
Categories of Processes

Enriched in Final Coalgebras

Sava Krstić1, John Launchbury1, and Duško Pavlović2

1 Oregon Graduate Institute {krstic,jl}@cse.ogi.edu
2 Kestrel Institute dusko@kestrel.edu

Abstract. Simulations between processes can be understood in terms
of coalgebra homomorphisms, with homomorphisms to the final coal-
gebra exactly identifying bisimilar processes. The elements of the final
coalgebra are thus natural representatives of bisimilarity classes, and a
denotational semantics of processes can be developed in a final-coalgebra-
enriched category where arrows are processes, canonically represented.
In the present paper, we describe a general framework for building final-
coalgebra-enriched categories. Every such category is constructed from a
multivariant functor representing a notion of process, much like Moggi’s
categories of computations arising from monads as notions of computa-
tion. The “notion of process” functors are intended to capture different
flavors of processes as dynamically extended computations. These func-
tors may involve a computational (co)monad, so that a process category
in many cases contains an associated computational category as a retract.
We further discuss categories of resumptions and of hyperfunctions, which
are the main examples of process categories. Very informally, the resump-
tions can be understood as computations extended in time, whereas hy-
percomputations are extended in space.

1 Introduction

A map A×X −→ B ×X can be construed as a function from A to B extended
in time, represented by a set X of states. For each state in X and each input
from A, such a function gives an output in B, and the next state in X . This is
the usual representation of a transducer.

A map AX −→ BX , on the other hand, can be construed as a function from
A to B extended in space, represented by a set X of storage cells. For each
assignment of A-values to all X-cells, such a function gives an assignment of
B-values to the same cells.

By transposition, a transducer A×X −→ B×X can equivalently be viewed

– as a Kleisli morphism A −→ (B ×X)X for the monad B 7→ (B ×X)X , or
– as a coalgebra X −→ (B ×X)A for the functor X 7→ (B ×X)A.

Similarly, a function with storage AX −→ BX can be viewed

– as a Kleisli morphism AX ×X −→ B for the comonad A 7→ AX ×X , or

– as a coalgebra X −→ BAX

for the functor X 7→ BAX

.

In both cases, there is a double category [Gra74] displaying the structure
and behaviour as the horizontal and the vertical arrows respectively. It has pairs
〈A,X〉 as objects, where the component A is to be thought of as a data type,
and X as a state space. The horizontal arrows represent computations, cap-
tured as transducers (functions with storage), or by transposition as the Kleisli
morphisms for the corresponding (co)monad. By the other transposition, they
become coalgebras, and the vertical arrows arise as the coalgebra homomor-
phisms between them. They capture dynamics of the computations. The double
morphisms are thus, respectively, the commutative squares of the form

A×X //

A×h

��

B ×X

B×h

��

AX // BX

A× Y // B × Y AY

Ah

OO

// BY

Bh

OO

This picture can be relativized, in favorable situations, over computational
monads, or comonads. The problem with it, however, is a lot of redundancy,
since arbitrary sets as state spaces provide a very loose representation of com-
putational behavior. To pin down the computational semantics in the case of
transducers, where many of them can be computationally equivalent, one usu-
ally seeks a way to construct minimal representatives. Recently, coalgebra has
been proposed as a uniform framework for such constructions, where minimal
representatives are obtained as elements of final coalgebras [Acz88,TR98,JR97].
Given a transducer A×X −→ B ×X , there is a unique homomorphism [(X)] to
the final coalgebra [A,B]R of the functor RX = (B ×X)A

A×X //

A×[(X)]

��

B ×X

B×[(X)]

��
A× [A,B] // B × [A,B]

It turns out that two states x ∈ X and y ∈ Y (Y being the state space of
another transducer A × Y −→ B × Y) lead to equivalent computations if and
only if [(X)](x) = [(Y)](y).

