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Abstract

Cryptography is a theory of secret functions. Category theory is a general theory of functions. Cryptog-

raphy has reached the stage where its structures often take several pages to define, and even its formulas

sometime run from page to page. Category theory has some complicated definitions as well, but one of its

specialties is taming the flood of structure by diagrams and layering. Cryptography seems to be in need

of high level methods, whereas category theory always needs concrete applications. So why is there no

categorical cryptography? One reason may be that the foundations of modern cryptography are laid over

probabilistic polynomial-time Turing machines, and category theory does not have a good handle on such

things. On the other hand, these foundations might be the very reason why the details of cryptographic

constructions often resemble low level machine programming. I present some preliminary results of an

effort to present the basic cryptographic concepts categorically. It turns out that the standard security

definitions can be characterized by simple commutative diagrams. Some security proofs become modular.

The work is at an early stage, and did not yield any new cryptographic results yet, but the approach

seems natural, leads to some interesting new ideas and structures, and invites more work.

1 Introduction

Modern cryptography is a theory of effectively computable, randomized boolean functions. A boolean
function is a mapping over bitstrings, i.e. in the form f : 2M −→ 2N , where 2 = {0, 1} denotes the set of
two elements, and M,N are finite sets. So 2M denotes the set of M -tuples of 0 and 1; or equivalently of the
subsets of M . Which view of 2M is more convenietn depends on the application. Formally, the algebraic
structure of 2M is induced by the algebraic structure of 2, which is usually viewed as

• Boolean algebra (2,∧,∨,¬, 0, 1)

• Boolean ring (Z2,⊕, ·, 0, 1)

• submonoid {1,−1} ⊆ (Z3, ·)

A boolean function f is effectively computable, or feasible, and denoted by f : 2M
F
−→ 2N , when it is

implemented by a boolean circuit, a Turing machine with suitable time and space bounds, or in some other
model of computation. Computations in general are, of course, generally expressed as effective boolean
functions over the representations of mathematical structures by bitstrings, all the way up to the continuum
[14].

A randomized boolean function g : 2M
R
−→ 2N is in fact a boolean function of two arguments, say g :

2R × 2M −→ 2N , where the first argument is interpreted as a random seed. The output of a randomized
function is viewed as a random variable. The probability that a randomized boolean function g, given an
input x produces an output y is estimated by counting for how many values of the random seed ρ it takes
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that value, i.e.

Pr(y � gx) =
#{ρ ∈ 2R | y = g(ρ, x)}

2R

where #S denotes the number of elements of the set S, and R is the length of the random seeds ρ.

An effective, randomized boolean function h : 2M
RF
−−→ 2N is thus an effectively computable boolean function

h : 2R × 2M
F
−→ 2N . It is usually realized by a Deterministic Polynomial-time Turing (DPT) machine, i.e.

as h : 2R× 2M
DPT
−−−→ 2N . A DPT with two input tapes, one of which is interpreted as providing the random

seeds, is called a Probabilistic Polynomial-time Turing (PPT) machine. So for the same function h we would

write h : 2M
PPT
−−−→ 2N , leaving the random seeds implicit. This is what cryptographers talk about in their

formal proofs, although they seldom specify any actual PPTs. Building a PPT is tedious work, in fact an
abstract form of low level machine programming. For a high level view of cryptographic programming, an
abstract theory of feasible functions is needed.

Before we proceed in that direction, let us quickly summarize what cryptographers actually build from
effective randomized boolean functions and PPTs.

A crypto system is a structure given over three finite sets

• M of plaintexts

• C of cyphertexts

• K of keys

plus a set of random seeds, that we leave implicit. They are all given with their bitstring representations.
The structure of the crypto-system consists of three feasible functions

• key generation
〈
k, k
〉
: 1

PPT
−−−→ K×K,

• encryption E : K ×M
PPT
−−−→ C, and

• decryption D : K × C
DPT
−−−→ M,

that together provide

• unique decryption: D(k,E(r, k,m)) = m,

• and secrecy.

This secrecy is in fact what cryptography is all about. Even defining it took a while.

