
Authentication for Mobile IPv6

Anupam Datta John C. Mitchell Frederic Muller
Dept. Computer Science, Stanford University
http://www.stanford.edu/

���
danupam,

�
jcm � /

Dusko Pavlovic
Kestrel Institute, Pale Alto, CA

http://www.kestrel.edu/

Abstract

We present a protocol for authenticating Mobile IPv6
connections, addressing requirements established in the rel-
evant Internet Draft [2]. The protocol imposes minimal
computational requirements on mobile nodes, uses as few
messages as possible, and may be adapted to resist de-
nial of service attacks. Our protocol has two parts, an
initialization phase and an update phase. The initializa-
tion phase can take advantage of local public-key infras-
tructure, a bidirectional chain of trust, or operate without
prior authenticating information. Each execution of the up-
date phase uses the shared secret established in the pre-
vious phase to maintain security of the mobile connection.
We have formally verified the correctness of the protocol us-
ing the finite-state analysis tool Mur � , which has been used
previously to analyze hardware designs and security prop-
erties of several protocols.

1. Introduction

In Mobile IPv6 [1], a mobile node has two associated
IP addresses. A mobile node is always identified by its
home address. While operating away from its home, a mo-
bile node is also associated with a care-of address, which
provides information about its current location on the inter-
net. The care-of address is registered with the home agent,
which transparently routes IPv6 packets sent to the home
address to the care-of address. To reduce routing distance
and relieve the load on home agents, a mobile node may also
inform other IPv6 nodes about its current care-of address by
sending a binding update. The need for authenticating bind-
ing updates has been recognized [1, 2]. However, previous
authentication proposals either fall short of meeting the au-
thentication requirements [3, 4] or require the mobile nodes
to perform expensive public key operations.

In this paper, we present a protocol for authenticating
binding updates. The protocol has two phases: (a) a once-
per-connection initialization phase in which two mobile
nodes use any available chain of trust through their home

agents to confirm a shared secret; (b) an update phase that is
executed every time an authenticated binding update needs
to be sent. The protocol provides sender authentication,
data integrity, and replay protection, without requiring mo-
bile nodes to perform public key operations. Using a for-
ward message from the mobile node to the corresponding
node, and a reply through the home agents only once in the
initialization phase, the protocol minimizes the number of
messages exchanged between participating entities. While
we assume that each mobile node shares a secret key with
its home agent, the protocol does not require home agents to
maintain state during the execution of the protocol, avoiding
memory denial-of-service attacks and other resource con-
sumption problems.

The most difficult adoption issue for any form of authen-
ticated Mobile IP is reliance on authentication infrastruc-
ture. Our goal is to make the best use of whatever infras-
tructure is available, in no case offering less assurance than
the link between the two home agents, which in some cases
may be wired, unauthenticated IP. As an expository conve-
nience, we present our protocol under the assumption that
each home agent has a public-private key pair, with each
public key known to the other. We then consider three other
scenarios and present variations of the initialization phase
that are appropriate to each scenario. The update phase of
our protocol remains the same in each case, since the basis
for authenticated update is the shared private information
established by the initialization phase. While there have
been concrete proposals for maintaining a global trust in-
frastructure, e.g., by extending the Domain Name System
(see [5, 6]), we believe our protocol offers significant advan-
tages over previous proposals in the absence of public-key
infrastructure. Perhaps the most likely configuration in the
near term is an SSH-like scheme, using unauthenticated key
exchange between home agents the first time these home
agents participate in Mobile IP, and caching the shared keys
for future use by any mobile nodes using the same pair of
home agents. While this configuration is susceptible to a
person-in-the-middle attack, an attack is only possible once
for each pair of home agents (up to the capacity of the key
cache).

1

We have formally verified the correctness of our proto-
col using the finite state analysis tool Mur � [7]. While for-
mal methods have been successfully used to analyze key ex-
change and authentication protocols [8, 9, 10, 11, 13, 12],
this is the first Diffie-Hellman based key exchange protocol
that has been analyzed with Mur � . In addition, previously
analyzed protocols such as SSL [14] and contract sign-
ing [15, 16] involve only two parties while Mobile IP has
four (two mobile nodes and their associated home agents).
Therefore, the analysis of Mobile IP requires several new
concepts and modelling techniques.

The remainder of this paper is structured as follows. Sec-
tion

�
describes the requirements for security in Mobile

IPv6. Section � briefly discusses the previous proposals for
authenticating binding updates. In Section � , we present
our basic protocol. Section � presents our modelling as-
sumptions and analysis results. In Section � , we discuss
extensions to prevent denial of service attacks. Section �
describes how our base protocol can be adapted to work in
a AAA infrastructure [17, 18] and weaker trust infrastruc-
tures. Concluding remarks appear in Section � .

2. Security Requirements for Binding Updates

While the binding update feature of Mobile IPv6 makes
end-to-end routes shorter, the ability to change routes on
the fly introduces a number of security concerns. A Mo-
bile IPv6 binding update specifies an association between
the home address of a mobile node and its a care-of ad-
dress, along with the remaining lifetime of that association.
Upon receiving a binding update from a mobile node (MN),
a correspondent node (CN) creates a binding cache entry
and stores this association. Subsequently, the CN will send
all packets destined for the MN to its care-of address instead
of its home address. Threats and security requirements for
binding update are described at length in [2]. Here, we dis-
cuss the most pressing security issues.