These remarks can be repeated for functions with storage: the stores x ∈ X

and y ∈ Y can be reasonably assumed to be computationally indistinguishable if

and only if their images in the final coalgebra [A,B]H of the functor HX = BAX

are equal.
For historical perspective, we note that methods of representing processes

in categories by coalgebra-like structures go back at least to the systems the-
ory work of Arbib and Manes in the late sixties [Arb66,AM74]. The idea that

minimal representatives of processes can be viewed and obtained as elements of
final coalgebras has probably originated in Aczel’s work [Acz88] on semantics of
concurrency in terms of hypersets, which form final coalgebras of the powerset
functor.

Elements of [A,B]R are known as resumptions. Composition of transduc-
ers induces composition of resumptions, and resumption domains are the arrow
sets of a category. The observation that process categories are final coalgebra-
enriched was developed in an unpublished joint work of Abramsky and the third
author; some instances are given in [Abr96b]. On the other hand, hyperfunction
domains [A,B]H also form a category, as recently discovered in [LKS00]. While
double categories present both structural (Kleisli) and behavioral (coalgebra)
aspect of transducers and functions with storage, by passing to final coalgebras
we extract the canonical behaviors while preserving the structural aspect. The
(one-dimensional) categories of resumptions and hyperfunctions provide a more
convenient ambient than the double categories from which they are distilled.

Following the idea that minimal representatives of processses are elements
of final coalgebras, in the next section we describe an abstract situation when
final coalgebras for a family of functors yield a category, viz. its hom-sets. This
is our general framework of the coalgebra enriched categories. It applies to the

endofunctors RX = (B × X)A and HX = BAX

, and yields, respectively, the
categories of resumptions and hyperfunctions; their morphisms can be thought
of as (abstract, computational) functions extended in time, or space. The same
construction applies, however, to a wide class of more general endofunctors, in-
volving, for example, various notions of computation captured by computational
monads and comonads [Mog91,BG92]. Notably, the functors

RMXAB = (M(B ×X))
A

and HGXAB = BG(AX)

considered in Section 3, for suitable monadsM and comonadsG lead to coalgebra
enriched categories of computations extended in time, or space.

In Section 4, we specialize to hyperfunctions and discuss the question of
equivalence of coinductive definitions of hyperfunction operations with the re-
cursive definitions given in the Haskell package of [LKS00]. This turned out to
be a surprisingly difficult problem, so we limit ourselves to a brief discussion,
leaving out the proofs.

2 Final coalgebra enrichment

We represent a notion of process as a functor, or type constructor, T , which
for types X , A and B yields the type TXAB of computations with inputs of
type A and outputs of type B, parametrized by a process type X representing
the process state. The process type can be understood as a space of states or
storage cells, as described in the previous section, or, more generally, it can be
any kind of space in which some computational, or even physical processes can
be analyzed. Processes can then be presented as coalgebras

X −→ TXAB

assigning to each point of space a computation, involving the inputs from A, the
outputs from B, as well as some further elements of X . For example, when X

is the space of states, the computation yields the next states; when X is the set
of storage cells, the computation may use and update their contents. Processes
are thus viewed as computations extended through the process space X , which
may be viewed as an abstraction of the temporal, or of the spatial dimension, in
various ways.

Definition 1. Let 〈C,⊗, I〉 be a monoidal category. A notion of process over C
is a functor T : C × Cop × C −→ C equipped with extranatural families of maps

iA : I −→ TIAA

cXY ABC : TXAB ⊗ TY BC −→ T (X⊗Y)AC

satisfying the conditions

TXAB ⊗ I
id⊗ iB //

∼=
OOOOOOOOOOOO

''OOOOOOOOOOO

TXAB ⊗ TIBB

c

��
I ⊗ TY AB

iA ⊗ id

��

∼=
NNNNNNNNNNNN

''NNNNNNNNNNNN

T (X⊗I)AB

TIAA ⊗ TY AB c
// T (I⊗Y)AB

TXAB ⊗ TY BC ⊗ TZCD

id⊗ c

��

c⊗ id // T (X⊗Y)AC ⊗ TZCD

c

��
TXAB ⊗ T (Y ⊗Z)BD

c
// T (X⊗Y ⊗Z)AD

(For unexplained terminology, the reader is referred to [Kel82].)

