
Proess fusion�D. PavloviKestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304E-mail: dusko�kestrel.eduAbstratThe tehnique of build fusion, also known as deforestation, removesintermediate results in a omposition involving the \build" of an initial(indutive, �nite) data struture, followed by its onsumption. Herewe show that it is analogously possible to do proess fusion, remov-ing intermediate �nal (oindutive, potentially in�nite) data passingbetween a produer and a onsumer.The key observation leading to our results is the fat that theCurry-Howard isomorphism, relating types to propositions, programsto proofs and program omposition to ut, extends to the orrespon-dene of fusion to ut elimination. This simple idea gives us logialinterpretations of the basi methods of generi and transformationalprogramming. In the present paper, we provide a logial analysis ofthe general form of build fusion over the indutive data types, regularor nested. The analysis is based on a novel logial interpretation ofparametriity in terms of the paranatural transformations, introduedin the paper. We extend it to over proess fusion on oindutive datatypes.The results obtained are truly generi (in the sense of applyingto all oindutive (�nal) data types, inluding nested ones) and allowa far wider range of optimizations than previously possible. By thestandard embedding of initial into �nal data types, it also applies toarbitrary initial-�nal mixtures (e.g., in�nitely unfolding trees of �nitelists). Future work will explore mehanization of the tehnique andits appliation to realisti problems.�This work was supported by the DARPA ITO PCES program.1

1 Introdution1.1 The need for proess fusionAn important hallenge is to provide automated support for the ompositionof programs for embedded systems, yielding the eÆient high-performaneode required for real-time embedded software.We believe that the best | perhaps only | hope for meeting this ob-jetive is to synthesize suh systems from high-level, abstrat spei�ationsexpressing the system requirements while deomposing them into the sim-plest units possible | expressing the many aspets entering into the totaldesign | and obtain ode from further spei�ations expressing their om-position, using both general and domain-spei� design theories. This is thephilosophy underlying Kestrel's synthesis tehnology, whih has paid o� inother appliation domains.Here we fous on one small aspet: \optimizing away" the data pass-ing between proess omponents. Simple-minded ode generation shemaswill tend to translate high-level proess omposition homomorphially intolow-level data passing. While entirely orret as a translation, a suessfulrequirements deomposition might then be penalized by giving rise to rela-tively ineÆient low-level ode. We show below how this an be overome;in fat, the higher the initial abstration level, the easier it is to analyze thespei�ations for optimization opportunities and exploit them in synthesis.In other appliation domains, Kestrel's synthesis tehnology has obtainedeÆieny improvements that are beyond the sope of the �erest attemptsat hand-rafted ode optimization, simply beause the analysis involved istoo ompliated to be arried out manually for eah system generation. Thehope is to ahieve similar gains here.The viewpoint of an embedded system as a olletion of ommuniatingproesses is appropriate. This makes it possible to abstrat from imple-mentation details, suh as whether proesses are sharing a thread or aremulti-threaded, or even run on separate proessors. These details should beintrodued in the synthesis phase, working towards low-level ode, and thebest data passing paradigm an be hosen given various other aspets of therequirements, suh as timing. Below we model data passing as asynhronous2

message passing between proess omponents. This leaves an implementa-tion freedom for many low-level shemas from whih the most appropriateone an be hosen. The possibilities range from bu�ered interproess om-muniation via diret or remote method invoation to shared memory. Here,we are not onerned with these details, beause we enter on the eliminationof data passing.1.2 Fusion and utThe Curry-Howard isomorphism is one of the oneptual building bloks oftype theory, built deep into the foundation of omputer siene and funtionalprogramming [6, h. 3℄. The fat that it is an isomorphism means thatthe type and the term onstrutors on one side obey the same laws as thelogial onnetives, and the logial derivation ruleson the other side. Forinstane, the produts and the sums of types orrespond, respetively, to theonjuntion and the disjuntion, beause the respetive introdution rulesA ` B0 A ` B1 ^IA ` B0 ^B1 A0 ` B A1 ` B _IA0 _ A1 ` Bextended by the labels for proofs, yield the type formation rulesf0 : A! B0 f1 : A! B1hf0; f1i : A! B0 � B1 g0 : A0 ! B g1 : A1 ! B[g0; g1℄ : A0 + A1 ! BIn a sense, the pairing onstrutors h�;�i and [�;�℄ reord on the termsthe appliations of the rules ^I and _I, as the proof onstrutors.Extending this line of thought a step further, one noties that the termredutions also mirror the proof transformations. E.g., the transformationA0 ` B A1 ` BA0 _ A1 ` B B ` CA0 _ A1 ` C II A0 ` B B ` CA0 ` C A1 ` B B ` CA1 ` CA0 _ A1 ` Corresponds to the rewriteh � [f0; f1℄ II [h � f0 ; h � f1℄ (1)3