In the absence of a pre-established security association
between MN-CN pairs, two major security threats arise:

� An attacker may tamper with the binding cache en-
tries since binding updates will not be authenticated.
In fact, an active attacker can launch a person-in-the-
middle attack, becoming the default router to the MN
and from the MN to the CN.

� An attacker can launch denial-of-service attacks on
MN’s, CN’s and Home Agents (HA’s). This could be
done, for example, by flooding IPv6 nodes with fake
binding updates.

Our main goal is to institute a mechanism for setting up
security associations between MN-CN pairs that will allow
binding updates to be authenticated. Additional require-
ments, as specified in [2], are:

� Identity verification should not rely on the existence of
a global PKI.

� Minimize the number of messages and bytes sent be-
tween the participating entities.

� Consider the computational capabilities of the MN’s
and CN’s.

� Resist denial-of-service attacks.

� In any event, provide no weaker guarantees than IPv4.

The starting point for our investigation of authenticated
binding updates is the realization that every authentica-
tion protocol relies on some form of previously established
shared information. In general, an authentication protocol
involves a claimant � and a verifier 	 . Presented with a
purported identity of the claimant, the goal of the verifier is
to verify the claimed identity. In the setting of Mobile IP,
the IP address of an agent can be taken as its identity.

In order for claimant � to directly authenticate herself to
verifier 	 , agent � must be able to perform some action, ei-
ther individually or in collaboration with services available
on the network, that can only be performed by � and that 	
is able to recognize, either individually or in collaboration
with services available on the network. If � has a public-
private key pair and the public verification key is known by

	 to be associated with � , then digital signatures allow 	
to verify a claim from � . Shared symmetric keys, shared
secret hash keys, and other shared secret or unforgeable in-
formation can also be used for authentication. However,
unless there is some kind of secret information, known to

� and not known to a potential impersonator, and verifier
	 has prior knowledge that allows 	 to recognize some
kind of operation involving the secret information held by

� , there is no known way for 	 to reliably authenticate � .
Since any protocol that truly authenticates binding up-

dates will depend on some form of chain of trust, our goal
is to present the most reliable form of authentication possi-
ble for each of the most realistic or potentially achievable
chains of trust. Further discussion on how our authentica-
tion protocol leverages various trust infrastructures appears
in Section � .

3. Previous Proposals

Two previous protocols for authenticating binding up-
dates [3, 4] are susceptible to person-in-the-middle attacks.
We review these protocols to show some of the forms of
cryptography that have been considered and to illustrate
their shortcomings.

Bradner, Mankin and Schiller [3] proposed a framework
called Purpose Built Keys. Before initiating a connection

with a correspondent node (CN), a mobile node (MN) gen-
erates a public-private key pair (called a purpose-built key
pair) for use during the connection. The MN then sends
a hash of the public key to CN. Subsequently, when MN
sends a binding update, MN signs it with its private key and
also sends the public key to CN. CN verifies that the public
key hashes to the same value it had received before and, if
so, uses the public key to verify the digital signature. An ad-
vantage of this framework is that it does not require any se-
curity infrastructure. However, purpose-built keys provide
authentication if and only if the initial hash of the public
key is received correctly by CN. This might not be the case.
An attacker could intercept the hash and send the hash of
a different key (which it owns) to CN. Subsequently, it can
pretend to be MN without CN being any wiser. The authors
of the draft were, of course, aware of this weakness.

Le and Faccin [4] propose two protocols for authenti-
cating binding updates. The first assumes that both the
MN and the CN share security associations with two AAA
servers (e.g., RADIUS [17], DIAMETER [18]) and these
two servers in turn share a security association. The proto-
col then uses this chain of trust to achieve authentication.
Our protocol uses a similar architecture and can be easily
adapted to work within a AAA infrastructure. Furthermore,
it employs fewer messages than Le and Faccin’s protocol (
5 as opposed to 7). This improvement is obtained by com-
bining encryption-based and signature-based authentication
techniques and will be elaborated further in the next sec-
tion. The second protocol proposed in [4] involves an unau-
thenticated Diffie-Hellman key exchange between MN and
CN. The resulting key is subsequently used to authenticate
binding updates. The authors recognize that this protocol is
vulnerable to a man-in-the-middle (MITM) attack but state
that “due to the properties of IP” such an attack will always
be detected. They argue that since an attacker cannot re-
move any packets from the network, if a MITM attack is
launched, both the MN and the CN will receive two Diffie-
Hellman exponentials and will therefore be able to detect
the attack. There are a couple of objections to this argu-
ment. Firstly, an attacker could remove packets from the
network, e.g., if it gained control of the router being used
by MN. Secondly, even if it were not able to remove pack-
ets from the network, it could delay them, e.g., by flooding
MN and CN’s network buffers with junk packets. During
that interval, it could potentially do a lot of damage. Also,
even if MN and CN detect the attack, the only thing they
can do is drop the session. So, the attack still succeeds as a
denial of service attack.

4. The Protocol

In this section, we present the authentication protocol
based on our strongest assumptions. We assume that each

mobile node (MN) has a pre-established bidirectional secu-
rity association with its home agent (HA) using which they
can authenticate each other. This is a reasonable assump-
tion (and has been recognized as such in [2]) since typically
the MN and its HA will belong to the same administrative
domain. We also assume that HA’s are capable of authenti-
cating each other using public key cryptography.

