ-
ated security proof, with the security property and its proof determined by the choice of derivation
steps. For example, if the last step is a transformation intended to resist denial of service, then
we would like to establish, once and for all, that for any protocol (at least if definable within
the framework) and for any security property (at least if expressible within the framework), the
protocol produced by the transformation has the same security property as the initial protocol,
plus a specified denial-of-service property provided by the transformation. This paper takes several



steps toward this long-term goal, presenting a formal treatment of refinement, extending our previ-
ous logic with higher-order features to define protocol templates and reason about their instances,
extending the logic with symmetric encryption and cryptographic hash functions, and presenting
illustrative parts of some case studies.

Composition combines separate protocols, refinements change the content or structure of in-
dividual messages, and transformations alter the structure of a protocol. For example, sequential
composition places messages of one protocol after messages from the other. In our formal logic,
we may prove properties about a composed protocol from its parts, using a set of composition
inference rules [6, 7]. The composition rules involve local reasoning about steps in each role and
global reasoning about invariants in the protocol or set of protocols in use. In a protocol refine-
ment, a message or portion of a message is systematically refined by, for example, adding additional
data or otherwise changing the data contained in one or more messages. For example, replacing
a plaintext nonce by an encrypted nonce, in both the sending and receiving protocol roles, is a
protocol refinement. While refinements seem to arise naturally in contemporary practical protocols
[1, 15], they provide more of a challenge for formal reasoning. One reason is that refinements may
involve replacement, and replacement of one term by another does not have a clean formulation in
standard mathematical logic.

Adapting concepts from standard higher-logic, we extend our protocol logic by adding function
variables and function substitution. This enables us to develop a method for reasoning about
protocol refinements. The main idea is to regard a protocol as an instance of a protocol template
that is expressed using function variables in place of specific combination of cryptographic or other
operations. After proving properties of the protocol template from hypotheses about function
variables, we can instantiate the properties and their proofs using different substitutions that respect
the hypotheses.

One way of relating abstraction and instantiation to refinement is to consider the proof of a
property of a protocol containing messages that use, for example, symmetric encryption. Suppose
that this protocol property is preserved if we replace symmetric encryption by use of a keyed hash.
Then if we start with a proof of the protocol property that contains symmetric encryption, some
branches of the proof tree will establish properties of symmetric encryption that are used in the
proof. If we replace symmetric encryption by a function variable, then the protocol proof can be
used to produce a proof of the template containing function variables. This is accomplished by
replacing each branch that proves a property of symmetric encryption by a corresponding hypothesis
about the function variable. Once we have a proof for the protocol template obtained by abstracting
away the specific use of symmetric encryption, we can consider replacing the function variable with
keyed hash. If keyed hash has the properties of symmetric encryption that were used in the initial
proof, we can use proofs of these properties of keyed hash in place of the assumptions about the
function variable. Thus an abstraction step and an instantiation step bring us both from a protocol
with symmetric encryption to a protocol with keyed hash, and from a proof of the initial protocol
to a proof of the final one. The role of the protocol template in this process is to provide a unified
proof that leads from shared properties of two primitives (symmetric encryption or keyed hash) to
a protocol property that holds with either primitive.

After describing the formal framework, we illustrate the use of protocol templates with several
examples. As an example of multiple instantiations of a single template, we prove an authentication
property of a generic challenge-response protocol, and then show how to instantiate the template
to ISO-9798-2, ISO-9798-3, or SKID3 . As an example of one protocol that is an instance of two
templates, we show how to reason about an identity-protection refinement using an authentication
template and an encryption template. The third example compares two authentication protocol
templates, one that can be instantiated to the ISO-9798 family of protocols, and one that can be
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instantiated to STS and SIGMA. The first reflects the authentication mechanism used in JFKi,
while the second corresponds to IKE, JFKr, and IKEv2 authentication. While there has been
considerable debate and discussion in the IETF community about the tradeoffs offered by these
two protocols, previous analyses are relatively low-level and do not illustrate the design principles
involved. However, it is possible to compare the authentication properties of the two approaches
by comparing the templates.

While our past work on protocol derivation has given rational reconstructions of known pro-
tocols, we can also use protocol derivation to combine known protocols in new ways. We begin
with two separate derivations. The first, within the JFK family, starts with Diffie-Hellman key ex-
change protocol and a basic three-step challenge-response protocol. These two are combined to form
Station-to-Station (STS), whose key secrecy is based on Diffie-Hellman and authentication property
is based on challenge-response. A few steps from STS bring us to a form of JFK. An orthogonal
derivation begins with Diffie-Hellman and modifies the functions used, through MTI/A [19] and
UM [3] to reach MQV [16]. These two protocol derivations provide a two-dimensional matrix of
protocols that have not been explored, to our knowledge. The most sophisticated is a form of
JFK using MQYV in place of Diffie-Hellman as its key-exchange component. This protocol provides
forms of key secrecy, mutual authentication, forward secrecy, known-key security, computational
efficiency, identity protection, and denial-of-service protection, inheriting these qualities from pro-
tocol design patterns used to produce the protocol.

2 Background

2.1 Derivation System

In [5], we outlined an protocol derivation framework and formalized a subset of it. The framework
involves of a set of basic building blocks called components and a set of operations for constructing
new protocols from old ones. These operations were divided into three general types: composition,
refinement, and transformation. As mentioned in the introduction, composition combines separate
protocols, refinement change the content or structure of individual messages, and transformation
alters the structure of a protocol. Some example components, composition operations, refinements
and transformations were described but not fully formalized in [5]. Further examples and more
comprehensive formalization of protocol composition appear in [7, 6].

So far, the protocol derivation framework consists of some informal protocol operations, a
precise notation for defining protocols, a formal logic for proving properties of protocols, and some
connections between the derivation operations and formal proofs. In subsections 2.2 and 2.3, we
briefly review the protocol notation and formal logic. Subsection 2.4 contains a short explanation
of how we extend both with concepts from higher-order logic in order to support the abstraction-
instantiation method that is the focus of this paper.

2.2 Cord Calculus

One important part of security analysis involves understanding the way honest agents running a
protocol will respond to messages from a malicious attacker. The common informal arrows-and-
messages notation is therefore insufficient, since it only presents the intended executions (or traces)
of the protocol. In addition, our protocol logic requires more information about a protocol than
the set of protocol executions obtained from honest and malicious parties; we need a high-level
description of the program executed by each agent performing each protocol role. As explained in
[12], we used a form of process calculus that we call cords.
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Figure 1: STS as arrows-and-messages
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Figure 2: STS as a cord space

The STS protocol is shown in an informal notation in Figure 1 and written as a pair of cords,
one for each role, in Figure 2. The arrows between the cords are used in the figure to show how
messages sent by one role may be received by the other, but they are not part of the cord formalism.
The sequence of actions in the initiator role is given by the cord A. The notations (vz), (t), (z)
refer respectively to the actions of nonce generation, sending a term, and receiving a message. A
message is assumed to have the form: (source, destination, content).

In words, the actions of A are: generate a fresh nonce; send a message using that number toB;
receive a message with source address B ; verify aspects of the message; and finally, send another
message containing date received and the initial nonce generated at the start of the run.

2.3 A Protocol Logic

Our basic protocol logic and proof system are developed in [12, 5, 7, 6], with [7] providing a relatively
succinct presentation of the most recent form. A brief summary is also included in Appendix A.

The formulas of the logic are given by the grammar in Table 1, where p may be any role, written
using the notation of cord calculus. Here, £ and P denote a term and a process respectively. We use
the word process to refer to a principal executing an instance of a role. As a notational convention,
we use X to refer to a process belonging to principalf( . We use ¢ and % to indicate predicate
formulas, and m to indicate a generic term we call a “message”.

