
Semantics of first order parametric specifications

Duško Pavlović

Kestrel Institute, Palo Alto, USA
dusko@kestrel.edu

Abstract. Parametricity is one of the most effective ways to achieve
compositionality and reuse in software development. Parametric specifi-
cations have been thoroughly analyzed in the algebraic setting and are
by now a standard part of most software development toolkits. However,
an effort towards classifying, specifying and refining algorithmic theories,
rather than mere datatypes, quickly leads beyond the realm of algebra,
and often to full first order theories. We extend the standard semantics
of parametric specifications to this more general setting.

The familiar semantic characterization of parametricity in the alge-
braic case is expressed in terms of the free functor, i.e. using the initial
models. In the general case, initial models may not exist, and the free
functor is not available. Various syntactic, semantic, and abstract defini-
tions of parametricity have been offered, but their exact relationships are
often unclear. Using the methods of categorical model theory, we estab-
lish the equivalence of two well known, yet so far unrelated, definitions
of parametricity, one syntactic, one semantic. Besides providing support
for both underlying views, and a way for aligning the systems based on
each of them, the offered general analysis and its formalism open several
avenues for future research and applications.

1 Introduction

1.1 Parametric specifications

The idea of parametric polymorphism goes back to Strachey [26] and refers to
code reusable over any type that may be passed to it as a parameter. If a type
is viewed as a set of logical invariants of the data, this idea naturally extends
to the software specifications, as the logical theories capturing requirements and
allowing their refinement. The idea of parametric specifications was proposed
early on and became a standard part of specification theory (cf. e.g. [8, 12, 13]
and the references therein).

A standard nontrivial example of a parametric specification is a presentation
of the theory of vector spaces, with the theory of fields as its parameter. The
idea is that refining the parameter, in this case the subtheory referring to scalars,
yields a consistent refinement of the larger theory, usually called the body. For-
mally, we are given a theory VecSp and a distinguished subtheory Field →֒ VecSp.
The refinement is realized by the pushout in the category of specifications [4,

11].

Field
�

�

//

��

��

VecSp[Field]

��

��

Real
�

�

// VecSp[Real]

The functoriality of the pushout operation ensures the compositionality of the
refinements.

Of course, not every interpretation of one specification in another allows
this. For instance, if instead of Field, just the theory of rings is taken as the
parameter of VecSp, some consistent refinements of the parameter will induce
inconsistencies in the body. Some models of the parameter therefore do not
correspond to models of the body.

Some syntactic parametricity conditions, ensuring that consistent refinements
of the parameter induce consistent refinements of the body, were proposed early
on [9, 14]. However, the analogous semantic characterizations, ensuring that mod-
els of the parameter induce models of the body, were given only in terms of
free functors, which only exist for (essentially) algebraic specifications, i.e. those
stated using just operations and equations (and simple implications between
them). In [9], cofree functors were analyzed as well, but for a general first order
theory, they may not exist either. E.g., the theories of fields, Hilbert spaces, or
linear orders do not have either intial or final models.

Algebraic specifications do suffice for great many practical tasks and offer
a fruitful ground for theory [8]. However, when it comes to systems for code
synthesis, like SpecwareTM [28], where it is essential to compositionally refine
and implement not only abstract datatypes, but also abstract algorithmic the-
ories, algebraic specifications become increasingly insufficient, and initial and
final semantics do not apply.

On one hand, a syntactic form of parametricity for general specifications has
been used in practice and in the literature [12, 13]. On the other hand, in [6], a se-
mantical definition of parametricity was proposed, independent of the existence
of initial or final models. However, it seems that neither the semantic character-
ization of the former nor the syntactic characterization of the latter have been
worked out. Abstracting away from the concrete meaning of parametricity, some
interesting structures have been built, applicable to parametric specifications in
general [5, 25], yet no statement tieing together the syntactic and the seman-
tic intuitions seems to have been proved. The purpose of the present paper is
to try to bridge this gap, while providing some evidence of the applicability of
categorical model theory to the study of general software specifications.1

1 In contrast, the purported algebraicizing of general specifications in higher order
logic by presenting the first order theorems as higher order equations only shifts the

1.2 Elements of categorical model theory

The functorial semantics of algebraic theories goes back to the sixties, to Law-
vere’s thesis [16]. The theory of categorical universal algebra which arose from
it is summarized in [22]. An important step beyond algebra is the study of lo-
cally presentable categories [10], which come about as the model categories of
limit theories, a wider, yet essentially restricted class. The full scope of first or-
der logic was covered by categorical model theory rather slowly, throughout the
seventies and eighties, as some parts tend to be technically rather demanding.
Good accounts of the more accessible parts are [1, 20, 21].

The main idea of functorial semantics is to

– present logical theories as classifying categories with structure, so as to
– obtain their models as structure preserving functors to Set, with homomor-

phisms between them as natural transformations.

The resulting categories of models will always be accessible, i.e. have directed
colimits and a suitable generating set. Conversely, every accessible category can
be obtained as the category of models of a first order theory, possibly infinitary.
Categorical model theory is thus the study of accessible categories and the way
they arise from theories. There is a very general Stone-type duality between the
first order theories, presented as categories, and the induced categories of models
[19], but it is quite involved in technical details, and it is not clear whether it
can be brought into a practically useful form.