4.1 Notation

The following notation is used in describing the protocol.���
Mobile node� �
Correspondent node� ����� Home agent of

���
� �
	�� Home agent of

� �
	�� Binding update � Shared secret between

���
and

� ����� 	 Shared secret between
� �

and
� ��	����� Public encryption key of

� ��������������
Certificate of entity �� ����� ���! " � $# Signed by entity ��! " � %#�&
Encrypted with key

' (*) (

is an optional parameter+!, �
IP (home) address of �.-
Shared Diffie-Hellman secret key/10�243 �65
Keyed hash of message

�
with key

2
7 ��� � +!, ��� 3 +!, 	1� 3 �98 3 �;: # &=<7 	�� � +!, 	1� 3 +�, �>� 3 �9: 3 �98 # &=<

4.2 Protocol Description

Our protocol consists of two phases: (a) an initialization
phase in which

���
and

� �
set up an authentication key;

(b) an update phase in which
���

sends an authenticated
binding update to

� �
using the key obtained from phase

(a).

4.2.1 Initialization Phase

The initialization phase is an authenticated Diffie-Hellman
key exchange protocol [19] resulting in a shared secret be-
tween an

���
and a

� �
. The protocol is shown in Figure?

. We first take a closer look at the protocol and discuss the
purpose served by the different message components. Then,
we describe some of the features of this protocol.

Message
?

is straightforward. Note that it assumes that���
already knows a group and generator that is acceptable

to
� �

.
Upon receiving message

?
,
� �

generates �@: , computes.-BA �98�: and 7 	1� and sends a message to
� � 	�� en-

crypted with their shared key,
 	 . Note that the use

of encryption-based authentication ensures that no attacker

��������� �
	������� ��� � � �� �����

���

� �����

�����������
� �
� �

� ��	1�

������ !� �"	�� � ��� ��� � � �� ����# , $ %'&"(
)+*-,��/.-0

�����!1��"��2 , $ %'&"(
) *-,��/. 0

�����'34� �
	�� �� �5	�� � � � � � � � �� � �76� �+8:9 ��; *-, #<. �
	�� �� �5	�� � � � � � � � �� � � $ %'&"(�) *-, #<.=0
Figure 1. Initialization Phase

can observe � : . 7 	�� consists of the session parameters en-
crypted with the session key,

 -
. It is forwarded by the two

home agents and proves to
���

that
� �

has computed the
same secret key. Thus, the protocol provides direct authen-
tication, a desirable property as described in [21]. If direct
authentication is not required, then 7 	�� can be replaced by
�;8 in messages

�
, � and � resulting in a lighter-weight pro-

tocol.

In Message � ,
� � 	�� forwards to

� � ��� the session
parameters that it recovers by decrypting message

�
. It

is necessary to include
� �?> 7 IP address since the same���

might be executing this protocol parallely with mul-
tiple correspondent nodes. Encrypting the session parame-
ters with public key of

� � �>� ensures that no other entity
can recover �9: . The signature proves to

� ���>� that the
message originated from

� ��	�� . Note that the signature
scheme should be such that no information regarding plain-
text data can be deduced from the signature itself on that
data (e.g., when the signature operation involves prelimi-
nary one-way hashing). This is critical because, in gen-
eral, data may be recovered from a signature on it (e.g.,
RSA without hashing). An alternative approach would be
to include the signed block inside the public key encryp-
tion. A disadvantage of this method is that here the data to
be public-key encrypted is larger. This might require adjust-
ment of the block-size of the public encryption scheme or
the use of techniques like cipher-block-chaining (see Sec-
tion

? � � �
of [20] for further discussion on the relative ad-

vantages of the two methods).

� ����� forwards the session parameters to
���

in mes-
sage � , encrypted with

 � , their shared key. Encryption
serves the same purpose as before: it hides �*: from all other
entities. We note here that the structure of the plaintext en-
crypted with

 � in this message is quite similar to that
encrypted with

 	 in message
�
. While this does not lead

to any attack under the assumption of black box cryptogra-
phy, it might be useful to break the symmetry by reordering
two message components, e.g., � : and 7 	�� in message � .
It has been recognized that symmetries in a protocol should
be used with caution, due to both the possibility of reflec-
tion attacks, and attacks in which responses from one party
can be reused within a protocol (see [21]).

In message � ,
���

encrypts the session parameters with
the newly computed Diffie-Hellman secret. This serves two
purposes. Firstly, it proves to

� �
that the message actu-

ally came from
���

(since the only entities which know �*:
are

� �
,
� �
	�� ,

� ����� , and
���

and we assume that
these entities are honest). Secondly, it provides proof that
both

���
and

� �
have computed the same secret, i.e., it

provides direct authentication.

In this protocol,
� �

authenticates herself to
���

through the chain of trust
� �A@ � � 	�� @ � � ��� @

���
.
���

could also use the same trust chain in the other
direction to authenticate herself to

� �
. This would lead to

a � -message protocol similar to the one presented in
'
4
)
. In

order to reduce the number of messages to � , we use a differ-
ent technique.

� �?> 7 Diffie-Hellman exponential is never

sent in the clear; it is sent encrypted along the trust chain
and the very fact that

���
is able to recover it and com-

pute the same Diffie-Hellman secret as
� �

serves to verify
her identity. We thus combine the two standard techniques
of signature-based and encryption-based authentication to
realise a protocol with fewer messages. The difference in
the number of messages exchanged in the two protocols be-
comes more appreciable as the trust chain becomes longer.
If there are � participants, our protocol requires � � ? mes-
sages while the previous approach requires

� ��� ?
. It also

appears that we can do no better. Specifically, any Diffie-
Hellman based authenticated key exchange protocol

,
be-

tween entities � and 	 that uses a chain of trust of length
� and provides direct authentication requires at least � � ?
messages.

