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Abstract. This paper presents an overview of the technical foundations
and current directions of Kestrel’s approach to mechanizing software de-
velopment. The approach emphasizes machine-supported refinement of
property-oriented specifications to code, based on a category of higher-
order specifications. A key idea is representing knowledge about pro-
gramming concepts, such as algorithm design, and datatype refinement
by means of taxonomies of abstract design theories and refinements. Con-
crete refinements are generated by composing library refinements with a
specification.
The framework is partially implemented in the research systems
Specware, Designware, Epoxi, and Planware. Specware provides basic
support for composing specifications and refinements via colimit, and
for generating code via logic morphisms. Specware is intended to be
general-purpose and has found use in industrial settings. Designware ex-
tends Specware with taxonomies of software design theories and support
for constructing refinements from them. Epoxi builds on Designware to
support the specification and refinement of systems. Planware transforms
behavioral models of tasks and resources into high-performance schedul-
ing algorithms. A few applications of these systems are presented.

1 Overview

A software system can be viewed as a composition of information from a variety
of sources, including

– the application domain,
– the requirements on the system’s behavior,
– software design knowledge about system architectures, algorithms, data

structures, code optimization techniques, and
– the run-time hardware/software/physical environment in which the software

will execute.

This paper presents a mechanizable framework for representing these various
sources of information, and for composing them in the context of a refinement
process. The framework is founded on a category of specifications. Morphisms are
used to structure and parameterize specifications, and to refine them. Colimits
are used to compose specifications. Diagrams are used to express the structure of
large specifications, the refinement of specifications to code, and the application
of design knowledge to a specification.
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The framework features a collection of techniques for constructing refine-
ments based on formal representations of programming knowledge. Abstract al-
gorithmic concepts, datatype refinements, program optimization rules, software
architectures, abstract user interfaces, and so on, are represented as diagrams
of specifications and morphisms. We arrange these diagrams into taxonomies,
which allow incremental access to and construction of refinements for particular
requirement specifications. For example, a user may specify a scheduling prob-
lem and select a theory of global search algorithms from an algorithm library.
The global search theory is used to construct a refinement of the scheduling
problem specification into a specification containing a global search algorithm
for the particular scheduling problem.

The framework is partially implemented in the research systems Specware,
Designware, Epoxi and Planware. Specware provides basic support for com-
posing specifications and refinements, and generating code. Code generation in
Specware is supported by inter-logic morphisms that translate between the speci-
fication language/logic and the logic of a particular programming language (e.g.
CommonLisp or C++). Specware is intended to be general-purpose and has
found use in industrial settings. Designware extends Specware with taxonomies
of software design theories and support for constructing refinements from them.
Epoxi extends Specware to support the specification and refinement of behavior
and the generation of imperative code. Planware transforms behavioral models
of tasks and resources into high-performance scheduling algorithms.

The remainder of this paper presents an overview of the technical foundations
and current directions of Kestrel’s approach to mechanizing software develop-
ment. A few applications of these techniques are described in Section 6.

2 Basic Concepts

2.1 Specifications

A specification is a finite presentation of a theory. The signature of a specification
provides the vocabulary for describing objects, operations, and properties in
some domain of interest, and the axioms constrain the meaning of the symbols.
The theory of the domain is the closure of the axioms under the rules of inference.
Example: Here is a specification for partial orders, using notation adapted from
Specware [18]. It introduces a sort E and an infix binary predicate on E, called
le, which is constrained by the usual axioms. Although Specware allows higher-
order specifications, first-order formulations are sufficient in this paper.

spec Partial-Order is
sort E
op le : E, E → Boolean
axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z
axiom antisymmetry is x le y ∧ y le x =⇒ x = y

end-spec
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The generic term expression will be used to refer to a term, formula, or sentence.
A model of a specification is a structure of sets and total functions that

satisfy the axioms. However, for software development purposes we have a less
well-defined notion of semantics in mind: each specification denotes a set of
possible implementations in some computational model.

2.2 Morphisms

A specification morphism translates the language of one specification into the
language of another specification while preserving the property of provability, so
that any theorem in the source specification remains a theorem under translation.

A specification morphism m : T → T ′ is given by a map from the sort and
operator symbols of the domain spec T to the symbols of the codomain spec
T ′. To be a specification morphism it is also required that every axiom of T
translates to a theorem of T ′. It then follows that a specification morphism
translates theorems of the domain specification to theorems of the codomain.
An interpretation (between theories) is a slightly generalized morphism that
translates symbols to expressions.
Example: A specification morphism from Partial-Order to Integer is:

morphism Partial-Order-to-Integer is
{E �→ Integer, le �→ ≤}

Translation of an expression by a morphism is by straightforward application of
the symbol map, so, for example, the Partial-Order axiom x le x translates to
x ≤ x. The three axioms of a partial order remain provable in Integer theory
after translation.