But without going into the formal duality, one can still systematically explore
the relationships between the syntactic and the semantic aspects of theories, by
analyzing functors between their categorical presentations. In particular, for any
two first order theories A and B , presented as classifying categories, one can align
the properties of the logical interpretations, which can be captured as functors
F : A −→ B , and the induced forgetful, or “reduct”, functors F# : Mod(B) −→
Mod(A) between the corresponding categories of models.

This is a typical task for semantics of software specifications: analyze how a
particular class of syntactical manipulations with theories is reflected on their
models, and on the computations that may be built on top. We shall show that
a syntactic definition of parametric specification, viewed as a property of the
interpretation functor F : A −→ B , is equivalent to an independent semantic
definition, stated in terms of the “reduct” functor F# : Mod(B) −→ Mod(A).

1.3 Outline of the paper

In the next section, we describe the concrete constructions of classifying cate-
gories, explain how interpretations are captured as functors between them, and
how the idea of parametricity fits into this setting.

In section 3 we list some abstract preliminary results that align the syntactic
and semantic properties of functors.

problems from the large but familiar area of first order model theory to the scarcely
cultivated field of higher order algebra.

Finally, in section 4, we derive the main result: the equivalence of a syntactic
form of parametricity, in the spirit of [12, 13], and a semantic form, as in [6],
both adapted only to a common categorical setting.

2 Theories and models, categorically

2.1 Classifying categories

The simplest classifying category is the Lawvere clone C T of an algebraic theory
T , say single sorted. Its objects can be viewed as natural numbers (viz the
arities), while a morphism from m to n is an n-tuple of the elements of the
free algebra in m generators, i.e. a function n −→ Tm, where T denotes the free
algebra constructor.2 A crucial observation from Lawvere’s thesis [16] is that C T
classifies T -algebras, in the sense that they exactly correspond to the product
preserving functors CT −→ Set, while the T -homomorphisms correspond to the
natural transformations between them. Indeed, since n in C T appears as the
product of n copies of 1, the product preservation ensures that the functors
CT −→ Set trace the operations with the correct arities. The equations of T
are then enforced by the functoriality. Detailed explanations of the functorial
semantics of algebraic theories can be found e.g. in [22].

If models of more general theories are to be captured as functors, some addi-
tional preservation properties will be needed, in order to enforce satisfaction of
not necessarily equational formulas, that may express more than mere commuta-
tivity conditions. There are several well known frameworks for building suitable
classifying categories and developing functorial semantics for general first order
theories, the most “categorical” being probably sketches [3, 20]. We shall however
work in the setting of coherent categories [21], closest to the original geometric
spirit of categorical logic, because they seem to allow the quickest and perhaps
the most intuitive approach to the matters presently of interest.

2.2 Coherent categories

Let T be a multisorted first order theory with equality. For simplicity, we assume
that it is purely relational: operations are captured by their graphs. Moreover,
T is assumed to be generated by a set of axioms in coherent logic, i.e. using
finitary ∧ and ∨, including the empty ones, ⊤ and ⊥, and the quantifier ∃.
The underlying logic can be classical or intuitionistic. We cannot go into the
details here, but reducing finitary first order logic to its coherent fragment is
a fairly standard technical device (see [1, 2, 21] and especially the informative
introduction of [20]). The extension to infinitary logic is justified by stable and
natural categories of models and is routinely handled by extending the classifying
constructions. However, some of the proofs presented below essentially depend
on the finiteness assumption.

2 So if T is presented by the monad T , the classifier CT is the dual of the induced
Kleisli category, restricted to natural numbers.

Formally, the theory T can be viewed as a preorder: the underlying set |T | of
well-formed formulas is generated by its language, while the entailment preorder
⊢ is generated by its axioms. The rough idea is to capture the well-formed
formulas of T as the objects of the classifying category C T , and the theorems of
T as the morphisms of C T .

The passage from the formulas of T to the objects of C T requires an adjust-
ment: the formulas must be viewed modulo variable renaming, i.e. α-conversion
φ(x) ∼ φ(y), where x and y are vectors of variables. Note that this is not a
congruence with respect to the logical operations, because e.g. φ(x) ∧ φ(y) 6∼
φ(x)∧ φ(x).

The passage from theorems of T to morphisms of C T requires a similar
adjustment: modulo the logical equivalence ϕ ⊣⊢ ψ, which means that ϕ ⊢ ψ
and ψ ⊢ ϕ. The definition is thus

|C T | = |T |/ ∼
C T (α(x), β(y)) =

{

ϑ(x, y) ∈ T | ϑ(x, y) ⊢ α(x) ∧ β(y),
α(x) ⊢ ∃y. ϑ(x, y),
ϑ(x, y′) ∧ ϑ(x, y′′) ⊢ y′ ≡ y′′

}

/ ⊣⊢

where x and y are disjoint strings of variables, always available by renaming3, and
≡ is the equality predicate in T . The identities in C T are induced by the equality
predicates, and the composition of ϑ(x, y) and ̺(y, z) is ∃y. ϑ(x, y) ∧ ̺(y, z).

The logical structure of T induces the categorical structure of C T :

– finite limits are constructed using the conjunction and the variable tupling,
starting from the true predicates ⊤(x) over each sort;

– regular epi-mono factorisations are constructed using the existential quan-
tifier; and finally

– joins of the subobjects correspond to the disjunctions.