The use of Diffie-Hellman key exchange ensures that
the protocol provides perfect forward secrecy (PFS), i.e.,
the disclosure of long-term secrets like private sign-
ing/decryption keys does not compromise the secrecy of ex-
changed keys from earlier runs. However, if perfect forward
secrecy is not a requirement, an alternative would be to re-
place the exchange of DH exponentials by an exchange of
nonces (���>� and � 	1�). �1��� could be sent in the clear
in message

?
, while �1	�� is sent encrypted in message

�
,

� , � . The shared secret could be derived from a hash of
these nonces, e.g., HMAC(� ��� , � 	��) (see [22]). Note
that this variation of the base protocol does not have PFS
since the compromise of long term secrets like the shared
key between

� �
and

� � 	1� exposes all past � 	1� val-
ues and hence all past session keys. The advantage is that
it is computationally very lightweight: mobile nodes have
to perform relatively inexpensive operations - generating a
random nonce and computing a hash instead of exponentia-
tion.

Typically, in order to prevent replay attacks, key ex-
change protocols require each participant to use some fresh
information in every run of the protocol. The Diffie-
Hellman exponentials serve this purpose in our protocol.
We would also like to note here that an implicit assump-
tion in our protocol is that it is possible to verify whether a
home agent actually owns a mobile node which it claims as
its own (e.g., by matching the network prefix of the home
address of the mobile node with that from the home agent’s
certificate). Otherwise, the protocol is open to attack. Any
adversary which possesses a certificate could intercept mes-
sage

?
and then send message � without

� � �>� being any
wiser.

4.2.2 Update Phase

Once
���

and
� �

have set up a shared secret,
 -

,
���

can easily send an authenticated binding update (���) by
executing the following

?
-message protocol.

��� 3 /�0 -�3 ��� 5

Here,
/�0 � " 5

is a keyed cryptographic hash function (e.g.,
HMAC [22]). This protocol provides sender authentication
since

���
is the only entity other than

� �
which possesses

the key
 -

. Data integrity is also provided since the hash
is also a message authentication code (MAC). Replay at-
tacks can be prevented by using the sequence number field
in the binding update option (see Section � ? of [1]). The
sequence number field holds an � -bit number. Each binding
update sent by a mobile node must use a sequence number
which is greater than the sequence number of the previous
binding update sent to the same destination address. Every
time the sequence number space is exhausted, the shared
key should be refreshed. Key refresh could, of course, be
done by re-executing the initialization phase protocol. Al-
ternatively,

���
and

� �
could set up a new key by execut-

ing an authenticated Diffie-Hellman key exchange protocol
in which they can use the old key to authenticate messages.
This approach would require the home agents to be involved
in only the initialization phase (once per

0 ��� 3 � ��5
pair)

and the system would scale up better.

5. Analysis of the Protocol

We used Mur � , a finite-state analysis tool, to carry out
a formal analysis of the initialization phase of our protocol.
In this section, we briefly outline the general methodology
and describe some of the challenges we faced in applying it
to this protocol. A detailed description of the methodology
can be found in [13].

5.1 The Mur � Verification System

Mur � [7] is a finite-state verification tool that has been
successfully applied to multiprocessor cache coherence pro-
tocols and multiprocessor memory models [23, 24]. The
purpose of finite-state analysis (also called model checking)
is to exhaustively search all possible execution sequences.
While this process often reveals errors, failure to find errors
does not imply that the protocol is completely correct, be-
cause the Mur � model may simplify certain details and is
inherently limited to configurations involving a small num-
ber of protocol participants.

To use Mur � for verification, one has to model the pro-
tocol in the Mur � language and augment this model with
a specification of the desired properties. The Mur � system
automatically checks, by explicit state enumeration, if all
reachable states of the model satisfy the given specification.
For the state enumeration, either breadth-first or depth-first
search can be selected. Reached states are stored in a hash

table to avoid redundant work when a state is revisited. The
memory available for this hash table typically determines
the largest tractable problem.

The Mur � language is a simple high-level language for
describing non-deterministic finite-state machines. Many
features of the language are familiar from conventional pro-
gramming languages. The main features not found in typi-
cal high-level programming languages are described in the
following paragraphs.

The state of the model consists of the values of all global
variables. In the startstate statement, initial values are as-
signed to global variables. The transition from one state
to another is performed by rules. Each rule has a Boolean
condition and an action, which is a program segment that is
executed atomically. The action may be executed if the con-
dition is true (i.e., the rule is enabled) and typically changes
global variables, yielding a new state. Most Mur � models
are nondeterministic since states typically allow execution
of more than one rule. For example, in the model of our
authentication protocol, the intruder (which is part of the
model) usually has the choice of several messages to replay.

Mur � has no explicit notion of processes. Nevertheless a
process can be implicitly modeled by a set of related rules.
The parallel composition of two processes is simply done
by taking the union of the rules of the two processes. Each
process can take any number of steps (actions) between the
steps of the other. The resulting model is that of asyn-
chronous, interleaving concurrency.