Most protocol proofs use formulas of the form [Py, which means that after actions P are
executed in process X, starting from a state where formula 6 is true, formula ¢ is true about the
resulting state of X. Here are the informal interpretations of the predicates (see [7] for detailed
semantics):

Has(X, ) means principal X possesses information = in the process X. This is “posses” in the
limited sense of having either generated the data or received it in the clear or received it
under encryption where the decryption key is known.

Send(X, m) means principal X sends message m in the process X.

Receive(X, m), New(X,t), Decrypt(X,t), Verify(X,t) similarly mean that receive, new, decrypt
and signature verification actions occur.



Action formulas

a == Send(P,m)|Receive(P,m)|New(P,t)|Decrypt(P,t)| Verify(P,t)

Formulas

¢ == al|Has(P,t)|Fresh(P,t)|Honest(N) |Contains(t;,t2) | ¢ A P| 0| Tx.d0| S P| O @
Modal forms

U = polopg

Table 1: Syntax of the logic

Fresh(X,t) the term ¢ generated in X is “fresh” in the sense that no one else has seen any term
containing t as a subterm. Typically, a fresh term will be a nonce and freshness will be used
to reason about the temporal ordering of actions in runs of a protocol.

Honest(f( ) the actions of principal X in the current run are precisely an interleaving of initial
segments of traces of a set of roles of the protocol. In other words, X assumes some set of
roles and does exactly the actions prescribed by them.

The two temporal operators <& and (© have the same meaning as in Linear Temporal Logic [18].
Since we view a run as a linear sequence of states, < ¢ means that in some state in the past ¢
holds, whereas O ¢ means that in the previous state ¢ holds.

The predicate After(aj, az), definable from < and O, means that the action @ happened after
the action a; in a run. Other predicates such as Computes and Contains are also definable in the
logic.

2.4 Cords and Protocol Logic with Function Variables

Like a program module containing functions that are not defined in the module, a cord may contain
functions that are not given a specific meaning in the cord calculus. When a cord contains undefined
functions, the cord cannot be executed as is, but can be used to define a set of runs if the function is
replaced by a combination of defined operations. Since cords contain functions such as encryption
and pairing, it is a simple matter to extend the syntax with additional function names. Since
we will apply substitution for these function names, and implicitly quantify over their possible
interpretations in the protocol logic, we refer to these function names as function variables. The
mechanism for substituting an expression for a function variable, in a manner that treats function
arguments correctly, is standard in higher-order logic. A simple explanation that does not involve
lambda calculus or related machinery is given at the beginning of [13], for example.
In a judgement
Q' ¢1[Plage

where Q is a protocol containing function variables, P is one role or initial segment of a role
of the protocol, and I" denotes the set of assumed properties and invariants, the formulas in I
may also contain function variables. The meaning of this judgement is that for every substitution
that eliminates all function variables, any execution of the resulting protocol J respecting the
resulting invariants I", the resulting formula ¢} [P’]4¢} holds. It is straightforward to show that
our previous logic is sound for protocols and assertions containing function variables, and that
substitution preserves semantic entailment and validity of formulas.

5



As a technical note for logicians, we observe that since we do not have any comprehension
principle for our logic, it is actually reducible to first-order logic by the standard method of treating
function variables as first-order variables via an Apply function. Consequently, our higher-order
protocol logic is no less tractable (for automated theorem proving) than the logic without function
variables. Consequently, our higher-order protocol logic is no less tractable (for automated theorem
proving) than the logic without function variables.

3 Abstraction and Refinement Methodology

Protocol Templates: A protocol template is a protocol that uses function variables. An example
of an abstract challenge-response based authentication protocol using the informal trace notation
is given below.

A—B:m
B— A:n,F(B,A n,m)
A— B:G(A B,m,n)

Here, m and n are fresh nonces and F' and G are function variables. Substituting cryptographic
functions for F and G with the parameters appropriately filled in yields real protocols. For example,
instantiating F' and (G to signatures yields the standard signature-based challenge-response protocol
from the ISO-9798-3 family, whereas instantiating F' and G to a keyed hash yields the SKID3
protocol.

Characterizing protocol concepts: Protocol templates provide a useful method for formally
characterizing design concepts. Our methodology for formal proofs involves the following two steps.

1. Assuming properties of the function variables and some invariants, prove properties of the
protocol templates. Formally,
Q,T'F ¢1[Plag

Here, Q is an abstract protocol and P is a program for one role of the protocol. I' denotes
the set of assumed properties and invariants.

2. Instantiate the function variables to cryptographic functions and prove that the assumed
properties and invariants are satisfied by the real protocol. Hence conclude that the real
protocol possesses the security property characterized by the protocol templates.

If @ F1' then @+ ¢|[Padh

Here, the primed versions of the protocol, hypotheses, etc. are obtained by applying the
substitution ¢ used in the instantiation.

The correctness of the method follows from the soundness of substitution and the transitivity
of entailment in the logic, as described in Section 2.4.

Combining protocol templates: Protocol templates can also be used to formalize the informal
practice of protocol design by combining different mechanisms. The key observation is that if a con-
crete protocol is an instantiation of two different protocol templates, each instantiation respecting
the assumed invariants associated with the template, then the concrete protocol has the security
properties of both templates. Our methodology involves the following three steps.

6



1. Identify two protocol templates which guarantee certain security properties under some as-
sumptions.

Q1,1 F ¢11[Pi]lagar and Qa, Ty b ¢12[Pa] Az

Here, Q; and Qs are protocol templates; B and P, are respectively the programs correspond-
ing to a specific role; and I'y and I'y denote the sets of assumed properties and invariants.

. Find substitutions o7 and o9 such that the two instantiated protocols and roles are identical,
i.e.,

0191 =029 = Q" and o1P, =09P, =P

Prove that the instantiated protocol satisfies the hypotheses of both the protocol templates.
Hence conclude that it inherits the security properties of both.

If QT UTy, then Q' F (11 A $19) [Pla(d A dho)

Here, the primed versions of the protocol, hypotheses, etc. are obtained by applying the
substitutions o1 and o9 used in the instantiations.

Templates
(Abstract Protocols) Challenge-Response
Template (CR)
Encryption Key Computation
Template CR Template [ CR Template I1 Template
Instantiated Templates
(Concr‘elte Protocols)
Diffie
' 150-9798-3 SKID3 180-9798-2 SIGMA STS-K Hellman MQV
\ (DH)
Template Qombinatidn .\\\ f /
I v J N
1SO +
Identity STS-DH STS-MQV
Protection

Figure 3: Illustrating the Methodology



4 Illustrative Examples

In the previous section, we introduced the notion of generic protocol templates and presented an
abstraction-instantiation methodology for proving properties of related protocols by reusing one
general proof pattern. In this section, we present several examples illustrating this methodology.
The protocols considered include real world protocols from the ISO and IKE families.

4.1 Characterizing Protocol Templates

A generic protocol template can be instantiated to multiple real protocols. Identifying such tem-
plates and characterizing the associated security properties under assumed hypotheses is useful
for several reasons. Such characterizations underpin basic principles used in designing classes of
protocols and bring out subtle tradeoffs offered by various protocol families (see Section 4.3 for an
interesting example). Another obvious benefit is that the security proofs of instances of a tem-
plate follow from the proof of the template plus a (usually much simpler) proof that the instances
satisfy the assumed hypotheses. In what follows, we work through an example demonstrating the
approach.