These three structural components constitute a coherent category and are pre-
served by coherent functors. Theories in coherent logic generate coherent clas-
sifying categories; conversely, each small coherent category classifies a coherent
theory. Coherent functors preserve the truth of the theorems in coherent logic.
The reader may wish to work out the details of this correspondence or to consult
some of the mentioned references.

A reader familiar with the functorial semantics of algebra has perhaps al-
ready noticed that the coherent classifier of an algebraic theory contains the
corresponding Lawvere clone as a full subcategory, namely the one spanned by
the true formulas⊤(x), one for each arity x. Indeed, the coherent classifier of an
algebraic theory is the coherent completion of its Lawvere clone. The coherent
classifiers have a richer set of objects, in order to impose the preservation of
more general axioms; but simpler theories can be captured by smaller classifiers.

3 By abuse of notation, α(x), β(y) and ϑ(x, y) denote their equivalence classes [α], [β]
and [ϑ] modulo ∼.

2.3 Interpretations and models

The upshot of coherent classifying categories is thus that the coherent functors,
preserving the coherent structure, preserve the coherent logic, and thus enforce
the satisfaction of the coherent theorems, represented as the morphisms in co-
herent categories. A coherent functor C T −→ CU can thus be viewed as a sound
interpretation of the theory T in the theory U . But since every small coher-
ent category A can be obtained as the classifier C T of some coherent theory
T , every coherent functor F : A −→ B can be understood logically, as such an
interpretation.

Although it is not small, Set has all the coherent structure, and the coherent
functors C T −→ Set are exactly the models of T . The natural transformations
are the T -homomorphisms, preserving all the definable operations. For every
small coherent A , we shall denote by Mod(A) the category of coherent functors
A −→ Set. This is the category of models of A . As pointed out before, categories
of the form Mod(A) are accessible, and by allowing infinite disjunctions, one
could get (an equivalent version of) every accessible category in this form [1,
ch. 5].

On the other hand, by precomposition, every coherent functor F : A −→ B

induces a “reduct” F# : Mod(B) −→ Mod(A), reinterpreting a model N : B −→
Set of B as a model NF : A −→ Set of A . This is the arrow part of the Mod-
construction, which yields an indexed category Mod : Cohop −→ CAT, where
Coh is the category of small coherent categories and functors, and CAT is the
metacategory of categories. Mod thus assigns a semantics to each coherent theory
T , classified by a coherent category C T ; in other words, it maps each theory T
to its category of models, captured as coherent functors C T −→ Set.

The semantical functorMod is an instance of a specification frame in the sense
of Ehrig and Große-Rhode [6]. Specification frames are indexed categories, con-
strued as some abstract model category assignments, like Mod. In these terms,
Ehrig and Große-Rhode proposed a semantical definition of parametric specifi-
cations, which will be analyzed in the sequel.

2.4 Parametrized specifications as functors:
syntactic vs semantic definitions

A reader unfamiliar with coherent logic may wish to write down, as a quick
exercise, say, the coherent theories of fields and vector spaces and analyze their
classifying categories. The classifying category Field is of course a subcategory
of the classifying category VecSp. The obvious functor Field →֒ VecSp is full
and faithful. This means that the theory of vector spaces is conservative over
the theory of fields: no new theorems about the scalars can be proved using the
vectors. Moreover, Field →֒ VecSp is also a powerful functor: each subobject of
an object in the image is also in the image. This means that every predicate on
scalars, expressible in the theory of vector spaces, is already expressible in the
theory of fields.

The embedding Field →֒ VecSp is a typical parametric specification, defined
syntactically, as in [12, 13]. Viewed in the setting of classifying categories, a
parametric specification is thus a coherent functor F : A −→ B , which is full,
faithful and powerful.

On the semantic side, as already mentioned, Ehrig and Große-Rhode [6] have
proposed an abstract definition of parametricity, applicable to the functor Mod :
Coh

op −→ CAT. Omitting the presentation details, a parametric specification
is, according to this definition, an interpretation F : A −→ B , such that the
induced functor F# : Mod(B) −→ Mod(A) is a retraction, i.e. there is a functor
Φ : Mod(A) −→ Mod(B) with F# ◦ Φ ∼= Id. In words, Φ maps each model M
of the parameter A into a model N = ΦM of the body B in such a way that
the forgetful functor F# restores an isomorphic copy4 of M . Such a functor Φ,
which nondestructively expands a model, is said to be persistent [8, sec. 10B].

In the present paper, we shall show that the above two definitions are roughly
equivalent: a coherent functor F : A −→ B is full, faithful and powerful if and
only if F# : Mod(B) −→ Mod(A) is a retraction, in the strong sense that every
splitting of its object part can be refined, by taking quotients, into a splitting
functor.

Completeness view. When an indexed family of sets {Bx|x ∈ A} is rep-
resented as a function f : B −→ A, with Bx = f−1(x), an indexed element
b ∈

∏

x∈ABx becomes a splitting φ : A −→ B, f ◦ φ = id, with bx = φ(x) ∈ Bx.
Similarly, a specification B parametrized over A can be thought of as a family

of the instances of B indexed over the instances of A . In particular, the functor
F# : Mod(B) −→ Mod(A) can be construed as a family of B -models indexed
over A -models. A splitting Φ : Mod(A) −→ Mod(B), F# ◦Φ ∼= Id, then becomes
an indexed model of B , parametrized over A .