The earliest formal definition of secrecy is due to Shannon [16]. His idea was to require that the ciphertext
discloses nothing about the plaintext. He viewed the attacker as a statistician, equipped with the precise
frequency distribution of the language of the meaningful expressions in M, i.e. knowing exactly the values
of Pr(m � M), the probability that a randomly sampled string from M is the plaintext m. Shannon’s
requirement was that knowing the encryption c = E(r, k,m) should not make it any easier for this attacker
to guess m, or formally

Pr (m � M | ∃rk. c = E(r, k,m)) = Pr (m � M) (1)

Shannon wrote this in a different, but equivalent form1, and called it perfect security.

1Except that the encryption was not randomized at the time.
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When the age of modern cryptography broke out, the concept of secrecy got refined by considering the
feasibility of the encryption and decryption operations, and moreover strengthened by requiring that the
attacker is unlikely to guess not only the plaintext m, but even a single bit from it. Otherwise, the concept
of secrecy would miss the possibility that the plaintext is hard to guess as a whole, but that it may be
easy to guess bit by bit. The original formalization of this requirement is due to Goldwasser and Micali
[6, 7] under the name semantic security, but it was later somewhat simplified to the form of chosen plaintext
indistinguishability (IND-CPA), which looks something like this:

Pr
(
b � A1(m0,m1, c, s)

∣∣ c � E(k,mb), b � 2, m0,m1, s � A0

)
∼

1

2
(2)

The attacker consists of two PPTs, A0 and A1, which communicate through a tape. He tests the crypto
system as follows. First A0 chooses and announces two plaintexts m0 and m1. She may also convey to A1 a
part of her state, by writing s on their shared tape. Then the crypto system tosses a fair coin b, computes
the encryption c � E(k,mb) of one of the chosen plaintexts, and gives it to the attacker. The attacker A1 is
now supposed to guess which of the two plaintexts was encrypted. The system is secure if knowing c does
not give him any advantage in this, i.e. if his chance to guess b is indistinguishable from Pr(b � 2) = 1

2 .

The point that I am trying to make is that this is mouthful of a definition. Especially when we are defin-
ing secrecy, which is one of the most basic concepts of cryptography. The upshot is that the most basic
cryptographic proofs need to show that some crypto system satisfies the above property.

It is, of course, not unheard of that the fundamental concepts tend to be subtle, and require complicated
formal definitions. In cryptography, however, this phenomenon seems to be escalating. First of all, the
above definition of secrecy as chosen plaintext indistinguishability turns out to be too weak, and too simple.
In reality, the attacker can usually access a decryption oracle, which she can consult before she chooses
any plaintexts, and also after she receives back the encryption of one of them, but before she attempts to
guess which one it is. So the attacker actually consists of four PPTs, A0, A1, A2 and A3, where A0 begins
with choosing some cyphertexts, which it submits to the decryption oracle, etc. A reader who is not a
cryptographer may enjoy decyphering the interactions between the crypto system and the attacker from the
formula below, describing the chosen cyphertext indistinguishability (IND-CCA2), due to Rackoff and Simon
[15]. The PPTs again share a tape, which they can use to pass each other a part of the state, denoted s0, s1
etc.

Pr

(
b � A3(c0,m,m0,m1, c, c1, m̃, s2)

∣∣∣∣
m = D(k, c0), c0, s0 � A0,
c � E(k,mb), b � 2, m0,m1, s1 � A1(c0,m, s0)

m̃ = D(k, c1), c1, s2 � A2(c0,m,m0,m1, c
6=, s1)

)
∼

1

2
(3)

This formula is nowadays one of the centerpieces of cryptography. As verbose as it may look, and as
prohibitive as its requirements may be2, it came to be a solid and useful concept. The problem is, however,
that the story does not end with it, and that the concepts of ever greater complexity and verbosity rapidly
proliferate. This makes cryptographic proofs fragile, with some errors surviving extensive examination [17].
The argument that mandatory formal proofs, if they are too complex, may decrease, rather than increase,
the reliability of the proven statements, by decreasing the expert scrutiny over the proven statements, while
concealing subtle errors, has been raised from within the cryptographic community [1, 2, 10, 11, 12]. At the
same time, the efforts towards the formalization have ostensibly consolidated the field and clarified some of
its conceptual foundations [5, 9]. Maybe we have good reasons and enough insight to start looking for better
notations?