where f0 and f1 are the labels of the proofs A0 ` B and A1 ` B, whereas h isthe label of B ` C. The point of suh transformations is that the appliationsof the ut rule A ` B B ` CA ` C (2)get pushed up the proof tree, as to be eliminated, by iterating suh moves.On the side of terms and programs, the ut, of ourse, orresponds to theomposition f : A! B h : B ! Ch � f : A! C (3)Just like the presene of a ut in a proof means that an intermediary propo-sition has been reated, and then ut out, the presene of the omposition ina program means that the thread of omputation leads through an interme-diary type, used to pass data between the omponents, and then disarded.While the programs deomposed into simple parts are easier to write andunderstand, passing the data and ontrol between the omponents inurs aomputational overhead. For instane, running the omposite ssum � zipW ofzipW : [Nat℄�[Nat℄ -> [Nat�Nat℄zipW (x::xs,y::ys) = (x,y) :: zip xs yszipW (xs, ys) = [℄and ssum : [Nat�Nat℄ -> Natssum [℄ = 0ssum (x,y)::zs = x + y + sum zsis learly less eÆient than running the fusionsumzip : [Nat℄�[Nat℄ -> Natsumzip (x::xs,y::ys) = x + y + sumzip (xs,ys)sumzip (xs, ys) = 0where the intermediary lists [Nat�Nat℄ are eliminated. In pratie, thedata strutures passed between the omponents tend to be very large, and4

the gain by eliminating them an be signi�ant. On the other hand, theeÆient, monolythi ode, obtained by fusion, tends to be more omplex,and thus harder to understand and maintain.To get both eÆieny and ompositionality, to allow the programmersto write simple, modular ode, and optimize it in ompilation, the programfusions need to be suÆiently well understood to be automated. Our �rstpoint is that the Curry-Howard isomorphism maps this task onto the wellploughed ground of logi.1.3 Build fusionThe general form of the build fusion that we shall study orresponds, in theindutive ase, to the \ut rule"A f //MF FMF F LM//�
��

FC
��MF LM //CA f 0C(pq) //C (4)eliminating the indutive data type MF , whih is the initial algebra of thetype onstrutor F . In pratie and literature, F is usually a list- or atree-like onstrutor, and the type A is is often required to be indutiveitself; but we shall see that the above sheme is valid in its full general-ity. The sumzip-example from the preeding setion an be obtained asan instane of this sheme, taking FX = 1 + Nat � Nat � X, and thusMF = [Nat� Nat℄. The funtion ssum is the atamorphism (fold) of themap [0; z℄ : 1 + Nat� Nat� Nat �! Nat where z maps hi; j; ki to i + j + k.The dual sheme FA F [(a)℄ // FNFAa OO [(a)℄ // NF�OO NF g // CA g0A(paq) // Callows eliminating the oindutive type NF , the �nal F -oalgebra.5

Clearly, the essene of both of the above fusion shemes lies in the termsf 0 and g0. Where do they ome from? The idea is to represent the �xpointsMF and NF in their \logial form"MF �= 8X: (FX) X)) X (5)NF �= 9X: X � (X) FX) (6)The parametri familiesf 0X : (FX) X) �! (A) X) (7)g0X : (X) FX) �! (X) C) (8)are then obtained by extending f : A �! MF and g : NF �! C alongisomorphisms (5) and (6), and rearranging the arguments. The equationsLM � f = f 0C(pq) (9)g � [(a)℄ = g0A(paq) (10)an be proved using logial relations, or their onvenient derivative, Wadler's\theorems for free" [8℄. This was indeed done already in [5℄ for (9).Mapped along the Curry-Howard isomorphism, equations (9{10) beomestatements about the equivalene of proofs. The fat that all logial relationson all Henkin models must relate the terms involved in these equations doesnot seem to o�er a lue for understanding their equivalene.In order to aquire some insight into the logial grounds of program fu-sion, and equivalene, we introdue paranatural transformations. As a �rstappliation, we haraterize the parametriity of families (7) and (8) by anintrinsi ommutativity property, with no reourse to models or externalstrutures. The upshot is that we obtain slightly stronger results, suitablefor generalizing beyond the sope of the urrent appliations of build fusion.The paranaturality ondition is a variation on the theme of funtorial andstrutural polymorphism [4, 3℄. But while the dinatural transformations of [4℄allow too many terms, the strutor morphisms of [3℄ preisely orrespond tothe polymorphi terms, but do not stipulate whih of many possible hoiesof strutors should be used to interpret the partiular polytypes. We �ll thisgap, presently just enough to analyze the programs to the initial and fromthe �nal data types as parametri/paranatural families. This is the ontents6