According to this view, a persistent functor is thus an indexed model. The
parametricity of theories lifts to the parametricity of their models: the semantical
definition of parametric specification, described above, boils down to the require-
ment that there is a parametric model of the body indexed over the models of
the parameter.

The equivalence of the semantic and the syntactic definitions of parametricity,
which we are about to establish, thus becomes a soundness-and-completeness
theorem, in indexed form.

3 Syntactic vs semantic properties of functors

3.1 Preliminaries

We begin by listing some useful terminology and facts from the general functorial
calculus.

4 The original definition actually requires that M is recovered on the nose, i.e. that
the strict equality F#

◦ Φ = Id holds. But in abstract functorial calculus, this is
almost never possible.

Definition 1. A functor F : A −→ B is said to be

embedding: if it is full and faithful;
subcovering: if for every object B ∈ B there is a finite diagram D in B , such

that (1) B is the colimit of D, and (2) for every node Di of D there is some
Ai in A and a monic Di FAi in B ;

subobject covering: if every B ∈ B is a subobject of some FA,A ∈ A (in
other words, if it is subcovering and the diagrams D can be chosen to have
one node and no edges);

powerful: if all subobjects5 of FA in B lie in the image of F . More precisely,

for every monic D
d
 FA in B there is a monic S

s
 A in A and an

isomorphism i : D
∼
−→ FS such that d = Fs ◦ i;

retraction: if it has a right inverse (i.e., there is G : B −→ A with FGM ∼=M
for all M ∈ A);

uniform retraction: if it is a retraction, and every splitting of its arrow part
refines to a right inverse (more precisely, if Γ : |A | −→ |B | is such that
FΓM ∼= M , M ∈ A then there is a functor G : A −→ B , where GM is a
quotient of ΓM and FGM ∼=M);

(co)reflection: if it has a right inverse right (resp. left) adjoint.

Lemma 1. A powerful and subobject covering functor is essentially surjective.

Lemma 2. F : A −→ B is faithful if and only if

F (ϕ) ⊢ F (ψ) =⇒ ϕ ⊢ ψ (1)

As the converse of (1) is always true, a faithful coherent functor F always induces
an “order isomorphism” on the subobject lattices.

To prove lemma 2, use the fact that ϕ ⊢ ψ if and only if ϕ = ϕ ∧ ψ.

Proposition 1. A coherent functor must be full as soon as it is both faithful
and powerful.

Proof. Since F is powerful, the graph of any h : FA −→ FA′ must be in the
essential image of F : there must be a monic κ A × B in A the F -image of
which is isomorphic with the graph χ = 〈id, h〉 : FA −→ FA×FB. The relation
Fκ thus satisfies;

δFA ⊢ Fκ ;Fκop

Fκop ;Fκ ⊢ δFB

which respectively tell that it is total and single valued. Taking into account
that for the identity relation δ = 〈id, id〉 holds δFX = FδX , and using (1), we
conclude that κ is a total and single valued relation in A . In any regular category,
such a relation must be isomorphic to one in the form 〈id, k〉 : A −→ A × B.
Since clearly F 〈id, k〉 = 〈id, h〉, we conclude that Fk = h. ⊓⊔

5 Recall that subobjects are isomorphism classes of monics.

3.2 Basic results

In the sequel, we assume that F : A −→ B is a coherent functor between co-
herent categories, and F# : Mod(B) −→ Mod(A) is the functor induced by the
precomposition. We use and extend some results from [21]. Note that some of
them essentially depend on strong model theoretic assumptions, such as com-
pactness. The proofs are thus largely non-constructive, as they depend on the
axiom of choice.

Proposition 2. F is faithful if and only if F # is essentially surjective.

Proof. By lemma 2, F is faithful if and only if

Fϕ ⊢ Fψ ⇐⇒ ϕ ⊢ ψ

By the completeness theorem [21, thm. 5.1.7] Fϕ ⊢ Fψ holds if and only if

∀N ∈ Mod(B). NFϕ ⊆ NFψ

whereas ϕ ⊢ ψ holds if and only if

∀M ∈ Mod(A). Mϕ ⊆Mψ

The last two statements are clearly equivalent if F# is essentially surjective, i.e.

∀M ∈ Mod(A)∃N ∈ Mod(B). M ∼= F#N

Conversely, if there is M ∈ Mod(A) different from F#N for all N ∈ Mod(B),
one can use compactness to construct a formula ψ such that NFψ is true for all
models N of B , whereas Mψ is not. ⊓⊔

Definition 2. F # : Mod(B) −→ Mod(A) is said to be subfull if every A -
homomorphism h : F#N ′ −→ F#N ′′ preserves all B -subobjects, i.e. for every

monic D
d
 FA in B holds

hA(N ′D) ⊆ N ′′D

N ′D //❴❴❴❴❴❴❴
�

_

N ′d

��

N ′′D
�

_

N ′′d

��

N ′FA
hA

// N ′′FA

(2)

Proposition 3. F is powerful if and only if F # is subfull.

Proof. By definition, F is powerful if and only if everyD
d
 FA is in the essential

image of F , i.e. d ∼= Fs for some S
s
 A. So (2) must commute because it is

isomorphic with the square

N ′FS
hS

//

�

_

N ′Fs

��

N ′′FS
�

_

N ′′Fs

��

N ′FA
hA

// N ′′FA

which commutes by the naturality of h.