2The attacker may submit, e.g. two very large plaintexts, say video blocks, as m0 and m1. After she receives the encryption
c of one of them, she can then flip just one bit of it, and make that into c1, which is submitted back for decryption. Although
c and c1 differ in a single bit, the decryption of c1 should not disclose even a single bit of information about c0.
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Outline of the paper

Section 2 presents a symbolic model of a crypto system, and a very crude symbolic definition of secrecy.
These definitions can be stated in any relational calculus, and thus also in the category of relations. Section 3
presents an information theoretic model of a crypto system. The symbolic definition of secrecy refines here
to Shannon’s familiar definition of perfect security. We formalize it all in the category of sets and stochastic
operators between them. And finally, Section 4 introduces a category where the modern cryptographic
concepts can be formalized, such as (IND-CPA) and (IND-CCA2). The upshot of this development is to
show how the incremental approach, refining the crude abstract concepts, while enriching the categorical
structures, motivates the conceptual development and provides technical tools. Section 5 invites for further
work.

2 Symbolic cryptography

In [4, 3], Dolev, Yao, Even and Karp describe public key cryptosystems using an algebraic theory — roughly
what mathematicians would call bicyclic semigroups [8].

2.1 Dolev-Yao crypto systems

Definition 2.1 A message algebra A consists of three operations:

• encryption E : A×A −→ A,

• decryption D : A×A −→ A, and

• key pairing (−) : A −→ A,

and one equation:

D
(
k,E(k,m)

)
= m

called decryption condition. By convention, the first arguments of E and D are called keys, the second
arguments messages. A message that occurs in E is a plaintext; a message that occurs in D is a cyphertext.

Definition 2.2 A Dolev-Yao crypto system is given by

• a message algebra

• a set M ⊆ A of well-formed plaintexts;

• the hiding condition: ”knowing E(k,m) does not reveal anything about m”

Remarks. The above definitions are close in spirit to Dolev and Yao’s definitions, but deviate in details
from their presentation. First of all, Dolev and Yao do not present the encryption and decryption operations
as binary operations, but as families of unary operations indexed by the keys. More importantly, their results
also require the encryption equation

E
(
k,D(k, c)

)
= c

that should hold for all keys k and all ciphertexts c. Nowadays even toy crypto systems do not satisfy this,
so we allow that E(k,−) may not be surjective. Restricted to its image, of course, the decryption equation
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implies the encryption equation; but not generally. Finally, Dolev and Yao do not take M ⊆ A as a part
of the structure. Intuitively, if A is the set of character strings, then M may be construed as the set of
the meaningful words meaningful of some language. For a cryptographer, the capability to distinguish the
meaningful words, and recognize a decryption when he finds it, is often critical. The set M ⊆ A is thus a
first, very crude step towards the concepts of source redundancy and frequency distribution, which are of
course crucial for cryptanalysis.

The main challenge left behind Dolev and Yao’s analysis is that the hiding condition, which is clearly the
heart of the matter, is left completely informal. At the first sight, there seem to be many ways to make
it precise. We present one in the next section. Its conceptual analogy with the more familiar information
theoretic and computational notions of secrecy are clear, but its technical utility seems limited.

2.2 Algebraic perfect security

An attacker sees a ciphertext c and wants to know the plaintext m, such that E(k,m) = c. But since she
does not know the key k, she can only form the set of possible3 plaintexts m that may correspond to c

cD̃ = {m ∈M | ∃k. E(k,m) = c} (4)

One way to formalize the hiding condition is to require that any well-formed message m must be a candidate
for a decryption of c, and thus lie in cD̃.

Definition 2.3 A Dolev-Yao crypto system A is algebraically perfectly secure if every ciphertext can be
an encryption of any well-formed message, i.e. if for all c,m ∈ A holds

m ∈M ∧ ∃k ∈ A. E(k,m) = c ⇐⇒ m ∈M (5)

The following lemma says that this captures the intended requirement that the set cD̃ does not tell anything
about m.