The idea behind the structure attached to each notion of process T is that

– for each type A, iA denotes the identity process, which simply outputs its
inputs, over the trivial process space I;

– for all types A, B and C, cXY ABC sequentially composes the processes from
A to B over the space X with the processes from B to C over Y ; it hides
the intermediary data from B, and produces processes from A to C, over
the product space X ⊗ Y .

The imposed commutativity conditions pin down these intended meanings.
Examples of process notions are given by the functors RM and HG defined

in the Introduction; see the next section.
As we already mentioned, the representation of processes as coalgebras is

loose: many different coalgebras may represent behaviorally equivalent processes,
indistinguishable in terms of their computational interpretation. This motivates
a whole branch of research on the various notions of simulation, bisimulation,
observational equivalence etc. The role of coalgebra in this realm is well known
[TR98,Rut96]. The minimal representatives of coalgebras with respect to the
canonical notions of behavior are usually captured as the elements of the final
coalgebras.

So one naturally tries to use the final process coalgebras as the hom-sets of
(canonically represented) processes. And indeed, the structure of the notion of
process gives rise to the category structure upon such hom-sets.

Theorem 1. If T is a notion of process over a category C and if final T (−)AB-
coalgebras, denoted [A,B], exist for every A,B, then there exists a C-enriched
category P whose objects are the same as the objects of C and whose hom-objects
are the coalgebras [A,B].

The category P = PT is called the process category induced by the notion of
process T .

Proof. We will use the notation ξ = ξAB for the final coalgebras [A,B] −→
T [A,B]AB.

The map iA is a T (−)AA-coalgebra, so we define the P-identity on A as the
anamorphism uA : I −→ [A,A] induced by iA.

To define the P-composition

kABC : [A,B]⊗ [B,C] −→ [A,C]

we use the composite

κABC : [A,B]⊗ [B,C]
ξ⊗ξ
−→ T [A,B]AB ⊗ T [B,C]BC
c

−→ T ([A,B]⊗[B,C])AC

It is a T (−)AC-coalgebra on [A,B]⊗ [B,C], and kABC is defined as the anamor-
phism induced by it.

To prove the associativity of k, it suffices to show that the maps occurring
in the diagram

[A,B]⊗ [B,C]⊗ [C,D]
id⊗k //

k⊗id

��

[A,B]⊗ [B,D]

k

��
[A,C]⊗ [C,D]

k
// [A,D]

are actually maps of T (−)AD-coalgebras. The diagram will then commute be-
cause [A,D] is final. The two maps labelled k are kABD and kACD, and they
are coalgebras by definition. Thus, we only need to define a T (−)AD-coalgebra
κABCD on [A,B] ⊗ [B,C] ⊗ [C,D] and show that the maps kABC ⊗ id and
id ⊗ kBCD of the last diagram are coalgebra maps from κABCD to κACD and
κABD respectively.

We define κABCD as the composite

κABCD : [A,B]⊗ [B,C]⊗ [C,D] −→
ξ⊗ξ⊗ξ
−→ T [A,B]AB ⊗ T [B,C]BC ⊗ T [C,D]CD

k′

−→ T ([A,B]⊗ [B,C]⊗ [C,D])AD

where κ′ is the diagonal of the rectangle expressing the associativity condition
c ◦ (c ⊗ id) = c ◦ (id ⊗ c) in Definition 1, with X,Y, Z instantiated with [A,B],
[B,C], [C,D] respectively. Thus, κABCD is the left column map in the diagram

[A,B] ⊗ [B,C] ⊗ [C,D]
id⊗k //

ξ⊗ξ⊗ξ

��

[A,B] ⊗ [B,D]

ξ⊗ξ

��

T [A,B]AB ⊗ T [B,C]BC ⊗ T [C,D]CD

id⊗c

��
T [A,B]AB ⊗ T ([B,C]⊗[C,D])BD

id⊗ TkBD //

c

��

T [A,B]AB ⊗ T [B,D]BD

c

��
T ([A,B]⊗ [B,C]⊗ [C,D])AD

T (id⊗k)AD

// T ([A,B]⊗[B,D])AD

while κABD is seen as the right column map. The diagram commutes because
the two constituent diagrams commute: the top pentagon by definition of kABD

and the bottom rectangle by the naturality of c.