Morphisms come in a variety of flavors; here we only use two. An extension
or import is an inclusion between specs.
Example: We can build up the theory of partial orders by importing the theory
of preorders. The import morphism is {E �→ E, le �→ le}.

spec PreOrder
sort E
op le : E, E → Boolean
axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z

end-spec

spec Partial-Order
import PreOrder
axiom antisymmetry is x le y ∧ y le x =⇒ x = y

end-spec

A definitional extension, written A d ��B , is an import morphism in which
any new symbol in B also has an axiom that defines it. Definitions have implicit
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axioms for existence and uniqueness. Semantically, a definitional extension has
the property that each model of the domain has a unique expansion to a model
of the codomain.

A parameterized specification can be treated syntactically as a morphism.
A functorial semantics for first-order parameterized specifications via coherent
functors is given by Pavlović [10].

2.3 The Category of Specs

Specification morphisms compose in a straightforward way as the composition of
finite maps. It is easily checked that specifications and specification morphisms
form a category SPEC. Colimits exist in SPEC and are easily computed. Sup-

pose that we want to compute the colimit of B A
i�� j ��C . First, form the

disjoint union of all sort and operator symbols of A, B, and C, then define an
equivalence relation on those symbols:

s ≈ t iff (i(s) = t ∨ i(t) = s ∨ j(s) = t ∨ j(t) = s).

The signature of the colimit (also known as pushout in this case) is the collection
of equivalence classes wrt ≈. The cocone morphisms take each symbol into its
equivalence class. The axioms of the colimit are obtained by translating and
collecting each axiom of A, B, and C.
Example: Suppose that we want to build up the theory of partial orders by
composing simpler theories.

spec BinRel is
sort E
op le : E, E → Boolean
end-spec

−→

spec PreOrder is
import BinRel
axiom reflexivity is x le x
axiom transitivity is

x le y ∧ y le z =⇒ x le z
end-spec



�

spec Antisymmetry is
import BinRel
axiom antisymmetry is

x le y ∧ y le x =⇒ x = y
end-spec

The pushout of Antisymmetry ← BinRel → PreOrder is isomorphic to
the specification for Partial-Order in Section 2.1. In detail: the morphisms are
{E �→ E, le �→ le} from BinRel to both PreOrder and Antisymmetry. The
equivalence classes are then {{E, E, E}, {le, le, le}}, so the colimit spec has one
sort (which we rename E), and one operator (which we rename le). Further-
more, the axioms of BinRel, Antisymmetry, and PreOrder are each translated to
become the axioms of the colimit. Thus we have Partial-Order.
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Example: The pushout operation is also used to instantiate the parameter in a
parameterized specification [3]. The binding of argument to parameter is repre-
sented by a morphism. To form a specification for Containers of integers, we com-
pute the pushout of Container ← Triv → Integer, where Container ← Triv
is {E �→ E}, and Triv → Integer is {E �→ Integer}.
Example: A specification for sequences can be built up from Container, also via
pushouts. We can regard Container as parameterized on a binary operator

spec BinOp is
sort E
op bop : E, E → E

end-spec

morphism Container-Parameterization : BinOp→ Container is
{E �→ E, bop �→ join}

and we can define a refinement arrow that extends a binary operator to a semi-
group:

spec Associativity is
import BinOp
axiom Associativity is ((x join y) join z) = (x join (y join z))

end-spec

The pushout of Associativity ← BinOp → Container, produces a collection
specification with an associative join operator, which is Proto-Seq, the core of a
sequence theory (See Appendix in [16]). By further extending Proto-Seq with a
commutativity axiom, we obtain Proto-Bag theory, the core of a bag (multiset)
theory.