Lemma 2.4 A Dolev-Yao crypto system A is algebraically perfectly secure if and only if for all c,m ∈ A
and the binary relation D̃ from (4) holds

cD̃m ⇐⇒ m ∈M (6)

A convenient framework to work with algebraic security is the category Rel of sets and binary relations

|Rel| = |Set|

Rel(A,B) = {0, 1}A×B

with the usual relational composition of A
R
−→ B and B

S
−→ C

a(R;S)c ⇐⇒ ∃b ∈ B. aRb ∧ bSc

and the equality aIb ⇐⇒ a = b as the identity relation A
I
−→ A. Note that any subset, say M ⊆ A,

can be viewed as a relation M ∈ {0, 1}1×A, where 1 = {0}, and thus as an arrow 1
M
−→ A in Rel with

0Mx ⇐⇒ x ∈M .

3I.e., this is the only thing that she can do in the possibilistic world of mere relations. In the probabilistic world of stochastic
relations, she can of course do more, and that will be discussed in the next section.
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Proposition 2.5 A Dolev-Yao crypto system A is algebraically perfectly secure if and only if the following
diagram commutes in the category of relations Rel

A
Ẽ
M

//

!

��

A×A

!×A

��

1
M

// A

where

• A
!
−→ 1 denotes the total relation, i.e. x!0 holds for all x and 1 = {0}, and

• ẼM is by definition c ẼM (k,m) ⇐⇒ m ∈M ∧ E(k,m) = c.

3 Information theoretic cryptography

Shannon [16] brought cryptography to the solid ground of information theory, recognizing the fact that
an attacker has access not just to the set M ⊆ A of possible plaintexts, but also to their probabilities

µ : A −→ [0, 1]. And just like we viewed the former one in the form M ∈ {0, 1}1×A as an arrow 1
M
−→ A

in Rel, we shall now view the latter, in the form µ ∈ [0, 1]1×A as an arrow 1
µ
−→ A in the category Sto of

stochastic matrices.

3.1 Shannon crypto systems

To begin, Shannon introduced into analysis mixed crypto systems, in the form R = pS + (1 − p)T where
S and T can be thought of as two Dolev-Yao crypto systems, and p ∈ [0, 1]. The idea is that the system
R behaves like S with probability p, and like T with probability 1 − p. In summary, Shannon considered
message algebras A

(a) given with a probability distribution µ : A −→ [0, 1] that assigns to each plaintext m a frequency,
µ(m), and moreover

(b) convex closed, in the sense that for any p ∈ [0, 1]

E (pk + (1− p)h,m) = pE(k,m) + (1− p)E(h,m)

D (pk + (1− p)h,m) = pD(k,m) + (1− p)D(h,m)

But (b) makes it convenient to draw the keys from the convex hull of A

∆A =
{
κ : A −→ [0, 1]

∣∣ #ςκ <∞ ∧
∑

x∈ςκ

κ(x) = 1
}

where ςκ = {x ∈ A | κ(x) > 0} is the support. As a consequence, the encryption and decryption maps are
not functions any more, but stochastic matrices Eκ and Dκ with the entries

E
κ
cm = Pr

κ
(c|m) =

∑

x∈ςκ
E(x,m)=c

κ(x)

D
κ
mc = Pr

κ
(m|c) =

∑

x∈ςκ
D(x,c)=m

κ(x)
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Condition (a) similarly suggests that a plaintext, or the available partial information about it, should also
be viewed as a stochastic vector µ ∈ ∆A. A crypto system is now an algebra in the category of sets and
stochastic operators

|Sto| = |Set|

Sto(M,N) =
{
Φ ∈ [0, 1]M×N

∣∣ #ςΦ <∞ ∧
∑

i∈ςΦ

Φij = 1
}

Indeed, the encryption and the decryption operations are now stochastic operators Eκ,Dκ ∈ Sto(A,A);
whereas the mixed plaintexts are the points µ ∈ Sto(1,A).

Definition 3.1 A Shannon crypto system is given by

• a message algebra in the category Sto, i.e. stochastic operators for

– encryption E : A×A −→ A,

– decryption D : A×A −→ A, and

– key pairing (−) : A −→ A,

• a frequency distribution of the plaintexts µ : A −→ [0, 1], and

• the hiding condition.

This time, the formal definition of the hiding condition available, and well known.

3.2 Perfect security

Shannon [16] considers an attacker who makes a probabilistic model of the observed crypto system. More

precisely, when she observes a cyphtertext c, instead of forming the set cD̃ ⊆ M of possible decryptions,
like in Sec. 2.2, she now tries to compute the conditional distribution Pr(m|c) ≥ Pr(m) of the probable
decryptions of c.