An analogous diagram shows that k ⊗ id is a coagebra map from κABCD to
κACD, and this finishes the proof of associativity of the P-composition k.

The unit axioms for uA are checked in a similar fashion. Finally, the naturality
of P-composition and its units follows from extranaturality of families iA and
cXYABC .

3 Examples: state and storage enrichment

Although the definition of the notion of process, and the general construction
of Theorem 1 only require the monoidal structure on C, our main motivating
examples arise in the framework of autonomous, i.e. closed symmetric monoidal
categories. In fact, the most interesting situations, some of which are referred to
in the propositions below, are supported by the cartesian closed structure. The
symbols ⊸ and ⇒ will denote cotensor operations in autonomous and cartesian
closed categories respectively.

3.1 Static process categories

For every monad M over an autonomous category C, the Kleisli category KM

(the category of M -computations in the sense of Moggi [Mog91]) can be viewed
as the process category PT for the functor

TMXAB = A ⊸ MB

This is, of course, a degenerate process category: its hom-objects are the final
coalgebras of functors constant in X . Indeed, if processes are construed as com-
putations extended in time or space, then static processes boil down to mere
computations, and the corresponding process categories PTM

to the categories
of computations KM .

More generally, there is a static process category corresponding to every
functor E : Cop × C −→ C that enriches C over itself; the requisite notion of
process is TXAB = EAB.

Every process notion T has an associated static one, Tst, defined by TstXAB =
TIAB. Its final coalgebras are [A,B]st = TIAB, and by precomposing the map
T ! id id : T [A,B]AB −→ [A,B]st with ξ : [A,B] −→ T [A,B]AB we define

proj : [A,B] −→ [A,B]st

which, as one can easily check, is an identity-on-objects functor

proj : PT −→ PTst
.

In the most interesting examples, the static process category is some category
of computations. Since computations can be treated as (static) processes, proj
will usually be a retraction.

3.2 Resumptions

Every strong monad M over an autonomous category C with enough final coal-
gebras defines a category RM of M -resumptions. By definition, RM is the pro-
ces category PRM

induced by the notion of process consisting of the functor
RM : C × Cop × C −→ C, defined by

RMXAB = A ⊸ M(X ⊗B)

and the transformations

i : I −→ A ⊸ M(I ⊗A)

c :
A ⊸ M(X ⊗B) ⊗
B ⊸ M(Y ⊗ C)

}
−→ A ⊸ M(X ⊗ Y ⊗ C)

obtained by transposing, respectively,

– the monad unit I ⊗A −→ M(I ⊗A), and
– the composite

A⊗ (A ⊸ M(X ⊗B)) ⊗ (B ⊸ M(Y ⊗ C))

(1)
−→ M(X ⊗B) ⊗ (B ⊸ M(Y ⊗ C))

(2)
−→ M (X ⊗B ⊗ (B ⊸ M(Y ⊗ C)))

(3)
−→ M (X ⊗M(Y ⊗ C))

(4)
−→ MM (X ⊗ Y ⊗ C)

(5)
−→ M (X ⊗ Y ⊗ C)

where maps (1) and (3) are derived from the evaluation U⊗(U ⊸ V) −→ V ,
(2) and (4) from the tensorial strength U ⊗MV −→ M(U ⊗ V), and (5) is
a component of the monad cochain MM −→ M .

The fact that this structure satisfies the conditions of Definition 1 can be checked
by a routine, though lengthy diagram chase.

When C is the category of sets and M is the power set functor, we obtain the
classical example of resumptions: [A,B] is the set of A × B-labelled hypersets
(synchronization trees) [Acz88], and RM fully embeds in the category SProc of
[Abr96a].