4.1.1 Example: Challenge-Response Template

In our first example, we characterize a generic challenge-response protocol template and then obtain
three real protocols: ISO-9798-2, ISO-9798-3, and SKID3 by appropriate substitutions. In doing
so, we follow the two step methodology outlined in Section 3.

Step 1: The first step is to precisely define and characterize the abstract protocol. This involves
defining the abstract protocol (denoted Q-r in the sequel) as a cord space, expressing the security
property achieved, and identifying the set of assumptions under which the property holds. The
programs for the initiator and responder roles of QJor is written out below in the notation of cords.

Initcr = (vn) (A{/I,B,m,}) (iéjﬁ,n,Fgéiﬁ,n,m)}> (A{AA,B,GA(/IA,B,m,n)})
Respcrk = ({Y,B,y}) (vn) ({B,Y,n, F(B,Y,n,y)}) {Y,B,G(Y,B,y,n)})

Here, F' and G are function variables. Under a set of assumptions (Ivg) about these variables, we
prove an authentication property of the protocol using the logic (see Table 4 in Appendix B for the
complete formal proof).

Qcr,Tor b [Initcr|a Honest(/l) A Honest(B) D Gauth

Intuitively, this formula means that if A executed a session of Qo g supposedly with B and both of
them are honest (implying that they strictly follow the protocol and do not, for example, send out
their private keys), then the authentication property expressed by the formula ¢, holds in the
resulting state. ¢uun specifies an authentication property for the initiator based on the concept of
matching conversations [9]. Simply put, it requires that whenever A completes a session supposedly
with B, both A and B have consistent views of the run, i.e., they agree on the content and order
of the messages exchanged. Formally,

Gauth = IB.(ActionsInOrder(
Send(A, {4, B,m, }), Receive(B, {A, B,m, }),
Send(B, {B, A,n, F(B, A,n,m)}), Receive(A, {B, A,n, F(B,A,n,m)}),
3,m,n)}))

F(B, n,
Send(4, {A, B,G(A, B,m )}),Rece.ve(B,{A,B,G(A B,

~—
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The set of assumptions I'cr used to prove the authentication property consists of the following
four logical formulas:

v, = Computes(X,F(B,A,n,m)) > (34X =A)Vv (3B X =B
v = —Contains({X,Y,z}, F(B,A,n,m))

v3 = Contains({X,Y,G(X,Y,z,9)}, F(B,A,n,m)) DX
v4 = Contains({X,Y,z, F(X,Y,z,y)}, F(B,A

xT

m =
Am =y

> ||
U:J>

AY =AAn= Yy N
A m) DX =BAY=AAn==zx
Informally, assumption 71 states that the function variable F' is hard to compute: only agents A
and B can compute F' (B An ,m) (more precisely, if some session X has enough information to
compute F' (B A n,m) then X is either session of agent A or agent B) In a concrete protocol, this
assumption can be satisfied by, for example, instantiating F' to a signature. The other assumptions
impose syntactic constraints on F' and G. For example, an « implies that F' (B, fl,n,m) cannot
be mistaken for a nonce. This obviates certain type confusion attacks. Formula ~ implies that F
depends on the value of all four parameters.

A complete proof of the authentication property for the initiator role of the Challenge-Response
template is given in Table 4 in Appendix B. Below, we discuss the structure of the proof of
the Challenge-Response protocol and provide some insight on the proof technique used to prove
authentication results in this logic.

Proof Structure of Challenge-Response Template: The formal proof in Table 4 naturally
breaks down into four parts:

e Line (1) asserts what actions were executed by Alice in the initiator role. Specifically, we can
conclude that Alice has received a message msg containing F'(B, A,n,m).

e In lines (2)—(9), we track the source of term F(B,/l,n,m) received by Alice. First, since
Alice received a message containing F(B’, A,n,m), there must be a process who computed
that term and send it on the network. Using the assumption ~i, we can conclude that only
Alice or Bob could have computed F(f?, A,n,m). Finally, using the assumptions o, 3, V4,
we can deduce that it is not the case that Alice has send F (E} , fl, n,m). Therefore, Bob has
send a message msg containing F (B, A, n,m).

e In lines (10)—(13), we use the honesty rule, and assumptions y, 3,74 to conclude that Bob
must have sent F’ (B , /1, n,m) as a part of the second message of the responder role. Therefore,
Bob has received a corresponding first message in the past. Also, using 4, we can conclude
that Bob is in the session with Alice.

e Finally, in lines (14)—(19), the temporal ordering rules are used to establish a total ordering
among the send-receive actions of Alice and Bob. Line (17) concludes that Bob must have
received msgl after Alice sent it since msgl contains a fresh nonce. Line (18) uses the same
argument for msg2 sent by Bob. Finally, line (19) uses the transitivity axiom to conclude
that the authentication formula ¢, is true.

This completes the characterization of the protocol template. We are now ready to move on to
Step 2.



F(X,Y,z,y) = Fk ., (z,y,X) F(X,Y,z,y) = Hg ., (z,y, X) F(X,Y,z,y) = SIGx(z,y,Y)

G(X,Y,2,y) = Erxy (y,2) GX,Y,2,y) = Hixy (0, X)) G(X,Y,2,y) = SIGx(y,2,Y)
A—=B:m A—B:m A—B:m

B— A:n,FEk,,(n,m,B) B— A:n,Hg,,(n,m,B) B — A:n,SIGg(n,m,A)
A— B:Eg,,(n,m) A— B:Hg,,(n,m,A) A — B:SIG4(n,m,B)

ISO 9798-2 SKID3 ISO 9798-3

Figure 4: Instantiations of the Challenge-Response template

Step 2: In this step, we instantiate the protocol template to three well known protocols from the
ISO family. The substitutions for the function variables and the resulting protocols are shown in
Figure 4. ISO 9798-2, SKID3, and ISO 9798-3 [21] respectively use symmetric key encryption with
a pre-shared key, keyed hash and signatures to instantiate F' and G. These substitutions respect
the assumed invariants in I'cr. (For example, 7 is satisfied by signatures since the signature
can be computed only by an agent who has the corresponding private key. The formal proofs
follow immediately from logical axioms and are omitted.) We can therefore conclude that all three
protocols guarantee the authentication property characterized by the abstract protocol.

4.2 Combining Protocol Templates

A refinement operation (as defined in [5]), when applied to a protocol, adds an additional security
property while preserving the original properties. Examples of refinement operations considered
in [5] include replacing signatures by encrypted signatures to provide identity protection and re-
placing fresh Diffie-Hellman exponentials by a pair consisting of a stale exponential and a fresh
nonce, thereby enabling reuse of exponentials and hence greater computational efficiency. The
methodology for combining protocol templates, described in Section 3, provides a way to formally
reason about a broad class of refinements including the two just mentioned. Below we illustrate
the general method by examining the identity protection refinement in some detail.

4.2.1 Example: Identity Protection Refinement

In this example, we start with a signature based protocol, ISO-9798-3, that provides mutual authen-
tication. We apply the identity protection refinement to it, which involves replacing the signatures
by encrypted signatures using a shared key. (The intention is to prevent adversaries from observing
signatures since they can reveal identities of communicating peers.) The goal is to prove that this
refinement step is correct, i.e., it does indeed guarantee that the resulting protocol provides identity
protection, while preserving the mutual authentication property of the original protocol. We iden-
tify two templates: Qcg, the challenge-response template described in the previous section, and
QEnc described below, which provides a form of secrecy. The aim now is to prove that the protocol
obtained after the refinement step is an invariant respecting instance of both these patterns and
the terms protected by the secrecy pattern are precisely the signatures.