The other way around, the fact that the subfullness of F#, i.e. the commu-
tativity of squares (2) implies that F is powerful is one of the main constituents
of the Makkai-Reyes conceptual completeness theorem [21, ch. 7§1]. The proof
can be extracted from [21, thms. 7.1.4–4’], and essentially depends on compact-
ness. ⊓⊔

Proposition 4. F is subcovering if and only if F # is faithful.

Proof. Suppose F is subcovering and let F#g = F#h for some B-homomorphisms
g, h : N ′ −→ N ′′. The equation F#g = F#h means that gFA = hFA :
N ′FA −→ N ′′FA for all A ∈ A .

I claim that then gB = hB : N ′B −→ N ′′B must hold for every B ∈ B .
Since F is subcovering, for each B there is a finite diagramD, with (1) a colimit

cocone to B, i.e. a jointly epimorphic family {Di
bi→ B}ni=1, and (2) the inclusions

{Di
di

 FAi}
n
i=1 for some objects A1, . . .An ∈ A . Hence

N ′FAi
gFAi=

hFAi

// N ′′FAi

N ′Di

N ′bi

��

gDi
//

hDi

//

?

�

N ′di

OO

N ′′Di

?

�

N ′′di

OO

N ′′bi

��

N ′B
gB

//

hB
// N ′′B

(3)

Naturality of g and h now yields

N ′′di ◦ gDi = gFAi ◦N
′di

= hFAi ◦N
′di

= N ′′di ◦ hDi

But since models are left exact, each N ′′di is still a monic, and therefore gDi =
hDi, for all i = 1, . . . , n.

Using naturality again, we get

gB ◦N ′bi = N ′′bi ◦ gDi

= N ′′bi ◦ hDi

= hB ◦N ′bi

But since models preserve the finite unions of subobjects {N ′bi}
n
i=1 must be

jointly monic again, and therefore gB = hb. Thus g = h, and F# is faithful.
For the converse, one assumes that there is B ∈ B not subcovered by F ,

and, using compactness, constructs models N ′ and N ′′ and two homomorphisms
g 6= h : N ′ −→ N ′′ such that F#g = F#h. The details are in [21, thms. 7.1.6–
6’]. ⊓⊔

Logical meaning. Proposition 2 tells that each A -model extends back along
F# to some B-model if and only if F : A −→ B is faithful. However, this does
not guarantee that every A -homomorphism between A -models will extend to a
B-homomorphism between their extensions. Indeed, according to proposition 3,
a necessary condition for this is that F : A −→ B is powerful.

Together, these conditons provide a basis for aligning syntactical and the
semantical definitions of parametricity, as described in section 2.4.

4 Characterizing parametric specifications

Theorem 1. For a coherent functor F : A −→ B and the induced “reduct”
F# : Mod(B) −→ Mod(A), the following statements are equivalent.

(a) F is a powerful embedding.

(b) F# is subfull and essentially surjective.

(c) F# is a uniform retraction.

If Mod(B) has coproducts, then the above conditions are also equivalent with

(d) F# is coreflection.

Note that, since Mod(B) is finitely accessible, it has coproducts if and only
if it is locally finitely presentable, i.e. when B classifies an essentially algebraic
theory [1, sec. 3D].

Proof. (a)⇔(b) By proposition 1, it suffices to check that F is faithful and
powerful. By proposition 2, F is faithful if and only if F# is essentially surjective.
By proposition 3, F is powerful if and only if F# is subfull.

To simplify the proof of (b)⇒(c), we shall freely use the established equiva-
lence (a)⇔(b). Given that F# is essentially surjective and subfull, we thus know
that F is full, faithful and powerful. Using all that, we define Φ : Mod(A) −→
Mod(B), such that F# ◦ Φ ∼= Id.

Since F# is essentially surjective, for every M in Mod(A), there is some L in
Mod(B) such that M ∼= F#L. But the homomorphisms to or from M may not
extend to every such L, so we cannot simply take ΦM = L.

On the other hand, like any functor, M : A −→ Set has the right Kan
extension, a functor F#M : B −→ Set [18], defined

F#M(B) = lim
←−

M ◦ Cod (B/F) (4)

where B/F is the comma category, spanned by the arrows in the formB
a

−→ FA

in B . A morphism from B
a

−→ FA to B
c

−→ FC is an arrow g : A −→ C in A

such that Fg ◦ a = c. The image of B ∈ B along F#M is thus the limit of the

diagram B/F
Cod
−→ A

M
−→ Set.

The construction F# is functorial and it is not hard to see that F#◦F#
∼= Id

holds if and only if F is faithful. So F#M might be a candidate for ΦM . But the
assumption that M : A −→ Set is coherent does not generally follow for F#M :
B −→ Set. The F#-image of an A -model M may not be a B-model, and the

functor F# : SetA −→ SetB does not restrict to a functor Mod(A) −→ Mod(B).

But the desired model ΦM : B −→ Set can actually be “interpolated” be-
tween the Kan extension F#M : B −→ Set, and the arbitrary model L : B −→
Set such that F#L ∼=M .

First of all, since F# ⊣ F#, every F
#L −→ M induces L −→ F#M . Given,

as above M ∼= F#L, for every a : B −→ FA in B , there is La : LB −→ LFA ∼=
MA. Hence a cone 〈La〉a∈B/F : LB −→ M ◦ Cod (B/F). By definition (4), this
cone induces a unique arrow φB : LB −→ F#M(B).