Proposition 1. If C is cartesian closed and the category RM of M -resumptions
exists, then the category KM of M -computations is a retract of RM .

Proof. Since RMIAB = A ⇒ M(I×B) ∼= A ⇒ MB, the static process category
associated with RM is indeed KM ; we need maps

lift : (A ⇒ MB) −→ [A,B]

that split proj : [A,B] −→ (A ⇒ MB).
Since [A,B] = [A,B]RM

is the final coalgebra for the functor RM (−)AB, we
can define lift as the anamorphism for the coalgebra on A ⇒ MB obtained by
transposing the composite

A× (A ⇒ MB)
〈ǫ,π′〉 // MB × (A ⇒ MB)

ϑ // M(B × (A ⇒ MB)) ,

where ε is evaluation and ϑ is tensorial strength.
It remains to prove proj ◦ lift = id, but this follows from the definitions.

Viewing functions as degenerate computations, i.e. the base category C as
the Kleisli category KId, we derive that C is a retract of R = RId.

3.3 Hyperfunctions and hypercomputations

The G-hypercomputations are the arrows of the process category HG induced by
the notion of process consisting of the functor HG : C × Cop × C −→ C given on
objects by

HGXAB = G(X ⊸ A) ⊸ B

and the transformations

i : I −→ G(I ⊸ A) ⊸ A

c :
G(X ⊸ A) ⊸ B ⊗
G(Y ⊸ B) ⊸ C

}
−→ G (X ⊗ Y ⊸ A) ⊸ C

where G is a comonad possessing a tensorial strength A ⊗ GB −→ G(A ⊗ B)
and a cotensorial strength

(GA ⊸ B) −→ G(A ⊸ B).

Space constraints do not allow us to elaborate on the non-standard notion of
cotensorial strength; the coherence conditions that need to be imposed on it are
analogous to the well-known ones for the tensorial strength. Computationally,
tensorial strength allows variables to enter and exit computations, whereas the
cotensorial strength ensures the same for the abstraction.

Of course, just like functions are degenerate computations relative to the
identity monad, hyperfunctions are degenerate hypercomputations, obtained by
omitting G in the above definition.

The transformations i and c are obtained by transposing

– the counit G(I ⊸ A) −→ (I ⊸ A), and
– the composite

G(X ⊗ Y ⊸ A)⊗ (G(X ⊸ A) ⊸ B)⊗ (G(Y ⊸ B) ⊸ C)

(1)
−→ G (Y ⊸ (X ⊸ A))⊗ (G(X ⊸ A) ⊸ B)⊗ (G(Y ⊸ B) ⊸ C)

(2)
−→ G((Y ⊸ (X ⊸ A)) ⊗ ((X ⊸ A) ⊸ B))⊗ (G(Y ⊸ B) ⊸ C)

(3)
−→ G(Y ⊸ B)⊗ (G(Y ⊸ B) ⊸ C)

(4)
−→ C

where cotensorial strength and currying are used for (1), tensorial strength
for (2), and evaluation for (3) and (4).

Checking that the requirements of a process notion are satisfied is again routine,
but this time fairly tedious.

Proposition 2. If C is cartesian closed and the category HG of G-hypercomputations
exists, then the category KG of G-computations is a retract of HG.

Proof. The static process category associated with HG is KG. The injection

lift : (GA ⇒ B) −→ [A,B]

can be defined as the anamorphism for the coalgebra on GA ⇒ B, obtained by
transposing the composite

G((GA ⇒ B) ⇒ A)× (GA ⇒ B)

〈π′,ϑ〉
−→ (GA ⇒ B)×G((GA ⇒ B)× ((GA ⇒ B) ⇒ A))
id×Gǫ
−→ (GA ⇒ B)×GA

ǫ′

−→ B

Again, proj ◦ lift = id has a straightforward proof.

As a corollary (when G = Id) we obtain that the base category C is a retract
of the category H of hyperfunctions.