2.4 Diagrams

Roughly, a diagram is a graph morphism to a category, usually the category of
specifications in this paper. For example, the pushout described above started
with a diagram comprised of two arrows:

BinRel ��

��

PreOrder

Antisymmetry

and computing the pushout of that diagram produces another diagram:

BinRel ��

��

PreOrder

��
Antisymmetry �� Partial-Order

A diagram commutes if the composition of arrows along two paths with the same
start and finish node yields equal arrows.
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The Structuring of Specifications. Colimits can be used to construct a
large specification from a diagram of specs and morphisms. The morphisms ex-
press various relationships between specifications, including sharing of structure,
inclusion of structure, and parametric structure. Several examples will appear
later.
Example: The finest-grain way to compose Partial-Order is via the colimit of

BinRel

��������������

�� ���������������

Reflexivity Transitivity Antisymmetry

Refinement and Diagrams. As described above, specification morphisms can
be used to help structure a specification, but they can also be used to refine a
specification. When a morphism is used as a refinement, the intended effect is to
reduce the number of possible implementations when passing from the domain
spec to the codomain. In this sense, a refinement can be viewed as embodying a
particular design decision or property that corresponds to the subset of possible
implementations of the domain spec which are also possible implementations of
the codomain.

Often in software refinement we want to preserve and extend the structure
of a structured specification (versus flattening it out via colimit). When a speci-
fication is structured as a diagram, then the corresponding notion of structured
refinement is a diagram morphism. A diagram morphism M from diagram D to
diagram E consists of a set of specification morphisms, one from each node/spec
in D to a node in E such that certain squares commute (a functor underlies each
diagram and a natural transformation underlies each diagram morphism). We
use the notation D =⇒ E for diagram morphisms.
Example: A datatype refinement that refines bags to sequences can be presented
as the diagram morphism BtoS : BAG =⇒ BAG-AS-SEQ:

Bag

BtoSBag

��

Triv

BtoSTriv

��

�� BAG

BtoS

��
Seq �� Bag-as-Seq T riv���� BAG-AS-SEQ

where the domain and codomain of BtoS are shown in boxes, and the (one)
square commutes. Here Bag-as-Seq is a definitional extension of Seq that pro-
vides an image for Bag theory. Specs for Bag, Seq and Bag-as-Seq and details of
the refinement can be found in Appendix A of [16]. The interesting content is in
spec morphism BtoSBag:

morphism BtoSBag : Bag → Bag-as-Seq is
{Bag �→ Bag-as-Seq,
empty-bag �→ bag-empty,
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TRIV

SEQ
BAG

BAG+SEQ

LINEAR-ORDER

BAG+SEQ-CONV

BAG+SEQ-LinOrd

BAG+SEQ-over-LinOrd

TRIV

SEQBaS

BaS+SEQ

LINEAR-ORDER

BaS+SEQ-CONV

BaS+SEQ-LinOrd

BaS+SEQ-over-LinOrd

TRIV

BaS

TRIV

BAG

SEQ SEQ

SORTING

BaS-SORTING

Fig. 1. Refining Bags to Seqs in Sorting.

empty-bag? �→ bag-empty?,
nonempty? �→ bag-nonempty?,
singleton-bag �→ bag-singleton,
singleton-bag? �→ bag-singleton?,
nonsingleton-bag? �→ bag-nonsingleton?,
in �→ bag-in,
bag-union �→ bag-union,
bag-wfgt �→ bag-wfgt ,
size �→ bag-size}

Diagram morphisms compose in a straightforward way based on spec mor-
phism composition. It is easily checked that diagrams and diagram morphisms
form a category. In the sequel we will generally use the term refinement to mean
a diagram morphism.

Colimits in this category can be computed using left Kan extensions and
colimits in SPEC. Figure 1 shows the pushout of the diagram morphism BtoS
and a structured specification (diagram) for the problem of sorting a bag over
linearly ordered sets (see [16] for details). Intuitively, the universality of the
colimit asserts that the resulting diagram is the simplest diagram that refines
the sorting diagram and incorporates the refinement information of BtoS.

The fact that the colimit calculation constructs a refinement of a given dia-
gram (here the sorting specification) with respect to an abstract refinement (here
BtoS) is a key tool in our approach to mechanizing the development process.
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2.5 Logic Morphisms and Code Generation

Inter-logic morphisms [9] are used to translate specifications from the specifi-
cation logic to the logic of a programming language. See [18] for more details.
They are also useful for translating between the specification logic and the logic
supported by various theorem-provers and analysis tools. They are also useful
for translating between the theory libraries of various systems.

3 Software Development by Refinement

S0

��
S1

��...