Step 1: The Qcg template has been defined and characterized in an earlier section. Here, we do
the same for the Qgy¢c template. Using the informal arrows-and-messages diagram, the template
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can be described as follows.
A—B:m

B—A:n, Ex,,(H(B,A,n,m))
A— B:FEg,,(I(A,B,m,n))

The programs for the initiator and responder roles of Qrn¢ is written out below in the notation
of cords.
Initgnc = (Vm) ({A7 Ba m}) <{Ba A7 n, EKAB (H(B7 A? n, m))}> ({A7 B? EKAB (I(A7 B? m, TL))})
Respenc = ({Y,B,y}) (vn) ({B,Y,n, Exy, (H(B,Y,n,y))}) ({Y, B, Exyy (I(Y, B,y,n))})
Here, H and I are function variables. Under a set of assumptions (Ignc) about these variables,

we prove that the term H (B , /1, n,m) remains secret: it is known only to A and B (see Table 5 in
Appendix A for a detailed proof). Formally,

Qenc,Tenc [InitENc]A Honest(A) A Honest(B) D Gsecret

Intuitively, this formula means that if A executed a session of Qrpnc supposedly with B and both
of them are honest (implying that they strictly follow the protocol and do not, for example, send
out their private keys), then the secrecy property expressed by the formula ¢crer holds in the
resulting state. @secrer sSpecifies the secrecy property for the term H (B, A,n,m). Formally,

Gseccret = IB.(Has(X,H(B,A,n,m)) DX =AVX =B)

The set of assumptions ['gyc used to prove the authentication property consists of the following
four logical formulas:

6, = Computes(X,H(B,A,n,m)) >3IB.X =B

6y = -—Contains({X,Y,z}, H(B,A,n,m))

63 = Contains({X,Y, Ex, (I(X,Y,2,9)}, HB,A,n,m)) DX =BAn=yAm=z

6, = Contains({X,Y,z, Ex., (H(X,Y,z,9))}, HB,An,m)) DX =BAn=zAm=y

These formulas capture simple ideas, e.g., H(B’, fl, n,m) (e.g. B's signature) can be computed
only by B and certain syntactic constraints, e.g., a signature is not a subterm of a nonce.

F(X,Y,z,y) = Exy, (SIGx(z,y)) A—B:m H(X,Y,z,y) = SIGx(x,y)
G(X,Y,z,y) = Ex,, (SIGx(y,x)) B — A:n,Eg,,(SIGg(n,m)) I(X,Y,z,y) = SIGx(y, x)
CR A— B: Eg,,(SIGa(n,m)))

Figure 5: Protocol that is an instantiation of both CR and ENC patterns

Step 2: The second step is to find substitutions o7 and o9 such that both the templates (Qcr
and QgEn¢) instantiate to the same real protocol. The desired substitutions are shown in Figure 5.
o1 is on the left, o9 is on the right and the instantiated protocol is in the middle of the figure.

Step 3: The final step is to verify that the instantiated protocol satisfies the union of the hy-
potheses in I'cr and I'gnyc. This follows easily from the properties of signature and encryption
under symmetric key as expressed in the logic and the syntactic structure of the protocol. We
can therefore conclude that the identity protection refinement operation as applied here is correct,
i.e., it adds the identity protection property while preserving the original properties of the protocol
(which in this case is mutual authentication).
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4.3 Authenticated Key-Exchange Templates

An important use of protocol templates is to underpin basic principles used in designing classes
of protocols and to bring out subtle tradeoffs offered by various protocol families. In this section,
we examine two families of authenticated key exchange protocols. The first template, AKF1,
generalizes a family of protocols in which authentication is achieved by explicitly embedding the
intended recipient’s identity inside authenticators in messages. This family includes the ISO-9783-3
key exchange protocol and related protocols including the core JFKi protocol. The second template,
AKFE?2, generalizes a family of protocols where agents authenticate each other using a combination
of signatures and a proof of possession of the Diffie-Hellman shared secret computed during the
execution of the protocol. This family includes, STS, SIGMA, and the core of the IKE and JFKr
protocols. Part of the reason these two families are interesting is that they were both candidates
for the recently proposed IKEv2 protocol and there has been considerable discussion and debate
in the IETF community about the tradeoffs offered by the two designs. The use of templates to
characterize the two families sheds light on the subtle difference between the authentication and
identity protection guarantees associated with the two sets of protocols.

Template AKE1: Using the informal arrows-and-messages diagram, the authenticated key-
exchange template AKE1 can be described as follows.

A— B: A"

B— A:g" F(B,A ¢, g%
A— B: G(A,B,g“,gb)

For this template, we are able to prove both secrecy and authentication for the initiator role:

A~

QAKEla 1_‘AKEl F [InitAKEl]A Honest(A) A Honest(B) D) d)auth A d)shm"ed—secret

The formula ¢q,, describes an authentication property for the initiator based on matching con-
versations, while formula ¢gured—secret States that A and B the the only two sessions which know
the Diffie-Hellman secret ¢*®. The set of assumptions I'4x g1 is similar to I'cr in Section 4.1.1:

e = Computes(X,F(B,A,¢" ¢%)>3IB.X =B
—Contains({X,Y, g%}, F(B, A, ¢°, %))

€3 Contains({X,Y,G(X,Y, g% ¢g")}, F(B, A, ¢" ¢%) D

€ = Contains({X,f/,gy,F(X,Y,gx,gy)},F(B,A,gb,ga)) SX=BAY=AANg"=¢"Ng" =g

€2

We prove that the ISO-9798-3 key exchange protocol satisfies the set of assumptions, [i x g1, and
therefore provides similar authentication and secrecy guarantees. However, STS, SIGMA and their
variants do not satisfy I'axg1. Specifically, the assumption ¢4 fails since the intended recipient’s
identity is not embedded in the second message of the protocol. The way the proof fails leads us
to an run which provides a counterexample to the strong authentication property. This works for
both STS and SIGMA and the run is essentially similar to the “attack” on STS first demonstrated
by Lowe in [17].

Template AKE2: Using the informal arrows-and-messages diagram, AKE2 can be described as
follows.

A— B:g®

B— A:¢" F(B,¢ g%, F'(B,g")

A— B:G(A g% ¢"),G (A g")

12



A— B:g* A— B:g“ A— B:g“®
B — A:g* SIGg(g°, g%, A) B — A: g% E . (SIGE(9%, g")) B — A:g® SIGp(g° g*), Hyas (B)
A— B:SIGa(g% g%, B) A= B:Eyu(SIGA(9%, g%)) A= B:SIGA(g%, g%), Hyar (A)

ISO 9798-3 Key exchange STS Basic SIGMA

Figure 6: Instantiations of Authenticated Key-Exchange Templates

protect cookie
authenticate identities transformation symmetric hash
DH STS STSp STSpu JFKr
| |
v : v 5
MTI/A STSMT STSMT ‘ STSMT ‘ JFKrMT
. , ; !
UM }—> STSUM | STSYM STSYM JFKUM |

: i v v
MQV STSMQV STSMV }—> STSHLV H—> JFKrMQV

Figure 7: Design by Combining Templates

Informally, the purpose of F is to ensure that B is a session with parameters ¢ and ¢, while F”
proves that B has the shared secret ¢**. Combining the two facts derived from certain assumptions
about the function variables, it is possible to prove that this protocol template provides a form
of authentication: matching conversations for the responder. However, as mentioned before, this
protocol does not have the matching conversations based authentication property for the initiator.
It therefore follows that the class of protocols characterized by the AKE1 template provide stronger
authentication guarantees than the class characterized by AKE2.