4 Hyperfunctions recursively

Hyperfunction types can be easily defined in a programming language which
allows recursive definitions of data types (Haskell, for example). Any program-
ming with them, however, would require using the basic operators like hyper-
function units, composition, and the lifting function. We have defined all of them
as anamorphisms and it is not clear how such definitions can translate into a
convenient programming language. The question is really not so much of trans-
lating, but of matching, for all basic hyperfunction operations were introduced in
[LKS00] by means of recursive definitions, and we now have a problem of show-
ing that each recursive definition is equivalent to the corresponding coalgebraic
one.

Of course, the recursive definitions take place in a more specific setting pro-
vided by a category of domains. Without being too specific, let us assume that
our base category is one of pointed domains, suitable for modeling recursive
types by standard bilimit construction [AJ94]. The notation [A,B] is now for
the canonical solution of the equation X ∼= (X ⇒ A) ⇒ B. By the Bekić
Lemma, the pair of domains [A,B] and [B,A] must be the canonical solution to
the system of equations

X ∼= Y ⇒ B

Y ∼= X ⇒ A.

Consequently, there is a (canonical) isomorphism [A,B] −→ ([B,A] ⇒ B) whose
transpose

(·) : [A,B]× [B,A] −→ B

can be considered a hyperfunction application operation. Thus, any equation
u ·v = e, where e is an expression of type B (assuming u and v are of types [A,B]
and [B,A] respectively) defines a hyperfunction u. For example, for each b in B

there exists a “constant hyperfunction” kb, defined by kb · v = b. More generally,
for every function f : A −→ B there exists a corresponding hyperfunction f̃

recursively defined by

f̃ · u = f(u · f̃). (1)

Note that f̃ · ka = f(a) so that f̃ extends f in some sense, and the first question
arises: Does the equation (1) define the same function as lift of Proposition 2?

Consider now the equation

θA · u = u · θA, (2)

where both θA and u are in [A,A]. We can view the equation as a recursive

definition of θA. It follows from (1) that ˜idA satisfies it. But, are θA and ˜idA
equal? Are they the same as the identity hyperfunction as defined in Section 3.3?

Computing a little more with the use of (1),

f̃ · g̃ = f(g̃ · f̃) = f(g(f̃ · g̃) = (f ◦ g)(f̃ · g̃),

suggests that

f̃ · g̃ = fix(f ◦ g),

but is it true? A special case is particularly interesting:

fix(f) = θ · f̃ . (3)

Does the least fixpoint operator coincide with the application of the unit hyper-
function?

Finally, let us look for a binary operation #: [B,C]× [A,B] −→ [A,C] which
behaves on the lifts of ordinary functions as the usual composition. In other

words, we expect the equality f̃ # g̃ = f̃ ◦ g to hold. The chain of equalities,
some of them resting on the hypothetical equations above,

(f̃ # g̃) · h̃ = f̃ ◦ g · h̃

= fix((f ◦ g) ◦ h)

= fix(f ◦ (g ◦ h))

= f̃ · g̃ ◦ h

= f̃ · (g̃ # h̃)

suggests the following recursive definition of #:

(u# v) · w = u · (v # w). (4)

Is this # associative? Do hyperfunctions θ behave like units for #? Is # the
same as the (reversed) hyperfunction composition, as defined in Section 3.3?

Theorems 2 and 3 below imply the answer yes to all our questions.

A hyperfunction package in Haskell

The above definitions can be coded in Haskell, with necessary modifications, as
follows.

newtype H a b = Phi (H b a -> b)

(@) :: H a b -> H b a -> b

(Phi f) @ k = f k

konst :: a -> H b a

konst p = Phi (\k -> p)

(<<) :: (a -> b) -> H a b -> H a b

f << q = Phi (\k -> f (k @ q))

lift :: (a->b) -> H a b

lift f = f << lift f

proj :: H a b -> a -> b

proj f a = f @ (konst a)

self :: H a a

self = lift id

(#) :: H b c -> H a b -> H a c

f # g = Phi (\k -> f @ (g # k))

run :: H a a -> a

run f = f @ self

An explicit isomorphism, denoted Phi, is needed to identify the hyperfunction
type H a b with the function type H b a -> b. Note that @ is the application
operator and konst p is a constant hyperfunction. The (<<) operator acts rather
like a cons operator, taking a function element f and adding to the stack of
functions q (if we can think of hyperfunctions as being stacks of functions, which
is only partially true). self is the hyperfunction unit, and run is the application
of it, so that run (lift f) is just fix f.