The Mur � language supports scalable models. In a scal-
able model, one is able to change the size of the model by
simply changing constant declarations. When developing
protocols, one typically starts with a small protocol config-
uration. Once this configuration is correct, one gradually
increases the protocol size to the largest value that still al-
lows verification to complete. In many cases, an error in
the general (possibly infinite state) protocol will also show
up in a down-scaled (finite state) version of the protocol.
Mur � can only guarantee correctness of the down-scaled
version of the protocol, but not that of the general protocol.
For example, in modelling our authentication protocol, the
numbers of mobile nodes and home agents were scalable
and defined by constants.

The desired properties of a protocol can be specified in
Mur � by invariants, which are boolean conditions that have
to be true in every reachable state. If a state is reached in
which some invariant is violated, Mur � prints an error trace
- a sequence of states from the start state to the state exhibit-
ing the problem.

5.2 The Methodology

We analyzed our protocol using the following sequence
of steps:

1. Formulate the protocol. This generally involves sim-
plifying the protocol by identifying the key steps and
primitives. The Mur � formulation of a protocol, how-
ever, is more detailed than the high-level descriptions
often seen in the literature, since one has to decide ex-
actly which messages will be accepted by each partic-
ipant in the protocol. Since Mur � communication is
based on shared variables, it is also necessary to define
an explicit message format, as a Mur � type.

2. Add an adversary to the system. We assume that the
adversary (or intruder) can masquerade as an honest
participant in the system, capable of initiating commu-
nication with a truly honest participant, for example.
We also assume that the network is under the control
of the adversary and allow the adversary the following
actions:

� overhear every message, remember all parts of
each message, and decrypt ciphertext when it has
the key;

� intercept (delete) messages;
� generate messages using any combination of ini-

tial knowledge about the system and parts of
overheard messages.

Although it is simplest to formulate an adversary that
nondeterministically chooses between all possible ac-
tions at every step of the protocol, it is more efficient to
reduce the choices to those that actually have a chance
of affecting other participants.

3. State the desired correctness conditions. A typical cor-
rectness condition would be that the intruder does not
learn any secret information. More details about the
correctness conditions for our protocol are given in
Section � � .

4. Run the protocol for some specific choice of system
size parameters. We have been able to run our protocol
with upto � mobile nodes and � home agents, where
each mobile node can execute

�
sessions in parallel.

Details of execution time appear in Section � � .

5.3 The Intruder Model

The Mur � intruder model is limited in its capabilities
and does not have all the power that a real-life intruder may
have. In particular:

� No cryptanalysis. Our intruder ignores both com-
putational and number-theoretic properties of crypto-
graphic functions. As a result, it cannot perform any
cryptanalysis whatsoever. If it has the proper key, it
can read an encrypted message or (forge a signature).

Otherwise, the only action it can perform is to store the
message for a later replay.

� No probabilities. Mur � has no notion of probability.
Therefore, we do not model “propagation” of attack
probabilities through our finite-state system (e.g., how
the probabilities of breaking the encryption, forging
the signature, etc. accumulate as the protocol pro-
gresses). We also ignore, e.g., that the intruder may
learn some probabilistic information about the partici-
pants’ keys by observing multiple runs of the protocol.

� No partial information. Keys, signatures, etc. are
treated as atomic entities in our model. Our intruder
cannot break such data into separate bits. It also can-
not perform an attack that results in the partial recovery
of a secret (e.g., half of the secret bits).

In spite of the above limitations, previous studies have
shown that Mur � is a useful tool for analyzing security pro-
tocols. It considers the protocol at a high level and helps dis-
cover a certain class of bugs that do not involve attacks on
cryptographic functions employed in the protocol. Mur � is
quite useful in discovering authentication bugs since proper-
ties like key ownership, source of messages, etc. are easily
captured in logical statements. The fact that Mur � did not
uncover any bugs in our protocol therefore gives us a fair
degree of confidence in its correctness.

5.4 Modelling the Initialization Phase

The Mur � model of the protocol consists of three types
of finite state machines corresponding to mobile nodes,
home agents and intruders. The number of mobile nodes,
home agents and intruders are scalable and defined by con-
stants. Each mobile node can participate in a number of
parallel sessions. This number can also be configured by
changing the value of a constant.

The state of a mobile node consists of her IP address, the
IP address of her home agent, the secret she shares with her
home agent and the individual states of all the sessions that
she is involved in. We associate the state-id of a session
with the next message that the node is expecting in that ses-
sion. We denote by

� �
the state in which a node is expecting

the � ��� message of the protocol. For example, after initiat-
ing a session (sending message

?
), a node sets the state-id

of that session to
���

since the next message that it expects
is the �

���
message of the protocol. Initially, the state-ids of

all sessions are set to
���

. In this state, a mobile node can
spontaneously initiate a session. Other than the state-id, the
state of a session also includes the values of all the session
parameters that the mobile node has seen uptil that point.
For example, if the state-id of a session that a mobile node
is taking part in is

���
, then the state would also contain the

node’s Diffie-Hellman private key and the address of the
peer node with whom she is executing the session. Upon
completing a session, the state-id for that session is set to� -�� �
	 . The transition rules for a mobile node capture the
exact sequence of actions that she would carry out in an ac-
tual run of the protocol. For example, when a mobile node
receives the �

���
message of the protocol, she processes it

iff the corresponding state-id is
���

. She then verifies that
the encryption key specified in the message is the same as
the key she shares with her home agent. This corresponds
to decrypting the message. Then she computes the Diffie-
Hellman secret using the Diffie-Hellman exponential in the
message and her own previously recorded Diffie-Hellman
private key. She finally verifies that the computed secret
matches the one in the message before changing the state-id
to
� -�� �
	 .
The finite state machine of a home agent is much simpler.