5 Deriving the STS-MQYV Protocol Family

While previous sections have focussed on formal reconstruction of known protocols, here we examine
the possibility of synthesizing new protocols by reusing constructs from existing protocols. We begin
with two well-known protocol families: the first includes Diffie-Hellman key exchange and several
variants that enhance the key derivation function (MTI/A, UM and MQV); the second is the IKE
family - STS being the base protocol and a few steps further on is JFKr. These two protocol
families are combined to map out a two-dimensional matrix of protocols (see Figure 5) which, to
the best of our knowledge, has not been previously studied in the open literature. An intuitive
presentation of this derivation is in Appendix C. The focus here is on a core part of the synthesis
that follows naturally from the abstraction and refinement methodology. Specifically, we formally
prove properties of the protocols in the first three columns of Figure 5, while the derivation steps
involved in going to the next two columns are not yet formalized, although we believe that they
can be handled by simple extensions of the current logic.

13



5.1 Formal Synthesis

We identify two base protocol templates: a key computation template (KC) and an authenticated
key exchange template (AKC). AKC relies on a key computation template with exactly the prop-
erties characterized by KC. The first column in Figure 5 contains protocols DH, MTI/A, UM and
MQV which are instantiations of KC; the second column has instantiations of AKC, where each
instantiated protocol uses the KC instantiation on its left (e.g., STSQV uses MQV). In Sec-
tion 5.2, we prove the security properties of these protocols using the abstraction and instantiation
methodology. The protocols in the third column are obtained from those in the second by applying
an identity protection refinement. Formally, this involves combining the AKC template with an
encryption template in a manner similar to Example 4.2.1 in Section 4.2. The proofs are omitted
due to space constraints. The subsequent steps in the derivation involve protocol transformations
not formalized currently. We hope to address this issue in future work as part of a larger effort to
develop a general theory of protocol transformations.

5.2 Characterizing and Combining KC and AKC

In this section, we discuss the main ideas used in characterizing and combining the KC and AKC
templates. Detailed proofs are omitted due to space constraints.

Key Computation Template, KC. The template is characterized by a formula capturing the
idea that a shared key has associated with it two public-private key pairs and in order to compute
the key, it is necessary and sufficient to possess one private key and the other public key. Formally,

Computes(X, H(t1, f(t1),t2, f(t2))) = Has(X, (t1, f(t2))) V Has(X, (t2, f(t1)))

Here, H is a function variable denoting the key computation function while the variable f denotes
the function that is used to compute the public key given the private key. It is easy to see that the
key computation functions of all four protocols (DH through MQV) satisty this hypothesis. For
example, the Diffie-Hellman shared key ¢* is associated with the public-private key pairs (¢%, a) and

(g*,b) and computing it requires either (a, ¢’) or (b, g*). Similarly, computing the UM key requires

either ((a,z), (¢, ¢%)) or ((b,y),(¢* ¢%)), where the public-private key pairs are ((¢*, g%), (a,x))

and ((g%, g¥), (b,y)). Note that the hypothesis for this template only characterizes the properties of
certain functions. The proof that a particular instantiation has this property must therefore follow
from axioms of the proof system and is independent of the protocol in which this template is used.
This observation will be crucial when subsequently we combine this template with AKC.

Authenticated Key Exchange Template, AKC. AKC (given below) is a generalization of
AKE2, the template which yielded STS and SIGMA in Section 4.3. The further abstraction step
arises from understanding that the essential property provided by the Diffie-Hellman terms is
characterized by the KC template. In particular, AKE2 can be obtained by instantiating the
function variables f and H to the Diffie-Hellman functions.

A— B: f(tl)
B — A: f(t2), F(B, f(t1), f(t2)), F'(B, H(t1, f(t1), t2, f(t2)))
A= B:G(A f(t2), f(t1)),G'(A, H(t1, f(t1), t2, f(t2)))

The invariants characterizating this template are similar to those for AKE2, the only difference
being that function variables replace actual Diffie-Hellman functions and the key computation
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property of KC is added to the hypothesis set. The formal proof that this abstract protocol
provides an authenticated shared secret is exactly the same as the corresponding proof for AKE2
presented earlier.

Combining the Templates Diffie-Hellman and MQV functions are instantiations of the KC
template and, as noted earlier, since this template depends only on the functions, the property is
guaranteed irrespective of the message structure of the specific protocol in which they are used.
Instantiating the underlying KC template of AKC with Diffie-Hellman and using encrypted signa-
tures over public keys gives us the STS protocol. As proved in Section 4.3, this protocol satisfies
the assumed invariants of AKE2 and hence AKC. It therefore provides an authenticated shared

secret.
A— B:g”

B— A:g¢¥,Cp,Ex (SIGg(g¢Y,4%))
A — B:Cy,Ex (SIGA(9",¢Y))

On the other hand, instantiating the KC template of AKC to MQV and using a combination
of certified Diffie-Hellman keys and encryptions over the public keys, we get the new STSM@V
protocol. This protocol also satisfies the assumed invariants of the AKC template and therefore
guarantees an authenticated shared secret.

A— B:g® g*
B— A:g¢¥,¢",Gp,Ex (¢, g%)
A — B:Ga,Ex (g%, ¢Y)

An advantage of this protocol over STS is that it is computationally more efficient, a property
that it inherits from the MQV protocol (see Appendix C for further discussion).

6 Conclusions and Future Work

While there is ample evidence that protocol designers think systematically about protocol require-
ments and the means to achieve them (e.g., [2, 15]), it is a significant challenge to make these
natural intuitions precise enough to provide systematic proofs of protocol properties. We believe
that protocol templates, and an accompanying higher-order extension or our previous protocol
logic, furnish some useful techniques for modular reasoning. In particular, similar protocols can
now be proved to have identical or related properties using a single proof about a protocol template.
Moreover, it is possible for multiple properties of a single protocol to be established using different
templates for each property. While we have illustrated these general protocol proof methods with
a few simple examples, we believe that many more templates and associated proofs can be devised.

The logical foundation for the proof method shown in this paper is the very simple idea of
extending a protocol notation (cords) and protocol logic with function variables. This allows
protocol templates to be written in a natural way, and allows them to be proved correct using
implicit universal quantification over function variables.

We have developed some challenge-response and key generation protocol templates that also
required adding symmetric encryption and cryptographic hash to our previous protocol logic. We
also used protocol templates to exploring a design space surrounding JFK (Just Fast Keying) and
related protocols from the IKE (Internet Key Exchange) family. This exploration reveals some
trade-offs between authentication, identity protection, and non-repudiation; shows how counter-
examples may be transferred from one protocol to another using derivation steps; and produces
some interesting protocols that appear not to have been previously studied in the open literature.
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In future work, we hope to develop useful tool support for protocol derivation steps and the
associated logic. A current effort underway draws on program derivation and verification experience
at Kestrel Institute. The software infrastructure supporting protocol derivations is based on especs
[22, 23, 4], a framework for refinement and automated composition of state machines, where states
are annotated by algebraic specifications, and transitions by morphisms between them.
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A A Protocol Logic

Protocol logic presented in [7]. Here, we only give a brief overview of the proof system.

A.1 Proof System
A.1.1 Axioms and Inference Rules

A representative fragment of the axioms and inference rules in the proof system are collected in
Table 2. For expositional convenience, we divide the axioms into four groups.

The axioms about protocol actions state properties that hold in the state reached by executing
one of the actions in a state in which formula ¢ holds. Note that the a in axiom A A1 is any one
of the 5 actions and a is the corresponding predicate in the logic.