��
Sn

�� ��
��
��

Code

The development of correct-by-construction code via a
formal refinement process is shown to the left. The re-
finement process starts with a specification S0 of the re-
quirements on a desired software artifact. Each Si, i =
0, 1, ..., n represents a structured specification (diagram)
and the arrows ⇓ are refinements (represented as dia-
gram morphisms). The refinement from Si to Si+1 em-
bodies a design decision which cuts down the number
of possible implementations. Finally an inter-logic mor-
phism translates a low-level specification Sn to code in
a programming language. Semantically the effect is to
narrow down the set of possible implementations of Sn

to just one, so specification refinement can be viewed
as a constructive process for proving the existence of
an implementation of specification S0 (and proving its
consistency).

Clearly, two key issues in supporting software development by refinement
are: (1) how to construct specifications, and (2) how to construct refinements.
Section 4 describes mechanizable techniques for constructing refinements.

3.1 Constructing Specifications

A specification-based development environment supplies tools for creating new
specifications and morphisms, for structuring specs into diagrams, and for com-
posing specifications via importation, parameterization, and colimit. In addition,
a software development environment needs to support a large library of reusable
specifications, typically including specs for (1) common datatypes, such as inte-
ger, sequences, finite sets, etc. and (2) common mathematical structures, such
as partial orders, monoids, vector spaces, etc. In addition to these generic oper-
ations and libraries, the system may support specialized construction tools and
libraries of domain-specific theories, such as resource theories, or generic theories
about domains such as satellite control or transportation.

3.2 Constructing Refinements

A refinement-based development environment supplies tools for creating new
refinements. One of our innovations is showing how a library of abstract re-
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finements can be applied to produce refinements for a given specification. In
this paper we focus mainly on refinements that embody design knowledge about
(1) algorithm design, (2) datatype refinement, and (3) expression optimization.
We believe that other types of design knowledge can be similarly expressed
and exploited, including interface design, software architectures, domain-specific
requirements capture, and others. In addition to these generic operations and
libraries, the system may support specialized construction tools and libraries of
domain-specific refinements.

The key concept of this work is the following: abstract design knowledge
about datatype refinement, algorithm design, software architectures, program
optimization rules, visualization displays, and so on, can be expressed as refine-
ments (i.e. diagram morphisms). The domain of one such refinement represents
the abstract structure that is required in a user’s specification in order to apply
the embodied design knowledge. The refinement itself embodies a design con-
straint – the effect is a reduction in the set of possible implementations. The
codomain of the refinement contains new structures and definitions that are
composed with the user’s requirement specification.

A ��

��

S0

��
B �� S1

The figure to the left shows the application of a library re-
finement A =⇒ B to a given (structured) specification S0.
First the library refinement is selected. The applicability of
the refinement to S0 is shown by constructing a classification
arrow from A to S0 which classifies S0 as having A-structure
by making explicit how S0 has at least the structure of A.
Finally the refinement is applied by computing the pushout
in the category of diagrams. The creative work lies in con-
structing the classification arrow [14, 15].

4 Scaling Up

The process of refining specification S0 described above has three basic steps:

1. select a refinement A =⇒ B from a library,
2. construct a classification arrow A =⇒ S0, and
3. compute the pushout S1 of B ⇐= A =⇒ S0.

The resulting refinement is the cocone arrow S0 =⇒ S1. This basic refinement
process is repeated until the relevant sorts and operators of the spec have suffi-
ciently explicit definitions that they can be easily translated to a programming
language, and then compiled.

In this section we address the issue of how this basic process can be further
developed in order to scale up as the size and complexity of the library of specs
and refinements grows. The first key idea is to organize libraries of specs and
refinements into taxonomies. The second key idea is to support tactics at two
levels: theory-specific tactics for constructing classification arrows, and task-
specific tactics that compose common sequences of the basic refinement process
into a larger refinement step.
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4.1 Design by Classification: Taxonomies of Refinements

A productive software development environment will have a large library of
reusable refinements, letting the user (or a tactic) select refinements and decide
where to apply them. The need arises for a way to organize such a library, to
support access, and to support efficient construction of classification arrows. A
library of refinements can be organized into taxonomies where refinements are
indexed on the nodes of the taxonomies, and the nodes include the domains of
various refinements in the library. The taxonomic links are refinements, indicat-
ing how one refinement applies in a stronger setting than another.

Container

��
Proto-Seq

�� 		���������

Proto-Bag

��

����������
Seq

Bag Proto-Set

�������������

�� ������������

... ... ...

Fig. 2. Taxonomy of Container Datatypes.

Figure 2 sketches a taxonomy of abstract datatypes for collections. The ar-
rows between nodes express the refinement relationship; e.g. the morphism from
Proto-Seq to Proto-Bag is an extension with the axiom of commutativity applied
to the join constructor of Proto-Seqs. Datatype refinements are indexed by the
specifications in the taxonomy; e.g. a refinement from (finite) bags to (finite)
sequences is indexed at the node specifying (finite) bag theory.