Since a home agent only forwards messages, his state does
not change during the execution of the protocol. The state of
a home agent consists of his certificate, the verification key
of the trusted third party (Certification Authority of the PKI)
and the shared keys with the mobile nodes in his domain.
The transition rules define the sequence of actions that a
home agent executes upon receiving the

����
or � ��� message

of the protocol.
As mentioned before, the intruder’s transition rules en-

able it to intercept messages, overhear all messages and re-
member parts of all overheard messages and generate new
messages using any combination of initial knowledge and
parts of overheard messages. Thus, at any given point in
the protocol, there are a large number of possible transi-
tions for the intruder. This results in a very large number
of reachable states for the protocol. The following tech-
niques proved useful in reducing the number of states to be
explored:

� The intruder always intercepts all messages sent by the
honest participants.

� The intruder does not send messages to honest partici-
pants in states where at least one of the honest partici-
pants is able to send a message.

� The intruder only generates messages that are expected
by the legitimate parties and that can be meaningfully
interpreted by them in their current state, e.g., the in-
truder sends the �

���
message to a mobile node only if

the mobile node is in state
���

.

The first two techniques have been proved to be sound (see
[25]), i.e., each protocol error that would have been discov-
ered in the original state graph will still be discovered in the
reduced state graph. The soundness of the third technique
is quite obvious.

We modelled the following correctness conditions in our
Mur � code:

� If two mobile nodes have completed a session with
each other, then the shared Diffie-Hellman secret com-
puted by both must be identical.

� The secret shared between two mobile nodes is not in
the intruder’s database of known message components.

� The mobile nodes agree on each other’s identity and
protocol completion status, i.e., if � has completed a
session with 	 , then 	 should also have completed the
same session with � or 	 should be waiting for the �

���

message of the protocol.

Mur � did not discover any violations of the above
mentioned correctness conditions for the configurations on
which we ran the verifier. Running under Linux on a � ���
MHz dual-processor Pentium II with 512MB of RAM, the
verifier required approximately � � seconds to check for the
case with

�
mobile nodes,

�
home agents and no more than

�

simultaneous sessions per mobile node. About � �����
states

were explored. The largest instance of our model that we
verified included 3 mobile nodes, 3 home agents and no
more than 2 simultaneous sessions per mobile node. Check-
ing took about

���
minutes, with 125,941 states explored.

We note here that this is the first Diffie-Hellman key ex-
change based protocol that has been modelled using Mur � .
Modelling the DH-protocol within the finite state analy-
sis framework required some thought. The “obvious” ap-
proach would be to do what is actually done in practice: use
integers to explicitly model the various parameters (� , � ,(

, �) and then derive the secret by exponentiating modulo
� . However, we observe that explicit exponentiation is un-
necessary. The two main properties that the model should
capture are: (a) the computational hardness of the Diffie-
Hellman problem, i.e., given �@8��	��
�� and �9:�	��
�� , it
should not be possible to compute �@8 :�����
�� ; (b) the com-
mutativity of exponentiation so that

0 � 8 ����
�� 5 : �	��
��A 0 �9:��	��
�� 5 8 . (From Fermat’s Little Theorem, we also
know that both these values are equal to �@8 :���� �������

���
�	��

� . In order to capture these two properties we used a dif-
ferent technique. In the Mur � code, a key is modelled as a
record with two fields - a type and a random value. We de-
fined three additional types of keys: dh-private, dh-public,
and dh-secret.

(
is of type dh-private and �@8 is of type

dh-public. For both keys, the value is
(

. The DH secret
is computed using a function which takes in a key of type
dh-private (say with value

(
) and another of type dh-public

(say with value �) and returns a key with type dh-secret and
value

(���	��
 0 � � ? 5 . Note that interchanging the values of(
and � yields the same secret because of the commutativity

of integer multiplication. This ensures that both participants
compute the same Diffie-Hellman secret. Also, since this

function is the only way of computing a DH secret, prop-
erty (a) above is also satisfied.

6. Preventing Denial-of-service Attacks

The basic � -message protocol is susceptible to denial of
service attacks. By sending a random number to a

� �
, an

attacker can force a
� �

to perform a Diffie-Hellman expo-
nentiation and an encryption operation. The

� �
will also

create state at this point. By continuously initiating ses-
sions with a

� �
, an attacker can exhaust its computation

and memory resources. One way of preventing this attack
would be to use “cookies”, a technique originally proposed
by Karn and Simpson in [26]. Upon receiving the first mes-
sage,

� �
replies with a cookie (which could be a keyed

hash of the received exponential concatenated with a times-
tamp and the IP address of the sender as used in the IKE-
SIGMA protocol [27]). The sender then sends the cookie
back to

� �
proving that it is capable of receiving messages

at the IP address it is claiming as its own. Thus, two addi-
tional messages are exchanged between

���
and

� �
after

the first message of the original protocol.
A useful property of our protocol is that since home

agents do not create state, memory denial of service attacks
are not possible on the home agents. Preventing computa-
tion denial of service attacks on the home agents reduces
to the problem of detecting, without performing expensive
computations, whether a message has been replayed. Re-
play attacks on

� ��	�� can be prevented by including a se-
quence number or timestamp inside the encryption in mes-
sage

�
of the protocol.