VER and SRC respectively refer to the unforgeability of signatures and the need to possess
the symmetric key in order to decrypt a message encrypted with that key. The additional condition
requiring principal X to be honest guarantees that the intruder is not in possession of the private
keys. These axioms (together with a few more axioms not described in this summary) provide an
abstraction of the standard Dolev-Yao intruder model [11].

Axioms P1, P2, and P3 capture the fact that most predicates are preserved by additional
actions. For example, if in some state Has(X,n) holds, then it continues to hold, when X executes
additional actions. Note, however, that the Fresh predicate is not preserved if the freshly generated
value n is sent out in a message (see F).

The PLTL axioms T1, T2, and T3 allow reasoning about the temporal ordering of actions.
This turns out to be useful in proving authentication properties of protocols.

Computes shortcut and corresponding axioms (Table 3 allow us to reason about origination of
some types of terms. Intuitively CP2 says that there are two ways an agent can posses some term:
he can construct it from components or he can receive it as a part of some message. Axiom CP3
says that every term that appears on the network has a source — it originated from some process
that actually computed the term.

They also capture hardness assumptions about cryptographic primitives. For example, we
postulate that the only way to compute a Diffie-Hellman secret is to have one exponent and one
exponential. Similarly, only way to compute a symmetric encryption is to have a key and the
plaintext.
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Axioms about Protocol Actions:

AAl  flax ©(anO9)
AN3  ¢[(vn)]x Fresh(X,n)

Axioms Capturing Dolev-Yao Model:

VER Honest(X') A & Verify(Y, {|nf}+) D
3X.3m.(& Send (X, m) A Contains(m, {|n[}+))
SRC Source(Z,t, Ex(t)) ANHas(X,t) AN X # Z D 3Y.3msg.(Y # B AHas(Y, K) A
SSend (Y, msg) A Contains(msg, t))
Source(Z,t,Ex(t)) = (Computes(X,t) D X =Z) A ((& Send(Z, msg) A Contains(msg,t)) D
(m = {t',Ex(t)} N —Contains(?,t))

Preservation Axioms: (For Persist € {Has, & ¢},)

P1  Persist(X,t)[a]xPersist(X,t)

P2 Fresh(X,t)[a]xFresh(X,t), where(t € a) V (a # (m))

P3  HasAlone(X,t)[a]xHasAlone(X,t), where(t Z, a) V (a # (m))
F  Fresh(X,t)[(m)]x—Fresh(X,t), where(t C m)

PLTL Axioms:

T1 & @AY)D(OPANDY)
T2 & @VY)D(OeVOY)
T3 O¢ < -9

Temporal Ordering of actions:

AF1 Ola ...an)x After(az,az) A ... A After(an—1,an)
AF2  Honest(X) A Honest(Y') A Honest(Z) O
(After(a(X),a2(Y)) A After(ax(Y),a3(Z)) D After(a1(X),a3(2)))
AF3 (&S (Send(X,m) A OFresh(X,n)) A & a(Y') A Contains(m,n) A Contains(a,n) A (Y # X))

D After(Send(X,m),a(Y))

Inference Rules:

0[P)x ¢ 0[P]XwG1 9[P]x¢ 6 D0 ¢D¢’G2 ) s TGEN

O[P]xd N 0'[Plx ¢’ O[P]x¢ O

Table 2: Fragment of the Proof System
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CP1 Computes(X,t) D Has(X,t)
CP2 Has(X,t) D
(Computes(X,t) V Im.(S Receive(X,m) A Contains(m, t)))
CP3 (& Receive(X,m) A Contains(m,t)) D
Y. 3m’.(Computes(Y,t) A & Send(Y,m') A Contains(m’, t))
Computes(X,t) = (t = ¢ A Computespy (X, g%b)) V
(t = H(a) A Computesyasy (X, H(a))) V
(t = Eq(b) A Computesgnc (X, Eq(D)))
Computespy (X, g?°) = ((Has(X,a) A Has(X, &) V (Has(X,b) A Has(X, ¢)))
Computesgnc (X, E, (b)) = Has(X, a) A Has(X, b)
ComputespyasH (X, H(a)) = Has(X, a)

Table 3: Computes Axioms

A.1.2 The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a protocol. It
is similar to the basic invariance rule of LTL [18]. The honesty rule is used to combine facts about
one role with inferred actions of other roles.

For example, suppose Alice receives a response from a message sent to Bob. Alice may wish to
use properties of Bob’s role to reason about how Bob generated his reply. In order to do so, Alice
may assume that Bob is honest and derive consequences from this assumption. Since honesty, by
definition in our framework, means “following one or more roles of the protocol,” honest principals
must satisfy every property that is a provable invariant of the protocol roles.

Since the honesty rule depends on the protocol, we write Q F 0[P]¢ if §[P]¢ is provable using
the honesty rule for @ and the other axioms and proof rules. Using the notation just introduced,
the honesty rule may be written as follows.

[[x ¢ Vpe QNVPeBS(p). ¢ [Plx ¢ no free variable
" HON  in ¢ except X
Q I~ Honest(X) 5 ¢ bound in [P]x

In words, if ¢ holds at the beginning of every role of @ and is preserved by all its basic sequences,
then every honest principal executing protocol @ must satisfy ¢. The side condition prevents free
variables in the conclusion Honest(f( ) D ¢ from becoming bound in any hypothesis. Intuitively,
since ¢ holds in the initial state and is preserved by all basic sequences, it holds at all pausing
states of any run.

B Formal Protocol Correctness Proofs

A complete proof of the authentication property for the initiator role in C'R template is given in
Table 4.
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Figure 8: Derivation of the JFKr protocol
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A complete proof of the secrecy property for the initiator role in ENC template is given in
Table 5.

C Deriving the STS-MQV Family

C.1 Derivation of the JFKr Protocol

Our framework for deriving security protocols [5] seeks to systematize the practice of constructing
protocols incrementally, starting from simple components and extending them by features and
functions. In this section, we present, within this framework, a derivation of the JF Kr protocol.
We use Diffie-Hellman key exchange and signature-based Challenge-Response as basic components.
The derivation steps are shown in Figure C.1. As we proceed with the derivation, desired security
properties accumulate. Among relevant properties are key secrecy, mutual authentication, denial-
of-service protection and identity protection. This class of protocols is interesting partly because
they form the basis of key exchange protocols for the IPSec protocol suite.

Diffie-Hellman component, DH

The basic Diffie-Hellman protocol [10] provides a way for two parties to set up a shared key (¢V)
which a passive attacker cannot recover.

A— B:g”®
B— A:gY

There is no authentication guarantee for this protocol: the secret is shared between two parties,
but neither can be sure of the identity of the other. The security of the key depends on the
computational hardness of the discrete logarithm problem.

Using the derivation system, we want to transform this protocol into an authenticated key-
exchange protocol. To achieve this goal, we first choose an authentication mechanism based on
the exchange of fresh values. Then, we compose the two protocols, instantiating fresh values to
Diffie-Hellman exponentials. The advantage of this modular approach is that an independent proof
of security of the new protocol is not required. It can be deduced from the properties of the two
components as long as they do not degrade each others security (for a detailed treatment of protocol
composition ideas see [7]).