Figure 3 shows a taxonomy of algorithm design theories. The refinements
indexed at each node correspond to (families of) program schemes. The algorithm
theory associated with a scheme is sufficient to prove the consistency of any
instance of the scheme. Nodes that are deeper in a taxonomy correspond to
specifications that have more structure than those at shallower levels. Generally,
we wish to select refinements that are indexed as deeply in the taxonomy as
possible, since the maximal amount of structure in the requirement specification
will be exploited. In the algorithm taxonomy, the deeper the node, the more
structure that can be exploited in the problem, and the more problem-solving
power that can be brought to bear. Roughly speaking, narrowly scoped but
faster algorithms are deeper in the taxonomy, whereas widely applicable general
algorithms are at shallower nodes.
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Two problems arise in using a library of refinements: (1) selecting an appro-
priate refinement, and (2) constructing a classification arrow. If we organize a
library of refinements into a taxonomy, then the following ladder construction
process provides incremental access to applicable refinements, and simultane-
ously, incremental construction of classification arrows.

A0
I0 ��

��

Spec0

��
A1

I1 ��

��

Spec1

��
A2

I2 ��

��

Spec2

��...

��

...

��
An

In �� Specn

The process of incrementally constructing a refine-
ment is illustrated in the ladder construction diagram
to the left. The left side of the ladder is a path in
a taxonomy starting at the root. The ladder is con-
structed a rung at a time from the top down. The ini-
tial interpretation from A0 to Spec0 is often simple to
construct. The rungs of the ladder are constructed by
a constraint solving process that involves user choices,
the propagation of consistency constraints, calculation
of colimits, and constructive theorem proving [14, 15].
Generally, the rung construction is stronger than a
colimit – even though a cocone is being constructed.
The intent in constructing Ii : Ai

��Speci is that
Speci has sufficient defined symbols to serve as the
codomain. In other words, the implicitly defined sym-
bols in Ai are translated to explicitly defined symbols
in Speci.

An
In ��

��

Specn

��
Bn

�� Specn+1

Once we have constructed a classification arrow
An =⇒ Specn and selected a refinement An =⇒ Bn

that is indexed at node An in the taxonomy, then
constructing a refinement of Spec0 is straightforward:
compute the pushout, yielding Specn+1, then com-
pose arrows down the right side of the ladder and the
pushout square to obtain Spec0 =⇒ Specn+1 as the
final constructed refinement.

Again, rung construction is not simply a matter of computing a colimit.
For example, there are at least two distinct arrows from Divide-and-Conquer
to Sorting, corresponding to a mergesort and a quicksort – these are distinct
cocones and there is no universal sorting algorithm corresponding to the colimit.
However, applying the refinement that we select at a node in the taxonomy is
a simple matter of computing the pushout. For algorithm design the pushout
simply instantiates some definition schemes and other axiom schemes.

It is unlikely that a general automated method exists for constructing rungs
of the ladder, since it is here that creative decisions can be made. For general-
purpose design it seems that users must be involved in guiding the rung construc-
tion process. However in domain-specific settings and under certain conditions
it will possible to automate rung construction (as discussed in the next section).
Our goal in Designware is to build an interface providing the user with vari-
ous general automated operations and libraries of standard components. The
user applies various operators with the goal of filling out partial morphisms and
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specifications until the rung is complete. After each user-directed operation, con-
straint propagation rules are automatically invoked to perform sound extensions
to the partial morphisms and specifications in the rung diagram. Constructive
theorem-proving provides the basis for several important techniques for con-
structing classification arrows [14, 15].

4.2 Tactics

The design process described so far uses primitive operations such as (1) select-
ing a spec or refinement from a library, (2) computing the pushout/colimit of (a
diagram of) diagram morphisms, and (3) unskolemizing and translating a for-
mula along a morphism, (4) witness-finding to derive symbol translations during
the construction of classification arrows, and so on. These and other operations
can be made accessible through a GUI, but inevitably, users will notice certain
patterns of such operations arising, and will wish to have macros or parame-
terized procedures for them, which we call tactics. They provide higher level
(semiautomatic) operations for the user.

The need for at least two kinds of tactics can be discerned.