of proposition 3.1. The results obtained eliminate the extensionality andwell-pointedness restritions of the work based on logial relations. Moreimportantly, the logial insights about fusion and parametriity, gained byhasing diagrams in ategorial proof theory [7℄, allow extending the methodsof fusion beyond their urrent sope. Some evidene of this, severely limitedby the available spae, is o�ered in the �nal setion.2 Paranatural transformationsAs it has been well known at least sine Freyd's work on reursive types inalgebraially ompat ategories [2℄, separating the ovariant and the on-travariant ourrenes of X in a polytype T (X) yields a polynomial funtorT : C op � C �! C . On the other hand, by simple strutural indution, oneeasily proves thatProposition 2.1 For every polynomial funtor T : C op � C �! C over aartesian losed ategory C , there are polynomial funtors W : C op�C �! Cand V : C �! C , unique up to isomorphism, suh thatT �= W) VThis motivates the followingDe�nition 2.2 Let C be a ategory andW : C op�C �! C and V : C �! Cfuntors on it.A paranatural transformation # : W �! V is a family of C -arrows#X : WXX �! V X, suh that for every arrow u : X �! Y in C , theexternal pentagon in the following diagramWXX #X //WXu
��

V XV u
��

Z z0 ;;xxxxxxxxx z1 ##FF
FF

FF
FF

F WXY �WY Y #Y //

WuYOO V Yommutes whenever the triangle on the left ommutes, for all Z, z0 and z1in C . 7

The lass of the paranatural transformations from W to V is writtenPara(W;V).Remark. When C supports alulus of relations, the triangle and the quan-ti�er over Z, z0 and z1 an be omitted: the ondition just means that therest if the diagram ommutes up to �.Proposition 2.3 Let L be a polymorphi �-alulus, and C L the artesianlosed ategory generated by its losed types and terms. For every type on-strutor T , de�nable in L, there is a bijetive orrespondeneC L (A; 8X:T (X)) �= Para(A�W;V)natural in A.3 Charaterizing �xpointsProposition 3.1 Let C be a artesian losed ategory, and F a strong endo-funtor on it. Whenever the initial F -algebraMF , resp. the �nal F -oalgebraNF exist, then the following orrespondenesC (A;MF) �= Para (A� (FX) X); X) (11)C (NF ; B) �= Para (X � (X) FX); B) (12)hold naturally in A, resp. B.In well-pointed ategories and strongly extensional �-aluli, this propos-itoion boils down to the following \Yoneda" lemmas.Notation. Given h : A � B �! C and b : 1 �! B, we write h(b) for theresult of partially evaluating h on bA h(b)
''PPPPPPPPPPPPPP

hid;b!i //A� Bh
��Cwhere b! denotes the omposite A !! 1 b! B.8

Lemma 3.2 For paranatural transformations'X : A� (FX) X) �! X Y : Y � (Y) FY) �! Bhold the equations 'X(pxq) = LxM � 'MF (�) (13) Y (pyq) = NF (�) � [(y)℄ (14)for all x : FX �! X and y : Y �! FY .While (13) follows from A� FMF)MF 'MF //A�FMF)LxM
��

MFLxM
��

A hid;p�q!i 88pppppppppppphid;pxq!i ''NNNNNNNNNNNN A� FMF) X �A� FX) X 'X //

A�F LxM)XOO X(14) is obtained by hasing Y � Y) FY Y //[(y)℄�Y)F [(y)℄
��

Bid
��

Y hid;pyq!i 77oooooooooooooh[(y)℄;p�q!i ''OOOOOOOOOOOOO[(y)℄
��

NF � Y) FNF �NFhid;p�q!i//NF �NF) FNF NF //

NF�[(y)℄)FNFOO BIn well-pointed ategories, 'X : A � (FX) X) �! X is ompletelydetermined by its values 'X(pxq) : A �! C on all x : FX �! X. Similarly, Y : Y � (Y) FY) �! B is ompletely determined by its values ony : Y �! FY .However, in order to show that 'MF (�) is generi for ' and NF (�) for without the well-pointedness assumption, one needs to set up slightly di�er-ent onstrutions. 9