Challenge-Response protocol

The two-way challenge-response protocol based on signatures and encryption is shown below. Here,

C4 and Cp represent certificates of A and B, while K4p represents a secret key shared between A

and B.
A—=B:m

B—A: n, CB7EKAB (SIGB(TL,m))
A — B:Cy,Eg,, (SIG4(m,n))
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AA1,T1,P1
CP3, (1)

I'cr
HON

(4),(9 — 12)
AN3,P1
(13 — 14)

(15), HON

F,AF3
F,AF3, HON

AF1, AF2

[Initcr|4 © Receive(A4, msg) A Contains(msg, F(B, A,n,m))
[Initcr]4 3X.Imsg’.(Computes(X, F(B, A,n,m)) A
& Send (X, msg') A Contains(msg, F(B, A,n,m)))
Computes(X, F(B, A,n,m)) > (34X = A')v (3B'.X = B')
Honest(Y) A & Send (Y, msg') D 3X.3z.3y.(& Fresh (Y, y) A
(msg ={Y,X,y} Vv
msqg = {Y,X,y,F(Y,X,y,x)} \Y
msg = {V,X,G(Y,X,y,z)})
—Contains({A4, X, m'}, F(B, A,n,m))
Contains({A, X,G(A, X,m/,2)}, F(B,A,n,m)) DA=B
Contains({A, X, m/, F(A, X, m/,z)}, F(B, A,n,m)) D
Honest(A) A & Send (A, msg’) A Contains(msg, F(B,
A=B
[Initcr] 4 Honest(A) > 3B.3msg’.(Computes(B, F(B, A,n,m)) A
& Send (B, msg') A Contains(msg', F(B, A,n,m)))
—Contains({B, X,n'}, F(B, A,n,m))
Contains({B, X,G(B, X,n’,z)}, F(B,A,n,m)) Dm =n’
Contains({B, X,n/, F(B,X,n/,2)}, F(B, A,n,m)) D
A=BAan=n'Az=m

~ ~

[Initcr]|4 Honest(A) A Honest(B) D 3B.

A=B
A, ,m)) D

n

(&Send(B,{B,X,G(B,X,n,x)}) A &Fresh(B,n') An' =m)V

(& Send(B,{B,A,n,F(B,A,n,m)}))
Initcr]a © Fresh(A, m)
[Initcr] 4 Honest(A) A Honest(B) D

& Send(B,{B, A,n, F(B,A,n,m)})

[Initcr|4 Honest(A) A Honest(B) D ActionsinOrder(

Receive(B, {A, B,n}),Send(B,{A, B,n, F(B,A,n,m)}))
[Initcr]a After(Send(A, {A, B,n}), Receive(B, {4, B,n}))
[Initcr]4 Honest(B) O After(Send(B, {4, B,n, F(B, A,n,m)}),

Receive(A, {A, B,n, F(B, A,n,m)}))

~ ~

[Initcr]a Honest(A) A Honest(B) D dquth

Table 4: Deductions of A executing Initcg role
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AA1,T1,P1

CP3, (1)

HON

HON

I'enc
I'enc
I'enc

I'enc

(4),(9 —12)

(13), (5 — 7), SRC

(14),(3)

[Initgnc]a © Receive(A, msg) A
Contams(msg,EKAB(H(B A,n,m)))
[Initgnc]a 3X.Imsg’.

(Computes(X, Ex ., (H(B, A,n,m))) A & Send(X,msg) A

Contains(msg', Exc, ,(H(B, A,n,m))))
[Initgnc]a Honest(A) A Honest(B) A Has(X, Kap) D
(34X =A)v(3EB.X =D

Honest(Y) A & Send (Y, msg') D 3X.3z.3y.(<& Fresh (Y, y) A

(msg’ ={Y,X,y} v

msg' ={Y, Xy, Exy,y I(Y,X,y,2))} v

msg' ={Y, X, Exy, (H(Y, X ,x))})
—Contains({A, X, m'}, Ex, , (H( A,n,m)))
Contains({A, X, Ex . (I(A, X, m’,z))},

Ex,;(H(B,A,n,m))) > A= f)’
Contains({A, X, m/, Ex . (H(A, X,m’,x))},

Ercan(H(B, A,n,m))) > A =
[Initgnc]a 3B.3msg’.(& Send (X, msg') A

& Fresh (B, n) A Contains(msd, Exc, . (H(B, A,n
—Contains({B, X,n'}, H(B, A,n,m))
—Contains({B, X, Ex . (I(B, X,n’,z))}, H(B, A,n
Contains({B, X,n/, Ex . (H(B, X,n',z))}, H(B, A

n=nAm=zAX=A
Computes(X,H(B,A,n,m)) D>D3B.X =B
[Initgnc]4 Honest(A) A Honest((B)) D

Source(B, H(B, A,n,m), Ex,,(H(B, A,n,m)))
[Initgnc]a Honest(A) A Honest(zB)) D

Has(X, H(B, A,n,m)) D Has(X, Kap)
[Initgnc]a Honest(}i) A Honest(zB)) D Gsecrecy

Table 5: Deductions of A executing Initgnc role
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This protocol achieves mutual authentication, provided that m and n are fresh values.

There are many other mechanisms that we could have chosen here. For example, we could use
only signatures, and have every participant include the peer’s identity inside the signature.

By composing the above protocols, we obtain the following protocol. Fresh values m and n are
instantiated to fresh Diffie-Hellman exponents ¢* and ¢Y.

A— B:g"®
B — A:¢¥,Cp, Ex,, (SIGg(¢¥, g"%))
A— B: CA,EKAB (SIGA(gwagy))

This protocol retains the authentication property of the original challenge response protocol. Also,
A and B end up with a shared secret after executing the protocol. Note however that an assumption
here is that A and B already have a shared key Ksp. In the next step, we relax this assumption
by instantiating K4p to a key generated from the Diffie-Hellman secret ¢°¥ during the execution
of the protocol.

Protocol STS

By instantiating K4p to a key K generated from a Diffie-Hellman shared secret ¢¢¥ we obtain the
STS protocol.

A—B:g"

B— A: gy, C'B, Eyx (SIGB(gy,gx))

A — B:Cy,Ex (SIGA(9",¢Y))

This protocol provides a way for two parties to set up a shared secret and guarantees a form of
mutual authentication.

Protocol STSp

In order to protect the identities of the participants against a passive attacker, we move the certifi-
cates inside the encryption. The resulting protocol is denoted by ST Sp.

A— B:g*
B — A:g¥,Ex (Cg,SIGg(gY,g"%))
A= B: Eg (Ca,SIGA(¢%, g¥))

In this protocol, the identities of both the participants are protected against passive attackers,
while only the identity of the initiator A is protected against active attackers.

Protocol ST Spgy

In order to make a protocol resistant to blind Denial-of-Service (DoS) attacks, we perform the
cookie transformation. The responder B sends an unforgeable token to A and continues with the
protocol only after receiving it back. In this case, the token used is just HM ACgr(¢Y, g*), where
BH is B’s private long term key used only for this purpose. The resulting protocol is denoted by
STSpy.

A— B:g*

B— A:gy, HMACgg(9Y,q%)

A— B:g*%, ¢y, HMACBH(¢Y,g"), Ex (Ca,SIGA(g",4Y))

B— A: EK (CB,SIGB(gy,gm))
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m .................................... > MTIJA [ >U7\ .............................................. > MQV

A= B:g* A—B:g%9"Ga A—=B:g%¢"Ga A—B:g% g% Ga
B— A:gY B—A:g¥.¢"Gp B—A:g¥,¢"Gp B—=A:g¥,¢"Gp
k= g%y k= gay-i-b:c k= gangmy k= g(agx+x)(bgy+y)

Figure 9: Refinements of the Diffie-Hellman key exchange

Under certain assumptions, the cookie transformation guarantees that the responder does not have
to create state or perform expensive computation before a round-trip communication is established
with the initiator. The cookie transformation is described in detail in [8]. Since we swapped the
order of the last two messages, the initiator A reveals his identity first. Therefore, only the identity
of the responder B is protected against active attackers.