1. Classification tactics control operations for constructing classification ar-
rows. The divide-and-conquer theory admits at least two common tactics for
constructing a classification arrow. One tactic can be procedurally described
as follows: (1) the user selects a operator symbol with a DRO requirement
spec, (2) the system analyzes the spec to obtain the translations of the DRO
symbols, (3) the user is prompted to supply a standard set of constructors
on the input domain D, (4) the tactic performs unskolemization on the com-
position relation in each Soundness axiom to derive a translations for OCi,
and so on. This tactic was followed in the mergesort derivation.
The other tactic is similar except that the tactic selects constructors for
the composition relations on R (versus D) in step (3), and then uses un-
skolemization to solve for decomposition relations in step (4). This tactic
was followed in the quicksort derivation.
A classification tactic for context-dependent simplification provides another
example. Procedurally: (1) user selects an expression expr to simplify, (2)
type analysis is used to infer translations for the input and output sorts of
expr, (3) a context analysis routine is called to obtain contextual properties
of expr (yielding the translation for C), (4) unskolemization and witness-
finding are used to derive a translation for new-expr.

2. Refinement tactics control the application of a collection of refinements; they
may compose a common sequence of refinements into a larger refinement
step. Planware [2] has a code-generation tactic for automatically applying
spec-to-code interlogic morphisms. Another example is a refinement tactic
for context-dependent simplification; procedurally, (1) use the classification
tactic to construct the classification arrow, (2) compute the pushout, (3)
apply a substitution operation on the spec to replace expr with its simpli-
fied form and to create an isomorphism. Finite Differencing requires a more
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complex tactic that applies the tactic for context-dependent simplification
repeatedly in order to make incremental the expressions set up by applying
the Expression-and-Function→ Abstracted-Op refinement.

We can also envision the possibility of metatactics that can construct tactics
for a given class of tasks. For example, given an algorithm theory, there may
be ways to analyze the sorts, ops and axioms to determine various orders in
constructing the translations of classification arrows. The two tactics for divide-
and-conquer mentioned above are an example.

5 Specifying Behavior

The results described above most naturally support the development of func-
tional programs. To support the specification and development of concurrent
systems, we felt the need to specify behaviors via some notion of state machine
[11].

We are developing an extension of the framework, called evolving specifi-
cations (or simply especs), that supports the specification and development of
complex systems. Especs provide the means for explicitly modeling the logical
structure and behavior of systems. The framework supports precise, automat-
able operations for the composition of especs and their refinement. The espec
framework is partially implemented in the Epoxi system.

Especs can be seen as a way to naturally extend the Specware/Designware
foundation (the category of diagrams of higher-order algebraic specifications)
with a combination of the evolving algebras of Gurevich (aka abstract state
machines) [6], with the classical axiomatic semantics of Floyd/Hoare/Dijkstra.
As in Specware/Designware, especs use morphisms and colimits to support the
composition of systems and their refinement to code, but in addition especs
provide a natural and novel way to combine logical structure and behavior.

There are four key ideas underlying our representation of state machines
as evolving specifications (especs). Together they reveal an intimate connection
between behavior and the category of logical specifications. The first three are
due to Gurevich [6].

1. A state is a model – A state of computation can be viewed as a snapshot of
the abstract computer performing the computation. The state has a set of
named stores with values that have certain properties.

2. A state transition is a finite model change – A transition rewrites the stored
values in the state.

3. An abstract state is a theory – Not all properties of a state are relevant,
and it is common to group states into abstract states that are models of a
theory. The theory presents the structure (sorts, variables, operations), plus
the axioms that describe common properties (i.e. invariants). We can treat
states as static, mathematical models of a global theory thyA, and then all
transitions correspond to model morphisms. Extensions of the global theory
thyA provide local theories for more refined abstract states, introducing local
variables and local properties/invariants.



Software Development by Refinement 281

4. An abstract transition is an interpretation between theories – Just as we ab-
stractly describe a class of states/models as a theory, we abstractly describe
a class of transitions as an interpretation between theories [8, 11]. To see
this, consider the correctness of an assignment statement relative to a pre-
condition P and a postcondition Q; i.e. a Hoare triple P {x := e} Q. If
we consider the initial and final states as characterized by theories thypre

and thypost with theorems P and Q respectively, then the triple is valid iff
Q[e/x] is a theorem in thypre. That is, the triple is valid iff the symbol map
{ x �→ e} is an interpretation from thypost to thypre. Note that interpreta-
tion goes in the opposite direction from the state transition.

The basic idea of especs is to use specifications as state descriptions, and to
use interpretations to represent transitions between state descriptions.