But now the cyphertext c is a random variable γ = Pr(c), which can be viewed as an arrow 1
Pr(c)
−−−→ A in

Sto. An observation of a cyphertext thus provides knowledge about the distribution of Pr(c). We assume
that the attacker knows the distribution κ = Pr(k) of the keys, and the frequency distribution µ = Pr(m).

Definition 3.2 A Shannon crypto system is perfectly secure if the plaintexts are statistically independent
on the cyphertexts, i.e. if for all c,m ∈ A holds

Pr (m � µ | ∃k. c = E(k,m)) = Pr(m � µ) (7)

where the conditional probability on the left stands for

Pr (m � µ | ∃k. c = E(k,m)) =
∑

x∈ςκ

Pr (m � µ| c = E(x,m)) · κ(x)

Aligning definitions 2.3 and 3.2 shows that algebraic perfect security is an algebraic approximation of Shan-
non’s probabilistic perfect security [16, II.10]. The following proposition shows that the connection extends
to the categorical characterizations.
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Proposition 3.3 A Shannon crypto system A with finite support is perfectly secure if and only if the fol-
lowing diagram commutes in the category of stochastic operators Sto

A
Ẽ

//

!

��

A×A

!×A

��

1
µ

// A

where

• A
!
−→ 1 is the row vector of 1

#ςA ,

• 1
µ
−→ A is the distribution µ viewed as a column vector,

• A×A
!×A
−−−→ A is the stochastic matrix with the entries

(!×A)i(jk) =

{
1

#ςA if i = k

0 otheriwise

• Ẽ is the stochastic matrix with the entries

Ẽc(km) =

{
κ(k) · µ(m) if c = E(k,m)

0 otherwise

4 Computational cryptography

Modern cryptography arose from the idea to use computational complexity as a tool, and attacker’s com-
putational limitations as the persistent assumptions upon which the cryptographer can built the desired
security guarantees. To represent modern crypto system, we need to lift the preceding considerations be-
yond the mere frequency distributions and randomness, captured in the category Sto, to a category suitable
to represent randomized feasible computations, graded by a security parameter.

4.1 Category of effective stochastic ensembles up to indistinguishability

The category suitable to present cryptographic constructions will be build by incremental refinement of the
category of sets and functions, in three steps: we first make functions feasible, then randomize them, and
finally capture the security parameter.

4.1.1 Effective functions

Suppose that every set is given with an encoding: e.g., each element is encoded as a bitstring. A function
between encoded sets can then be considered feasible if it is realized by a feasible boolean function on the
codes.

Let us begin with a crude realization of this idea, just to get a feeling for it. Let R = (2∗)2
∗

be the monoid
of boolean functions and F ⊆ R a submonoid of functions that we call feasible. For concreteness, we could
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assume that the functions from F are just those realized by some suitable family of boolean circuits or
Turing-machines. The category SetF of F -computable functions is then defined

|SetF | = |Set/2∗| =
∑

A∈|Set|

{J−KA : A −→ 2∗}

SetF (A,B) = {f ∈ Set(A,B) | ∃ϕ ∈ F ∀a ∈ A. Jf(a)KB = ϕJaKA}

A
f

//

J−KA

��

B

J−KB

��

2∗
ϕ

// 2∗

4.1.2 Effective substochastic operators

Now we want to refine the category SetF effective functions to a category of randomized effective functions.
The step is analogous to the step from Set to Sto. So randomized effective functions will actually be effective
stochastic operators. But since feasible functions may not be total, we will actually work with effective
substochastic operators.