Hyperdomains

If the base category is cartesian closed with hyperfunction coalgebras, then there
are natural maps

φAB : ([B,A] ⇒ B) −→ [A,B]

defined as anamorphisms corresponding to the T (−)AB-coalgebras

(ξ−1
BA ⇒ B) : ([B,A] ⇒ B) −→ ((([B,A] ⇒ B) ⇒ A) ⇒ B).

We will call our category a category of hyperdomains if φAB is an isomorphism
for every A and B, and we will use the notation

pAB : [B,A]× [A,B] −→ B

for the transpose of the inverse of φAB. This is just the hyperfunction application
operator, with a reversed order of arguments.

The application operator is all we need to give categorical formulation of
the equations (1), (2) and (4) used in the domain setting to define the lifting
function and the hyperfunction unit and composition. It turns out that no further
assumptions are needed for proving that recursive definitions given by these
equations are equivalent to the corresponding coalgebraic definitions.

[B,A]× (A ⇒ B)

id×x

����
��

��
��

��
��

�� 〈x◦π′,π,π′〉

""EE
EE

EE
EE

EE

[A,B]× [B,A]× (A ⇒ B)

pBA×id

��
[B,A]× [A,B]

pAB

��:
::

::
::

::
::

::
::

A× (A ⇒ B)

ǫ

||yy
yy

yy
yy

yy
y

B

Diagram 1: Translation of

the equation f̃ · u = f(u · f̃)

[A,A]

〈x◦!,id〉

����
��

��
��

��
��

〈id,x◦!〉

��<
<<

<<
<<

<<
<<

<

[A,A]× [A,A]

pAA

��<
<<

<<
<<

<<
<<

<
[A,A]× [A,A]

pAA

����
��

��
��

��
��

A

Diagram 2: Translation of
θ · u = u · θ.

[A,B]× [B,C]× [C,A]

x×id

����
��

��
��

��
��

id×x

��?
??

??
??

??
??

?

[A,C]× [C,A]

pAC

��?
??

??
??

??
??

??
[A,B]× [B,A]

pAB

����
��

��
��

��
��

�

A

Diagram 3: Translation of
(u# v) · w = u · (v # w).

The translations are given in Diagrams 1–3. Diagram 1 is an equation for
x : (A ⇒ B) −→ [A,B] and Diagram 2 is an equation for x : I −→ [A,A]. In

Diagram 3, however, the two occurrences of x refer to morphisms with different
source and target. The unknown x here is a collection of functions xABC : [A,B]×
[B,C] −→ [A,C], where A,B,C range over all objects. For each triple A,B,C,
Diagram 3 expresses a relation between xABC and xBCA. Due to the cyclic
nature of the equation, this infinite system of equations partitions itself into
systems of three equations in three unknowns xABC , xBCA and xCAB.

Theorem 2. In any category of hyperdomains:

(a) Diagram 1 commutes if and only if x = liftAB;
(b) Diagram 2 commutes if and only if x = uA;
(c) Diagram 3 commutes (for every A,B,C) if and only if xABC = kABC (for

every A,B,C).

Turning to the remaining equation (3), we note first that the existence of
fixpoints in a category of hyperdomains is granted by a result of Mulry [Mul99]:
a fixpoint map (A ⇒ A) −→ A exists whenever there is a retraction X −→
(X ⇒ A), and we take X = [A,A]. This, of course, does not imply the equation
(3), which we may rewrite as fix = Y , where

YA : (A ⇒ A)
lift // [A,A]

〈id,uA◦!〉 // [A,A]× [A,A]
p // A.