� ��	1� will accept a message from� �
only if the sequence number is greater than the last

sequence number received from the same
� �

. Preventing
denial of service attacks on

� � �>� without adding extra
messages, appears to be more difficult. Adding a sequence
number to message � and including it in the signature alle-
viates the problem somewhat. A replayed message will be
detected after performing one public key operation instead
of two. Adding two extra messages for exchanging cookies,
of course, solves the problem.

7. Trust Infrastructure and Authentication

The protocol in Section � relies on the existence of a PKI.
However, it can be easily adapted to work in any infrastruc-
ture which provides a chain of trust between mobile and
correspondent nodes. In particular, if a AAA infrastructure
[17, 18] is deployed in which

���
and

� �
can authenti-

cate themselves to � � � ��� and � � � 	�� respectively, and
the two servers share a secret

!
, the only change required

is to let the AAA servers take on the role of the home agents
and replace message � of the original protocol by the fol-
lowing message:

���

� ���>�

� �

� �
	��

������1�� 8 & ; � ;���;�� &

�����' !� (

�����/34� � (����� � � �

�����/��� (�	�
�7� 8�9 ��; *-, �/. � (�	��� �

�������!� � (����� ��� #

Figure 2. Protocol for Unidirectional Trust Chain

� � ��	1� @ � � ������� � +�, 	�� 3 +!, ��� 3 �;: 3 7 	�� #�&�
In the remainder of this section, we consider four alter-

native trust infrastructures and describe how authentication
can be achieved in each one. In what follows, we assume
throughout that

���
and

� �
can authenticate themselves

to
� ����� and

� �
	�� respectively. We distinguish be-
tween the following four trust infrastructures:

1.
���

and
� �

can directly authenticate each other.

A special case is when
���

and
� �

share a secret
key. It is then possible for

���
to send an authenti-

cated binding update to
� �

by executing the authen-
tication phase protocol of Section � � �

. This proto-
col does not require the involvement of any third party
and is also computationally inexpensive. Another case
would be when both

���
and

� �
possess signing-

verification key pairs. However, this option is not too
attractive since public key cryptography is computa-
tionally intensive and may be beyond the capabilities
of mobile nodes.

2. There exists a bidirectional chain of trust between���
and

� �
.

An example is when
� � �>� and

� � 	1� can authen-
ticate each other using public key cryptography. The
bidirectional chain of trust can be used to set up a
shared secret between

���
and

� �
by executing the

initialization phase protocol of Section � � ?
. This pro-

tocol is more expensive than the previous one: it in-

volves home agents and requires them to perform pub-
lic key operations. However, the initialization phase
needs to be executed only once per

��� � � � pair.
Once executed

���
and

� �
end up with a shared se-

cret and can directly authenticate each other.

3. There exists a unidirectional chain of trust from
���

to
� �

.

Consider, for example, the case when
� ����� can au-

thenticate herself to
� ��	1� but not vice versa.

���
can then use the trust chain

��� @ � ����� @
� ��	1� @ � �

to send an authenticated binding up-
date as shown in the protocol in Figure

�
. This pro-

tocol provides sender authentication and data integrity.
In message

?
,
���

requests
� �

to send a nonce. The
nonce,

�
, sent in message

�
is used to prevent replay

attacks. We note, however, that this protocol places
higher computation demands on the home agents. The
home agents have to perform public key operations ev-
erytime a binding update is sent. It is not possible to
set up a shared secret between

���
and

� �
since

� �
has no way of authenticating herself to

���
.

4. There is no chain of trust from
���

to
� �

.

In the absence of a chain of trust from
���

to
� �

,
it does not appear that strong authentication is possi-
ble. However, we can design a protocol with a nar-
rower window of vulnerability than one which pro-
vides no authentication at all. One way to achieve this

would be for two home agents to set up a shared se-
cret the first time they need to communicate with each
other. This could be done, e.g., by an unauthenticated
Diffie-Hellman key exchange. Subsequently, they can
authenticate each other using this key. Thus, assum-
ing that this operation is performed securely, all future
transactions between the nodes of these home agents
can be secured. A similar security property could be
obtained by exchanging public keys without having
them certified by a Certification Authority.

We observe that there is a clear connection between in-
frastructural support and the computational requirements of
the corresponding authentication protocol: as we relax our
assumptions about the infrastructure, protocol participants
have to do a greater amount of computation to complete the
authentication process. The amount of computation gradu-
ally increases from case 1 to 3 in the list above. We also
note that if a home agent possesses a public signing key,
then all her mobile nodes can send authenticated binding
updates even if the corresponding node’s home agent does
not possess a public key. This gives some incentive for a
home agent to acquire a public key certificate. However,
if the corresponding node’s home agent does not possess a
public key, the mobile node’s home agent has to perform
public key operations everytime a binding update is sent.
This raises the issue of scalability. If a home agent is serv-
ing a number of mobile nodes, its computational resources
might be exhausted. The trust infrastructure presented in
case 2 therefore seems to be best for this application.

8. Conclusions

In response to the requirement that all location informa-
tion about a mobile node in IPv6 should be authenticated
[1, 3.1], we have proposed a protocol for authenticating
binding updates. The other requirements are taken into ac-
count as well: the computational load on the nodes and
on the routers is minimized, by eliminating expensive en-
cryption operations and keeping the number of messages at
minimum. The appropriate extensions preventing denial-
of-service attacks are also suggested.