The idea that abstract states and abstract transitions correspond to specs
and interpretations suggests that state machines are diagrams over Specop. Fur-
thermore, state machines are composed via colimits, and state machines are re-
fined via diagram morphisms [11]. These concepts are implemented in the Epoxi
extension of Specware. Epoxi includes a translator from especs to C code.

Especs support an architectural approach to system design [13]. Components
and connectors are represented by parameterized especs where the parameters
are the interfaces for components and connectors (ports and roles respectively).
The interconnection of components and connectors, forming the architecture, is
presented by a diagram in the category of especs (cf.[5, 7]). The colimit of the di-
agram serves to glue the interfaces together and to form the parallel composition
of the constituent behaviors.

In [12], we present a detailed example of a simple system comprised of a
radar unit and a mission controller connected by a synchronous communication
channel. Especs for the components and the connector specify the structure,
behavior, and roles/ports. They are interconnected by means of a diagram and
composed via a colimit of especs. A glue-code generator is used to refine the
connector, serving to reconcile the data structure mismatches between the two
components [4].

6 Applications

We briefly describe several application projects underway at Kestrel that exploit
the refinement technology discussed above.

Mission Planning System (MPS). The planning of large-scale cargo trans-
portation missions is one of the most complex scheduling problems in the world.
It involves simultaneously scheduling a variety of resources including aircraft,
crews, and port facilities as well as supporting resources such as fuel. Other
complexities such as routing and diplomatic clearances further complicate any
model. Commercial airlines face a related problem, but they are able to separate
aircraft and crew scheduling because of the regularities of their service. Kestrel
and BBN Technologies have developed a prototype mission planning system for
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the US Air Force satisfying most requirements for operation. The main algorithm
has been entirely developed and evolved by modifying requirement specifications
(stated as pre/post-conditions on the input/output data types), and applying
algorithm design, datatype refinement, and optimization tactics. To our knowl-
edge there is no more complex algorithm that has been developed formally from
a property-oriented specification and with such as high degree of automation.

Planware. The Planware system is a domain-specific generator of high-
performance schedulers [1]. It provides an answer to the question of how to
help automate the acquisition of requirements from the user and to assemble a
formal requirement specification for the user. The key idea is to focus on a nar-
row well-defined class of problems and programs and to build a precise, abstract
domain-specific specification formalism that covers the class. Interaction with
the user is only required in order to obtain the refinement from the abstract
spec to a specification of the requirements of the user’s particular problem.

To allow users to specify complex multi-resource problems, Planware uses
especs to model the behavior of tasks and resources, and uses a service matching
theory to handle the interactions of multi-resource problems. For example, a
transportation organization might want a scheduler to simultaneously handle
its aircraft, crews, fuel, and airport load/unload facilities. Each resource has its
own internal required patterns of behavior and may have dependencies on other
resources.

The semantics of a resource is the set of possible behaviors that it can exhibit.
We treat these behaviors as (temporal) sequences of activities which are modeled
as espec modes (abstract states). Each activity has mode variables (e.g. start-
time and duration) and any services that it offers (e.g. the flying mode of an
aircraft offers transportation service) and services that it requires (e.g. the flying
mode of an aircraft requires the services of a crew). A formal theory of a resource
should have as models exactly the physically feasible behaviors of the resource.
The axioms serve to constrain the values that mode variables can take on in
states (e.g. the weight of cargo cannot exceed a maximum bound during the
flying mode of an aircraft). The transitions serve to constrain the evolution of
the mode variables (e.g. the finish time of one activity must occur no later than
the start time of the next activity).

A task is also expressed formally as an espec. The main difference between
a task and a resource is that a task offers no service - it only requires services of
resources. For example, a cargo container requires transportation service.

We believe that Planware’s modeling language is general for expressing
scheduling and resource allocation problems. However, the design process cur-
rently focuses on the generation of centralized, offline algorithms. The Planware
design process has the following steps:

1. Requirement Acquisition – The user supplies a model of a scheduling prob-
lem in terms of especs for the kinds of tasks and resources that are of concern.
The problem model is formalized into a specification that can be read ab-
stractly as follows: given a collection of task instances (that accord with the
task especs) and a collection of resource instances, find a schedule that ac-
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complishes as many of the tasks as possible (or (approximately) optimizes
the given cost function), subject to all the constraints of the resource models
and using only the given resources.
The required and offered services of a resource express the dependencies
between resource classes. Planware analyzes the task and resource models
to determine a hierarchy of service matches (service required matched with
service offered) that is rooted in a task model.