Theorem 3. Over any category of hyperdomains, the operator Y is dinatural.

For definition of dinaturality and the fact that all dinatual operators of type
(A ⇒ A) −→ A are necessarily fixpoint operators we refer to [BFSS90] and
[SP00]. The equation (3) follows by combining Theorem 3 with a theorem of
Simpson [Sim93] implying that the least fixpoint operator in standard categories
of domains is the only dinatural fixpoint operator.

Another consequence of Theorem 3 is that the existence of hyperfunction
coalgebras does not imply the isomorphisms [A,B] ∼= [B,A] ⇒ B; a counterex-
ample can be found using the PER model of polymorphism [Hyl88,LM91], as
suggested by one of the referees.

5 Future work

We have initiated a study of the general structure of process categories. Under
suitable conditions, there is premonoidal structure, others give fixpoints and
recursion, and some induce the full framework for axiomatic domain theory.
Finding such conditions precisely and determining their computational meaning
seems to be a demanding but worthwhile task.

Special process categories deserve further study, starting with hyperfunc-
tions. The recent example of hyperfunctions used as an instrumental datatype
in a solution of a difficult programming problem [LKS00] suggests that the pro-
gramming potential of process categories seems worth exploring as well.

References

[Abr96a] S. Abramsky. Interaction categories. In Theory and Formal Methods ’93,
Workshops in Computer Science, pages 57–70. Springer-Verlag, 1996.

[Abr96b] S. Abramsky. Retracing some paths in process algebra. In U. Montanari and
V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th International
Conference, volume 1119 of Lecture Notes in Computer Science, pages 1–17,
1996.

[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Publications, 1988.
[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3. Clarendon Press, 1994.

[AM74] M. A. Arbib and E. G. Manes. Machines in a category: An expository intro-
duction. SIAM Review, 16:163–192, 1974.

[Arb66] M. A. Arbib. A common framework for automata theory - a rapprochement.
Automatica, 3:161–189, 1966.

[BFSS90] E. Bainbridge, P.J. Freyd, A. Scedrov, and P. Scott. Functorial polymor-
phism. Theoretical Computer Science, 70:35–64, 1990.

[BG92] S. Brookes and S. Geva. Computational comonads and intensional semantics.
In M.P. Fourman, P.T. Johnstone, and A.M. Pitts, editors, Categories in
Computer Science, pages 1–44. Cambridge University Press, 1992.

[Gra74] J. W. Gray. Formal Category Theory: Adjointness for 2-categories. Springer,
1974.

[Hyl88] M. Hyland. A small complete category. Annals of Pure and Applied Logic,
40:135–165, 1988.

[JR97] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bul-
letin of the European Association for Theoretical Computer Science, 62:222–
259, 1997.

[Kel82] G. M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge Uni-
versity Press, 1982.

[LKS00] J. Launchbury, S. Krstić, and T. E. Sauerwein. Zip fusion with hyperfunc-
tions. Technical report, Oregon Graduate Institute, 2000. Preprint available
on http://www.cse.ogi.edu/~krstic.

[LM91] G. Longo and E. Moggi. onstructive natural deduction and its ‘omega-set’
interpretation. Mathematical Structures in Computer Science, 1:215–254,
1991.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55–92, 1991.

[Mul99] P. S. Mulry. Categorical fixed-point semantics. Theoretical Computer Science,
118:301–314, 199.

[Rut96] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 1996.

[Sim93] A. Simpson. A characterization of the least-fixed-point operator by dinatu-
rality. Theoretical Computer Science, 118:301–314, 1993.

[SP00] A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point
operators. In 15th Symposium on Logic in Computer Science (LICS 2000).
IEEE Computer Society, 2000.

[TR98] D. Turi and J. J. M. M. Rutten. On the foundations of final coalgebra
semantics: non-well-founded sets, partial orders, metric spaces. Mathematical
Structures in Computer Science, 8:481–540, 1998.