Let the functor ΦM : B −→ Set be defined as the monic image of φ : L −→
F#M , i.e.

φB : LB // // ΦM(B)
�

�

// F#M(B) (5)

This ΦM will indeed be a model. Although F#M : B −→ Set is not a model,
when F : A −→ B and M : A −→ Set preserve (finite) limits, then F#M :
B −→ Set weakly preserves them: for every (finite) diagram ∆ : I −→ B , the set
F#M(lim

←−
∆) is a weak limit of F#M(∆) and thus contains lim

←−
F#M(∆) as a

retract.

Together with the coherence of L : B −→ Set, this weak preservation property
of F#M suffices for the coherence of ΦM : B −→ Set. E.g., it preserves the

products because the map from ΦM(B) × ΦM(D) to ΦM(B ×D) on

LB × LD // //

∼=

��

ΦM(B)× ΦM(D)

��

✤

✤

✤

✤

✤

✤

�

�

// F#M(B) × F#M(D)
_

�

��

L(B ×D) // // ΦM(B ×D)
�

�

// F#M(B ×D)

(6)

must be both surjective and injective.
The object part of Φ : Mod(A) −→ Mod(B) is thus determined by (5). Notice

that Φ is not unique, as the definition depends on the choice of L, F#L ∼=M .
To define the arrow part of Φ, take an arbitrary A -homomorphism h :M ′ −→

M ′′ . It surely induces a natural transformation F#h : F#M
′ −→ F#M

′′, and
we can find B-models L′ and L′′ that map by F# to M ′ and M ′′, and determine
B-models ΦM ′ and ΦM ′′; but h : M ′ −→ M ′′ in general does not lift to a
homomorphism L′ −→ L′′. However, Φh : ΦM ′ −→ ΦM ′′ can be derived from
F#h : F#M

′ −→ F#M
′′ alone.

To simplify notation, write N ′ = ΦM ′ and N ′′ = ΦM ′′ and k = Φh for the
desired homomorphism.

We are given a natural family hA :M ′A −→M ′′A and we want to extend it
to kB : N ′B −→ N ′′B, so that kFA = hA. In other words, we have the subfamily
of functions kFA : N ′FA −→ N ′′FA, A ∈ A , and we need to complete it to a
natural family kB : N ′B −→ N ′′B, B ∈ B .

Consider first, for each B ∈ B , the set EB of regular epimorphisms e : B −→→
FAe in B . The e-th component of the limit cone F#M(B) −→ M ◦ Cod(B/F)
is a function F#M(B) −→MAe. Hence the map

F#M(B) //

∏

e∈EB
MAe (7)

Since F : A −→ B is powerful, this map is injective. By postcomposing (5) with
it, one gets

〈Le〉e∈EB : LB // // ΦM(B)
�

�

//

∏

e∈EB
LFAe (8)

because MAe = LFAe. Of course, since L is coherent, each Le : LB −→ LFAe

is a surjection. The set ΦM(B) can thus also be obtained by taking the product
of all sets LFAe, such that there is some regular epi e : B −→ FAe in B , and
then extracting from this product the image of the tuple formed by all epis
Le : LB −→→ LFAe.

The construction of kB : N ′B −→ N ′′B now proceeds by the following steps:

(i) define a function

κB : N ′B −→ ℘(N ′′B)

such that

κFA(x) = {hA(x)}

(ii) show that κB(x) is nonempty for every x ∈ N ′B;
(iii) show that κB(x) has at most one element for every x ∈ N ′B; writing
kB(x) for the only element of κB(x), we get the function kB : N ′B −→
N ′′B;

(iv) prove that the obtained family kB : N ′B −→ N ′′B, B ∈ B is natural,
i.e. forms k : N ′ −→ N ′′.

(i) Using the same set EB of regular epis e : B −→→ FA as above, define

κeB(x) = (N ′′e)−1 ◦ hA ◦N ′e(x)

κB(x) =
⋂

e∈EB

κeB(x)

For B = FA, κidFA(x) = {hA(x)}. Moreover, for every e ∈ EFA holds

κidFA(x) ⊆ κeFA(x) (9)

Indeed, since F is full, the naturality of h implies that the square

N ′FA
hA

//

N ′e

��

��

N ′′FA

N ′′e

��

��

N ′FÃ
hÃ

// N ′′FÃ

commutes. Hence (9), and thus κFA(x) = {hA(x)}, as asserted.
(ii) For every B ∈ B , the set EB is nonempty because it surely contains the
regular epi part B ։ FI F 1 ∼= 1. F 1 is terminal because F is coherent; the
regular image of B −→ F 1 is in the image of F because F is powerful.

Moreover, since N ′′ is coherent, and B −→→ FI is a cover (regular epi)
N ′′B −→ N ′′FI must be a surjection. So ifN ′′B is empty,N ′′FI must be empty,
and hence N ′FI must be empty, because there is a function hI : N ′FI −→
N ′′FI. But there is also a function N ′B −→ N ′FI, and thus N ′B must be
empty as well, so there is a unique kB : N ′B −→ N ′′B, and we are done.

With no loss of generality, we can thus assume that N ′′B is nonempty. Since
N ′′e : N ′′B −→ NFA, e ∈ EB , is a surjection, all NFA are nonempty, and
moreover, every κe(x) = (N ′′e)−1 ◦ hA ◦N ′e(x) is nonempty.