The first task is to define the monoid of randomized boolean functions that will operate on the codes.
Consider the set of partial functions

R = {γ : 2∗ × 2∗ ⇀ 2∗ | ∀x∀ρ1∀ρ2. γ(ρ1, x)↓ ∧ γ(ρ2, y)↓ ∧ |x| = |y|

=⇒ |ρ1| = |ρ2| ∧ |γ(ρ1, x)| = |γ(ρ2, y)|
}

where f(x) ↓ asserts that the partial function f is defined at x, and |ξ| denotes the length of the bitstring ξ.
The set R forms a monoid (R, ◦, ι) where

γ ◦ β(ρ2 :: ρ1, x) = γ(ρ2, β(ρ1, x)) (8)

and ι(〈〉, x) = x, where 〈〉 denotes the empty string. This monoid was previously used in [13]. Let F ⊆ R be
a submonoid of functions that we consider feasible. An example are the functions realized by DPT machines.
The category StoF of effective substochastic operators is now defined as follows

|StoF | = |Set/2∗| =
∑

A∈|Set|

{J−KA : A −→ 2∗}

StoF (A,B) =
{
Φ ∈ [0, 1]A×B | ∃ϕ ∈ F ∀a ∈ A ∀b ∈ B. Φab = Pr (JbKB � ϕJaKA)

}

4.1.3 Ensembles

In order to capture security parameters, we must expand randomized functions to ensembles. A feasible
ensemble is a sequence of feasible functions

ψ =
{
ψℓ : 2

r(ℓ) × 2s(ℓ)
F
−→ 2t(ℓ) | ℓ ∈ ω

}

where ω = {0, 1, 2, . . .}, and such that

k < ℓ =⇒ ψk = ψℓ ↾(2r(k)×2s(k)) ∧ r(k) < r(ℓ) ∧ s(k) < s(ℓ) ∧ t(k) < t(ℓ)

Write Fω for the set of feasible ensembles. A typical example of an ensamble is the extensional (i.e. input-
output) view of a PPT machine, which can consume longer inputs, and then it produces longer outputs.
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The monoid structure on Fω is induced by the monoid structure of F . The composite ϑ ◦ ψ of ϑ ={
ϑk : 2u(ℓ) × 2v(ℓ)

F
−→ 2w(ℓ) | ℓ ∈ ω

}
and ψ =

{
ψℓ : 2

r(ℓ) × 2s(ℓ)
F
−→ 2t(ℓ) | ℓ ∈ ω

}
consists of the components

(ϑ ◦ ψ)ℓ = ϑℓ ◦ ψℓ : 2
u(ℓ) × 2v(ℓ)

F
−→ 2t(ℓ)

where

• ℓ is the smallest number such that w(ℓ) ≥ s(ℓ),

• ϑℓ = ϑℓ ↾2s(ℓ) ,

• ϑℓ ◦ ψℓ is defined by (8),

• u(ℓ) = u(ℓ) and v(ℓ) = v(ℓ).

The category Sto
ω
F of effective substochastic ensembles is now defined as follows

|EnsF | = |Set/2ω| =
∑

A∈|Set|

{J−KA : A −→ 2ω}

EnsF(A,B) =
{
Ψ ∈ [0, 1]ω×A×B | ∃ψ ∈ Fω ∀ℓ ∈ ω ∀a ∈ A ∀b ∈ B. Ψℓ

ab = Pr (JbK � ψℓJaK)
}

where

Pr
(
JbK � ψℓ (JaK)

)
=

#
{
ρ ∈ 2r(ℓ) | JbKt(ℓ) = ψℓ

(
ρ, JaKs(ℓ)

)}

2r(ℓ)

In the special case when Fω consists of the actions of PPT machines, we get the category EnsPPT, where the
morphisms are the extensional views of PPTs. More precisely, a morphism is a sequence of substochastic
matrices Ψ = {Ψℓ}ℓ∈ω such that there is a PPT Π and the ab-entry of Ψℓ is Ψℓ

ab = Pr(b � Πℓa), where ℓ is
the security parameter.

So EnsF comes close to providing an abstract view of the universe in which the cryptographers work. The
view is abstract in the sense that F does not have to be realized by PPTs, but can be any submonoid of
R. By taking F to be the PPT realized stochastic operations we get the usual probabilistic algorithms —
except that those that are indistinguishable, because their difference is a negligible function still correspond
to different morphisms in EnsPPT.

4.1.4 Indistinguishability

Note, first of all, that [0, 1] is not only a monoid, but an ordered semiring4. The semiring structure lifts to
[0, 1]ω. A semi-ideal in an ordered semiring is a lower closed subset closed under addition and multiplication.
Since it is lower closed, it contains 0, but generally not 1.