Protocol JFKr

Encryptions are augmented with message authentication codes binding them to their source. Here
K' is a key generated from the shared secret ¢°¥ independently from K. This is the JFKr protocol
minus nonces and reuse of Diffie-Hellman exponents, which can be added using one more refinement.
Also, we omit some details from messages (e. g. security association and the group identifying
information).
A—B:g*
B— A:gy, HMACgr(9Y,q%)
A—B:¢°, ¢y, HMACBH(¢Y,g"), Ex (Ca,SIGA(¢",4Y)),
HMACK/ (A, EK (CA, SIGA(gm,gy)))
B— A: Fg (CB, SIGB(gy, gx)) s
HMACK/ (B, EK (CB, SIGB(gy,gx)))

The final protocol inherits the security properties from the protocols in the earlier steps of the
derivation: key secrecy, DoS protection and forms of mutual authentication and identity protection.

C.2 Refinements of Diffie-Hellman key exchange

In this section, we examine the structure of another family of protocols that has gone through the
standardization process. Starting from the standard Diffie-Hellman protocol, we successively obtain
protocols with more desirable security properties as the derivation proceeds. The derivation steps
are shown in Figure C.2. The properties of interest include key secrecy, implicit authentication,
forward secrecy, known-key security, resistance to unknown key share attacks, and efficiency.

Ephemeral Diffie-Hellman DH key exchange

The basic Diffie-Hellman protocol [10] provides a way for two parties to set up a shared key (¢Y)
which a passive attacker cannot recover.

A—B:g"
B— A:gY

k=g"=(g")"=(g")Y
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There is no authentication guarantee: the secret is shared between two parties, but neither can
be sure of the identity of the other. One way to overcome this is for participants to have their
public Diffie-Hellman values certified by a trusted authority (static Diffie-Hellman) and use those
keys instead in the exchange. But, in that case, A and B would compute the same shared secret
in every session, i.e, the protocol would not have known-key security.

MTI/A key exchange

The MT1I/A protocol [19] tries to achieve authenticated key exchange by combining ephemeral and
static Diffie-Hellman.

A— B:g" ¢ Ga

B— A: gy>gbaGB

k= gttt = (gV)4(¢")" = (9")"(9")

It is assumed that parties A and B have long term Diffie-Hellman exponents a¢ and b and have
obtained certificates G4 and Gp for corresponding public exponentials ¢* and ¢°. Also, z and y
are generated fresh for every session and therefore, unique shared key is generated each time. It
therefore provides known-key security, key secrecy, and implicit authentication. However, there is
no forward secrecy since if the long-term secrets a and b are revealed, an attacker can compute
all past session keys. Also, this protocol is open to an unknown key-share attack if an attacker
can obtain certificates for exponentials of his choice without having to prove that he possesses the
corresponding private exponents. The attack was first presented in [20].

UM key exchange

The Unified model protocol [3] represents another step forward. It combines ephemeral and static
Diffie-Hellman in a very simple manner: the shared secret is just a concatenation of the ephemeral

and static shared secrets.
A— B:g*g",Ga
B— A: gy>gbaGB

k= gllg™

Besides providing the security guarantees given by MT'1/A (key secrecy, implicit authentication,
and known-key security), it also provides perfect forward secrecy since the epheremal shared secrets
cannot be computed even if the long term private keys are revealed and that is required to compute
the session keys. However, this protocol is also open to an unknown key-share attack.

MQV key exchange
The final protocol in the derivation is M QV [16].

A— B:g*g",Ga
B%A:gyagbaGB

k = glag™+o)(bg"+y) — (gb)(ag””+w)gy (g¥)"+r = (ga)(bgyﬂ/)g”” (g*)be’+y

It provides all but one of the desirable properties: key secrecy, implicit authentication, known-key
security, forward secrecy, and computational efficiency. Note however that it is open to an unknown
key-share attack as pointed out in [14].
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C.3 Combining the patterns

In this section, we examine how security protocols can be constructed by combining design patterns.
This approach enables exploration of the design space and helps identify tradeoffs between the
various security properties. Specifically, the Diffie-Hellman component in the JEF Kr derivation
pattern is replaced by a more “refined” component from the second derivation pattern. This yields
a class of protocols which inherit security properties from both the patterns. The derivation graph
for the complete class is shown in Figure 5. Due to space constraints, we examine only one path in
detail to get a sense of the general method.

C.3.1 Derivation of the JFK%QV protocol

We start by composing the MQV component with the challenge-response protocol. Since the
MQV shared secret includes certified static Diffie-Hellman exponentials, signatures are no longer
necessary, resulting in protocols with less computational overhead.

Protocol STSM®QV

By composing the MQV key exchange with the challenge response protocol, we obtain the ST SV
protocol. Fresh values m and n are instantiated to pairs of Diffie-Hellman exponents (¢, ¢*) and
(¢¥, "), and the key K is instantiated to a key generated from the MQV shared secret.

A— B:g® g*
B— A:g¢¥,¢",Gp,Ex (¢, g%)
A — B:Ga,Ex (g%, ¢Y)

This protocol inherits the key secrecy and mutual authentication properties from STS and
forward secrecy, known-key security, and computational efficiency from MQV. Note that the
unknown key-share attack on MQV goes away because ST'S provides explicit key authentication
(not just implicit). This is an interesting illustration of the advantage of protocol construction
through combining design patterns.

Protocol STS%QV

In order to protect the identity of the participants against a passive attacker, we move the certificates
inside the encryption. The resulting protocol is denoted by STS?DJ Qv

A— B:g® g*
B— A:¢¥,¢" Ex (Gg,g",4"%)
A — B:Eg(Ga, g%, ¢Y)

While preserving the security properties achieved in the previous step, this protocol, in addition,
provides a form of identity protection. The identities of both the participants are protected against
passive attackers, while the identity of the initiator A is also protected against active attackers.
Notice that the identity protection this protocol provides is much weaker than that of ST'$. Public
keys are sent in the clear, and an attacker can deduce the identity of a participant if he possesses
his certificate. This drawback is the result of using encryptions only, and not encrypted signatures.
We cannot move public keys into the encryption since A needs to know ¢ in order to generate the
shared key K.
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Protocol STS%?V

In order to make the protocol resistant to blind Denial-of-Service (DoS) attacks, we preform the
cookie transformation. In this case, the token used is HM ACgy (g, g*), where BH is B’s private
long term key used only for this purpose. The resulting protocol is denoted by ST Spy.

A— B:g® g°

B— A:gY,¢®, HMACgu(g¥,9%)

A— B:g¢%¢%¢%, 9", HMACpu(¢¥, g%), Ex (Ga, g%, ¢¥)
B — A EK (GBagyagx)

The other security properties are preserved under this transformation.

Protocol JFK MRV

Finally, we add message authentication codes to obtain JFEK™®V protocol.

A— B:g* g

B— A:g¥,¢", HMACgH(¢Y,g")

A= B:g g% g ¢" HMACpu(¢", ), Ex (Ga, g, g")
HMACk (A, Ex (Ga, g%, g¥)),

B— A: EK (GBagyagx)a
HMACy (B, Ex (G, g%, 4%))

The final protocol provides key secrecy, mutual authentication, forward secrecy, known-key
security, computational efficiency, identity protection and DoS protection, inheriting most of the
good qualities from the parent design patterns.
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