Finally, for any e0 : B −→→ FA0 and e1 : B −→ FA1 from EB the intersection
κe0 ∩ κe1 is nonempty as well. Toward a proof, consider the pair 〈e0, e1〉 : B −→
FA0×FA1

∼= F (A0×A1) in B . Factoring, and using once again the assumption

that F is powerful, we get e2 : B −→→ FA2, with a pair 〈p0, p1〉 : A2 −→ A0×A1

in A such that ei = Fpi ◦ e2, i = 0, 1. But N ′′ei = N ′′Fpi ◦N
′′e2 implies

κe2(x) ⊆ κe0(x) ∩ κe1(x)

for all x ∈ N ′B. Since κe2(x) has been proved nonempty, κe0(x) ∩ κe1(x) is.

A similar reasoning applies to any finite intersection of κes. But for the
quotients e ∈ EB in a coherent category B the compactness applies: if any finite
family is consistent, then the whole set together is. Therefore, κB(x) is nonempty.

(iii) So we can surely chose kB(x) ∈ κB(x). No matter which element we choose,
the equation

N ′′e ◦ kB = kFA ◦N ′e (10)

will hold for every e ∈ EB , because kFA = hA and the definition of κB implies

N ′′e ◦ κB = hA ◦N ′e

On the other hand, recall that N ′′B = ΦM ′′B was defined so as to make the
function 〈N ′′e〉e∈EB injective. But this means that the set of equations (10), for
all e ∈ EB , together determine at most one kB(x), since the functions N ′′e are
jointly injective.

So the family hA : N ′FA −→ N ′′FA, A ∈ A , extends to a uniquely deter-
mined family kB : N ′B −→ N ′′B, B ∈ B .

(iv) To prove that the family kB : N ′B −→ N ′′B is natural, take an arbitrary
arrow g : B0 −→ B1 in B and an arbitrary e1 : B1 −→→ FA1 from EB1

. Let e0 be
the coimage of e1 ◦ g

B0

g
//

e0

��

��

B1

e1

��

��

FA0
�

�

d
// FA1

(11)

The codomain of e0 is in the image of F because it is powerful.

We want to prove that the upper square in the diagram

N ′B0

kB0
//

N ′e0

��

N ′g

��

N ′′B0

N ′′e0

��

N ′′g

��

N ′B1 kB1

//

N ′e1

��

��

N ′′B1

N ′′e1

��

��

N ′FA1 hA1

// N ′′FA1

N ′FA0 hA0

//

+

� N ′d

99sssssssss

N ′′FA0

3

S

N ′′d

ee▲▲▲▲▲▲▲▲▲▲

commutes. The lower square and the large outside trapezoid surely commute by
the definition of kB. The small trapezoid commutes by the naturality of h, and
the two triangles simply as the images of (11). Chasing, one concludes that

N ′′e1 ◦ kB1 ◦N
′g = N ′′e1 ◦N

′′g ◦ kB0

But e1 was taken as an arbitrary element of EB1
, so the last equation holds for

all such. Since they are, by the construction of N ′′ = ΦM ′′, jointly monic,

kB1 ◦N
′g = N ′′g ◦ kB0

follows.
This completes the proof of (b)⇒(c). The converse (c)⇒(b) can be proved

by modifying [21, thm. 7.1.4–4’]. The argument is lengthy, based on the Los-
Tarski theorem, and I do not see a way to improve on it, so the reader may wish
to consult the original.

Finally, to connect (d) with the other three conditions, note that the assump-
tion of coproducts makes Mod(B) into a locally finitely presentable category, so
that F# must have a left adjoint, like in [10, § 5], obtained by restricting the
left Kan extension of F . Hence (d)⇔(a). But a proof of this was already in [9]
and [14], albeit in a slightly different setting. ⊓⊔

An immediate consequence of theorem 1 and proposition 4 is a precise syn-
tactic characterisation of definitional extensions, the interpretations F which
induce an equivalence F# between the model categories. The class is essentially
larger than assumed in any of the implemented versions.

Corollary 1. F # : Mod(B) −→ Mod(A) is an equivalence if and only if F :
A −→ B is a powerful embedding, and subcovering.

A proof of this can also be derived from Makkai-Reyes’ conceptual complete-
ness theorem [21, thm. 7.1.8], which is the main result of their book.

5 Conclusions and further work

The research reported in this paper was originally motivated by the questions
arising from the semantics and the usage of SpecwareTM, a tool for the auto-
matic synthesis of software systems, developed at Kestrel Institute. In particular,
the original semantics of pspecs as an abstract family of arrows [25] needed to be
refined into a precise syntactic characterisation and verified semantically. This
task took us far afield, into nontrivial model theory and functorial calculus, and
brought about the above theorem relating two extant notions of parametricity.
As suggested at the end of section 2.4, it can be viewed as an indexed com-
pleteness result. Formalizing this view might lead to various conceptual and
meta-theoretical insights.

But the question of the practical repercussions of the presented material,
or of their absence, seems even more interesting. The immediate task should
probably be to analyze closely related families of coherent functors, capturing the
instantiations and the implementations of theories. The practice of parametric
specification is based upon them as much as upon the family of pspecs, studied
in the present paper. Some important issues of refinement directly require this
further analysis.