Let Υ ⊆ [0, 1]ω be a semi-ideal. The canonical example is the semi-ideal of negligible functions [5]. A
function ν : ω −→ [0, 1] is called negligible if ν(x) < 1

q(x) holds eventually, for every positive polynomial q.

Any semi-ideal Υ induces on [0, 1]ω the equivalence relation

σ ∼
Υ
τ ⇐⇒ ∃ν ∈ Υ. |σℓ − τℓ| < ν(ℓ)

and we define Ens
Υ
F to be the category with the same objects as EnsF , but

Ens
Υ
F (A,B) = EnsF(A,B)

/
∼
Υ

4A semiring is a structure (R,+, ·, 0, 1) such that (R,+, 0) and (R, ·, 1) are commutative monoids such that a(b+c) = ab+ac

and a0 = 0.
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Unfolding this definition over the semring JΥ = [0, 1]ω/ ∼
Υ
, we have

Ens
Υ
F (A,B) =

{
Ψ ∈ JA×B

Υ | ∃ψ ∈ Fω ∀ℓ ∈ ω ∀a ∈ A ∀b ∈ B. Ψℓ
ab = Pr (JbK � ψℓJaK)

}

4.2 Characterizing semantic security

The usual definition of a crypto system from the Introduction can now be stated abstractly, in a categorical
form. While the definition follows the pattern of Def. 2.2 and Def. 3.1, this time we revert to the usual
multi-sorted specification, where the plaintexts, the cyphertexts and the keys are drawn from different sets.

Definition 4.1 An abstract crypto system, relative to a monoid F of feasible functions, and a semi-ideal
Υ of negligible functions is given by

• a multi-sorted message algebra in the category Ens
Υ
F , such that

– encryption E : K ×M −→ C, is a stochastic ensemble, whereas

– decryption D : K× C −→ M, and

– key pairing (−) : K −→ K are deterministic functions5.

• a frequency distribution of the plaintexts µ : M −→ [0, 1], and

• the hiding condition.

The upshot of it all. The abstract versions of the hiding conditions, such as (IND-CPA) and (IND-
CCA2), described in the Introduction, boil down to commutative diagrams in Ens

Υ
F . We illustrate this fact

for (IND-CPA).

Proposition 4.2 Let EnsνPPT be the category of ensembles of PPT-realized boolean functions modulo neg-
ligible functions. A crypto system in the usual sense (as described in the Introduction) is equivalent to
an abstract crypto system in this category. Such a crypto system is semantically secure, i.e. it satisfies
(IND-CPA), as defined by (2), if and only if the following diagram commutes for all arrows A0 and A1 in
Ens

ν
PPT.

K
〈idK,A0〉

//

!

��

K ×M2 × S
〈πK,πbπM2 ,πM2 ,πS〉

// K×M×M2 × S
E×M2×S

// C ×M2 × S

A1

��

1
b

// 2

A similar proposition holds for (IND-CCA2).

5 Conclusions and future work

While the various notions of secrecy can thus be characterized by commutative diagrams in suitable cate-
gories, the notions of one-way function and pseudo-random generator correspond to the requirements that

5Deterministic functions can be characterized intrinsically in StoF , EnsF and Ens
Υ

F
.
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some diagrams do not commute. This leads to interesting categorical structures, which seem to be best
expressed in terms of the enrichment. In any case, and from many directions, cryptography provides many
interesting structures and challenges for category theory, some of which seem to be of independent interest.

But how useful does this effort seem to be for cryptography? Can the categorical tools, developed for
high level semantical reasoning about programs, really be used to structure and stratify cryptographic
constructions? The preliminary evidence suggests that some cryptographic proofs and constructs can be
brought to a significantly simpler form by using categorical tools to ”hide the implementation details”. The
price to be paid, though, is that this hiding takes some preliminary work. For instance, the secrecy conditions
become reasonably simple diagrams, but the categories in which these diagrams live are not simple to define.
Indeed, since they embody the complex computational structures, it is unreasonable to expect otherwise.
The experience of programming shows, though, that it is often possible to encapsulate such complexities,
and to display the interfaces that allow simple manipulations. That is the strategy that the categorical
approach offers in mathematics. The preliminary results sampled here may or may not do it justice: it is
just one thread of very preliminary explorations. The main work lies ahead.
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