2. Algorithm Design – The problem specification is used to automatically in-
stantiate program schemes that embody abstract algorithmic knowledge
about global search and constraint propagation. The algorithm generation
process follows the structure of the service hierarchy, resulting in a nested
structure of instantiated search schemes.

3. Datatype Refinement and Optimization – Abstract datatypes are refined to
concrete programming-language types, and other optimizations are applied.

4. Code generation – Finally code in a programming language (currently Com-
monLisp) is generated. In one recent example, we developed formal models
for air cargo packages, cargo aircraft, air crews, and port facilities (i.e. four
espec models). In about one second Planware generates 6560 LOC in our lo-
cal MetaSlang language, and then translates it to 19088 LOC in Commonlisp
comprising over 1780 definitions.

JBV/Applet Generation. Another Kestrel project uses refinement techniques
to automate the correct-by-construction generation of secure Java applets from
specifications. Previous work developed a formal specification of a Java ByteCode
Verifier, and generated correct code from it.

AIM Chip. Motorola Corporation used the Specware tool to produce a suc-
cessful commercial chip, called the Advanced InfoSec (Information Security) Ma-
chine, a VLSI programmable cryptographic processor that was released in 1998.
Specware was used to generate and certify the secure kernel of the operating
system.

Formal Methods versus CMM Level 4 Process Management. The US
Department of Defense sponsored one relatively carefully controlled experimental
comparison of two competing development methodologies. One company used
the Specware tool and another company used the SEI CMM level 4 process
management on the same task and with the same budget. The requirements
were expressed in natural language, and the parties were given the same access to
domain experts regarding the specification. The formal Specware-based approach
was found to result in significantly fewer errors in the final design. Details may
be found in [19].

7 Toward Embedded System Design

Current work is extending the modeling capability of especs to the domain of
hybrid embedded systems [17]. The ultimate objective is to produce a software
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development environment that provides extensive tool support for the develop-
ment of high-assurance real-time embedded systems from specifications.

The foundation of the development process is a module/interface specifi-
cation formalism that is abstract, semantically precise, expressive, and provides
machine support for key design operations, such as composition (via colimit), re-
finement (by applying libraries of design knowledge), and reasoning (via general-
purpose and specialized inference procedures).

We have attempted to combine in one formalism the ability to precisely spec-
ify a module in terms of both the functionality/behavior of its services (based
on especs), and their resource constraints (based on the Planware use of especs).
Moreover, services are categorized along several dimensions: required versus of-
fered services, and pull services (functions and procedures) versus push services
(disseminating state and event information). To our knowledge, there is no other
specification formalism that supports compositional reasoning of embedded sys-
tems at all levels of abstraction.

Based on this module/interface specification formalism, the framework em-
phasizes a compositional and refinement-oriented approach to design. The user
assembles a high-level model of the physical environment, monitored/controlled
system, and the embedded software. Refinements that introduce structure and
implementation detail are applied. A key idea is to represent knowledge about
embedded system design concepts, and to semiautomatically use those repre-
sentations to generate refinements. Finally, there is a partitioning process that
groups components and connectors that will be mapped to the same target com-
ponent. The use of specialized resource allocation algorithms can help search for
(near)-optimal partitions and maps.

8 Summary

This paper summarizes Kestrel’s ongoing efforts to provide practical support for
the development of efficient, high-assurance software. The main features of these
efforts are:

– A comprehensive and uniform mathematical foundation that encompasses
requirements (both property-oriented and behavioral), composition, refine-
ment, and code generation, as well as the representation of program/system
design knowledge. Building on the category of higher-order specifications,
we are developing natural extensions into behavioral specification includ-
ing features of concurrency, resource constraints, continuity, and stochastic
processes.

– Tool Support - a practical development formalism must be amenable to ex-
tensive automated support, hence our emphasis on a category of syntactic
objects (specs) versus semantic objects (structures). The examples and most
concepts described are working in the Specware, Designware, Epoxi, and
Planware systems. Inference tools such as theorem-provers, constraint prop-
agation, and other analysis tools are critical to providing assurance during
refinement.
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– Design Theories - although it is not emphasized here, a key to practical
support for software development from specifications is the reuse of abstract
design knowledge. If the ultimate language for communication with com-
puters is a requirements language, then the means must exist to supply the
design information that allows the generated system to carry out those re-
quirements (e.g. architectures, algorithms, data structures). Current interest
in design patterns, O-O frameworks, and various approaches to generic pro-
gramming begin to get at this capture of reusable design knowledge, but
typically in a way that doesn’t relate requirements to code.
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