However, as we are not very far in any of these tasks, the main point of
presenting this work currently is not this or that particular result, but showing
categorical model theory at work in the software specification framework and
suggesting a first step or two toward developing specific tools for analyzing and
designing specification frameworks.

If, as is often stated, the increasing complexities and dynamics of evolving
software development tasks make semantical analyses increasingly important,
even indispensable in critical cases, then mathematical methods of the kind pre-
sented here may come to play an increasingly important role, as they may provide
enough abstraction to resolve the concrete problems where formal methods are
genuinely needed.

Acknowledgement. Most of what I have managed to learn about software
is due in one way or another to the Kestrel people; what I have managed not
to learn is also due in part to their tolerance. David Espinosa carefully read an
earlier version of the paper and suggested many improvements. Theo Dimitrakos
has provided very helpful and extensive comments.

References

1. J. Adámek and J. Rosický, Locally Presentable and Accessible Categories. LMS
Lect. Note Series 189 (Cambridge Univ. Press 1994)

2. J. Adámek, P.T. Johnstone, J.A. Makowsky and J. Rosický, Finitary sketches, J.
Symbolic Logic 62(1997) 699–707

3. M. Barr and C. Wells, Category Theory for Computing Science. (Prentice Hall
1990)

4. R. Burstall and J. Goguen, The semantics of Clear, a specification languge. In:
D. Bjorner, ed., Proceedings, 1979 CopenhagenWinter School on Abstract Software

Specification. Lecture Notes in Computer Science 86 (Springer 1980)

5. Th. Dimitrakos, Formal Support for Specification Design and Implementation. The-
sis (Univ. of London 1998)

6. H. Ehrig and M. Große-Rhode, Functorial theory of parametrized specifications in
generalized specification framework, Theoret. Comput. Sci. 135(1994) 221–266

7. H. Ehrig and H.J. Kreowski, Parameter passing commutes with implementation of
parametrized data types. In [23] 197–211

8. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 2. Module Specifica-

tions and Constraints. EATCS Monographs in Theor. Comp. Sci., vol. 21 (Springer
1990)

9. H. Ganzinger, Parametric specifications: parameter passing and implementations
with respect to observability. ACM Trans. on Prog. Lang. and Syst. 5(1983) 318–
354

10. P. Gabriel and F. Ulmer, Lokal Präsentierbare Kategorien. Lecture Notes in Math-
ematics 221 (Springer 1971)

11. J. Goguen and R.M. Burstall, CAT, a system for the structured elaboration of
correct programs from structured specifications. Tech. report CSL-118 (SRI 1980)

12. J. Goguen, Parametrized programming. Trans. on Software Engineering 10-5(1984)
528–543

13. J. Goguen, Principles of parametrized programming. In: Software Reusability. Vol

I: Concepts and Models. (Addison-Wesley 1989) 159–225

14. J. Goguen and J. Meseguer, Universal realization, persistent interconnection and
implementation in abstract modules. In [23] 265–281

15. J. Goguen, J. Meseguer and D. Plaisted, Programming with parametrized abstract
objects in OBJ. In: D. Ferrari et al., eds., Theory and Practice of Software Tech-

nology (North-Holland 1983) 163–193

16. F.W. Lawvere, Functorial Semantics of Algebraic Theories. Thesis (Columbia
Univ. 1963)

17. M. Löwe and U. Wolter, Parametric algebraic specifications with Gentzen formulas
— from quasi-freeness to free functor semantics. Math. Structures Comput. Sci.

5(1995) 69–111

18. S. Mac Lane, Categories for the Working Mathematician. Graduate Texts in Math-
ematics 5 (Springer 1971)

19. M. Makkai, Stone duality for first order logic. Advances in Math. 65(1987)

20. M. Makkai and R. Paré, Accessible Categories: The Foundations of Categorical

Model Theory. Contemporary Mathematics 104 (AMS 1989)

21. M. Makkai and G. Reyes, First Order Categorical Logic. Lecture Notes in Mathe-
matics 611 (Springer 1977)

22. E. Manes, Algebraic Theories. (Springer 1976)

23. M. Nielsen and E.M. Schmidt, eds., Proceedings of Ninth ICALP. Lecture Notes
in Computer Science 140 (Springer 1982)

24. D. Sanella and M. Wirsing, Implementation of parametrized specifications. In [23]
473–488

25. Y.V. Srinivas, Refinement of parametrized algebraic specifications. In: R. Bird and
L. Meertens, eds., Algorithmic Languages and Calculi. (Chapman & Hall 1997)
164–186

26. C. Strachey, Fundamental concepts in programming languages, unpublished lecture
notes, 1967

27. J.W. Thatcher, E.G. Wagner and J.B. Wright, Data type specification:
parametrization and the power of specification techniques. ACM Trans. of Prog.

Lang. and Syst. 4(1982) 711–732 (earlier version: Proc. of 10th SIGACT Symp. on

Theory of Computing (1978) 119–132)
28. R. Waldinger, L. Blaine, D. Espinosa, L.-M. Gilham, A. Goldberg, C. Green,

R. Jüllig, J. Liu, J. McDonald, D.R. Smith, Y.V. Srinivas, T.C. Wang and S. West-
fold, Specware

TM Language Manual (Kestrel Institute 1998) — available upon
request from keep@kestrel.edu