We have formally verified the correctness of the proto-
col using the finite-state analysis tool Mur � . The fact that
the Mur � analysis did not uncover any bugs gives us in-
creased confidence in the correctness of the protocol. In
previous work, Mur � has been used to analyze the security
properties of several protocols. However, this is the first
Diffie-Hellman based key exchange protocol that has been
analyzed with Mur � . We used a new modelling technique
to capture the two most important properties of the Diffie-
Hellman exchange: the computational hardness property
which ensures that an intruder is not able to compute the DH

secret from the public exponentials; and the commutativity
property which guarantees that both participants compute
the same shared secret.

Finally, we have addressed the most difficult adoption
issue for authenticated Mobile IPv6: reliance on authenti-
cation infrastructure. Besides the base protocol which as-
sumes the existence of a bidirectional trust chain between
mobile and correspondent nodes, we considered three other
trust infrastructures and presented variations of the initial-
ization phase that are appropriate to each scenario. The up-
date phase of our protocol remains the same in each case
since the basis for authenticated update is the shared se-
cret established in the initialization phase. We believe that
our protocol addresses the main issues in Mobile IPv6 au-
thentication and makes best use of whatever infrastructure
is available. In particular, the SSH-like scheme, using unau-
thenticated key exchange between home agents the first
time these home agents participate in Mobile IP, might be
the most practical one in the near term.

References

[1] D. Johnson, C. Perkins. Mobility Support in IPv6. In-
ternet Draft, July 2001.

[2] A. Mankin, B. Patil, D. Harkins, E. Nordmark, P.
Nikander, P. Roberts, T. Narten. Threat Models intro-
duced by Mobile IPv6 and Requirements for Security
in Mobile IPv6. Internet Draft, October 2001.

[3] S. Bradner, A. Mankin, J.I. Schiller. A Framework for
Purpose Built Keys (PBK). Internet Draft, February
2001.

[4] F. Le, S.M. Faccin. Dynamic Diffie Hellman based
Key Distribution for Mobile IPv6. Internet Draft,
April 2001.

[5] J. M. Galvin. Public Key Distribution with Secure
DNS. In Proc. 6th USENIX Unix Security Symposium,
1996.

[6] G. Ateniese, S. Mangard. A New Approach to DNS
Security. In Proc. 8th ACM Conference on Computer
and Communications Security, 2001.

[7] D. Dill. The Mur
�

Verification System. In Proc. 8th
International Conference on Computer Aided Verifi-
cation, pages 390-393, 1996.

[8] R. Kemmerer, C. Meadows, J. Millen. Three Sys-
tems for Cryptographic Protocol Analysis. In Journal
of Cryptography, 7(2):79-130, 1994.

[9] A.W.Roscoe. Modelling and Verifying Key Exchange
Protocols using CSP and FDR. In Proc. 8th Computer
Security Foundations Workshop, pages 98-107, 1995.

[10] C. Meadows. The NRL Protocol Analyzer:
An Overview. In Journal of Logic Programming,
26(2):113-131, 1996.

[11] D. Bolignano. Towards a mechanization of crypto-
graphic protocol verification. In Proc. 9th Interna-
tional Conference on Computer Aided Verification,
131-142, 1997.

[12] L. Paulson. The inductive approach to verifying cryp-
tographic protocols. In Journal of Computer Security,
6:85-128, 1998. 131-142, 1997.

[13] J.C. Mitchell, M. Mitchell, U. Stern . Automated
Analysis of Cryptographic Protocols Using Mur

�
.

In Proc. IEEE Symposium on Security and Privacy,
pages 141-153, 1997.

[14] J.C. Mitchell, V. Shmatikov, U. Stern . Finite-State
Analysis of SSL 3.0. In Proc. 7th USENIX Security
Symposium, pages 201-216, 1998.

[15] V. Shmatikov, J.C. Mitchell. Analysis of a Fair Ex-
change Protocol. In Proc. 7th Annual Symposium on
Network and Distributed System Security, pages 119-
128, 2000.

[16] V. Shmatikov, J.C. Mitchell. Analysis of a Abuse-Free
Contract Signing Protocol. In Proc. Financial Cryp-
tography, 2000.

[17] C. Rigney, A. Rubens, W. Simpson, S. Willens. Re-
mote Authentication Dial In User Service (RADIUS).
RFC 2865, June 2000.

[18] P. R. Calhoun, H. Akhtar, J. Arrko, E. Guttman, A.C.
Rubens, G. Zorn. Diameter Base Protocol. Internet
Draft, November 2001.

[19] W. Diffie, M. E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory,
22(6):644-654, 1976.

[20] A. J. Menezes, P. C. van Oorschot, S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1996.

[21] W. Diffie, P. C. Van Oorschot, M. J. Wiener. Authen-
tication and Authenticated Key Exchanges. Designs,
Codes and Cryptography, 2:107-125, 1992.

[22] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104,
February 1997.

[23] D. Dill, S. Park, A. G. Nowatzyk. Formal Specifica-
tion of Abstract Memory Models. In Symposium on
Research on Integrated Systems, pages 38-52, 1993.

[24] U. Stern, D. Dill. Automatic Verification of the SCI
Cache Coherence Protocol. In Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods, pages 21-34, 1995.

[25] V. Shmatikov, U. Stern . Efficient Finite-State Anal-
ysis for Large Security Protocols. In Proc. 11th IEEE
Computer Security Foundations Workshop, pages 106-
115, 1998.

[26] P. Karn, W. Simpson. Photuris: Extended Schemes
and Attributes. RFC 2523, March 1999.

[27] H. Krawczyk. The IKE-SIGMA Protocol. Internet
Draft, November 2001.