Proof of 3.1. (11) We de�ne maps(�)0 : C (A;MF) �! Para (A� (FX) X); X)build : Para (A� (FX) X); X) �! C (A;MF)and show that they are inverse to eah other.Given f : A �!MF , the X-th omponent of f 0 will bef 0X : A� (FX) X) f�k�! MF � (MF) X)"�! Xwhere k : (FX) X) �! (MF) X) maps the algebra strutures x :FX ! X to the atamorphisms LxM : MF ! X. Formally, k is obtainedby transposing the atamorphism L�M : MF �! (FX) X)) X for theF -algebra � on (FX) X)) X, obtained by transposing the omposite(FX) X)� F ((FX) X)) X) �!(i)�! (FX) X)� (FX) X)� F ((FX) X)) X)(ii)�! (FX) X)� F ((FX) X)� (FX) X)) X)(iii)�! (FX) X)� FX(iv)�! Xwhere arrow (i) is derived from the diagonal on FX) X, (ii) from thestrength, while (iii) and (iv) are just evaluations.Towards the de�nition of build, for a paranatural ' : A � (FX)X) �! X take build(') : A A�p�q!// A� (FMF)MF)'MF // MFComposing the above two de�nitions, one gets the ommutative squareAbuild(f 0)
��

A�p�q! //A� (FMF)MF)f 0MF
yysssssssssssssssssssss f�k

��MF MF � (MF)MF)"oo 10

Sine k � p�q = pidMq, the path around the square redues to f , and yieldsbuild(f 0) = f .The onverse build(')0 = ' is the point-free version of lemma 3.2. Itamounts to proving that the paranaturality of ' implies (indeed, it is equiv-alent) to the ommutativity ofAe'X
��

A�p�q! //A� (FMF)MF)'MF
��(FX) X)) X MFL�Moowhere e'X is the transpose of 'X. Showing this is an exerise in artesianlosed struture. On the other hand, the path around the square is easilyseen to be build(')0X .Towards a proof of (12), we internalize (14) similarly like we did (13)above. The natural orrespondenes(�)0 : C (NF ; B) �! Para (X � (X) FX); B)proess : Para (X � (X) FX); B) �! C (NF ; B)are de�ned g0X : X � (X) FX) X�`�! X � (X) NF)"�! NFg�! Band proess() : NF NF�p�q!// NF � (NF) FNF) NF // Bfor g : NF �! B and : X � (X) FX) �! B. The arrow ` : (X)FX) �! (X) FX) maps the oalgebra strutures x : X ! FX to theanamorphisms [(x)℄ : X ! NF . �11

4 Appliations4.1 ZipUsing orrespondene (11), i.e. the maps realizing it, we an now, �rst of all,provide the rational reonstrution of the simple fusion from the introdu-tion. The abstrat form of the funtion zipW, leaving the type parameter Ximpliit, will bezipW' : ((1+Nat�Nat�X)->X) -> ([Nat℄�[Nat℄->X)zipW' [m,℄ (x::xs,y::ys) = (x, y, zipW' [m,℄ (xs,ys))zipW' [m,℄ (xs, ys) = mWhile zipW an be reovered as the instane zipW' [[℄,(::)℄, i.e. zipW =build(zipW'), the fusion is obtained assumzip = zipW' [0,z℄But what is zipW, if it is not a atamorphism? How ome that it still has areursive de�nition?It is in fat an anamorphism, and ssum � zipW an be simpli�ed by proessfusion as well. The sheme is this time1+Nat�Nat�[Nat℄�[Nat℄ //1+Nat�Nat�[Nat�Nat℄[Nat℄�[Nat℄zW OO zipW // [Nat�Nat℄OO [Nat�Nat℄ ssum // Nat[Nat℄�[Nat℄ ssum0 [Nat℄�[Nat℄ - zW
// Natwhere zW (x::xs,y::ys) = (x,y,xs,ys)zW (xs,ys) = One (the element of 1)indues zipW = [(zW)℄, whereas (leaving again the type parameter impliit)12

ssum' : X � (X -> 1+Nat�Nat�X) -> Natssum' x d = ase d x ofOne -> 0(n,m,y) -> n + m + ssum' y dCalulating the onlusion this time yieldssumzip = ssum' _ zWFinally, lifting proposition 3.1 to the ategory C C of endofuntors, we anderive the proess fusion rule for nested data types [1℄. Consider, e.g., thetype onstrutor Nest, that an be de�ned as a �xpoint of the funtor 	 :C C �! C C , mapping 	(F) = �X:1 +X � F (X �X).The elements of the data type Nest Nat are the lists where the i-th entryis an element of Nat2i. Abbreviating Nest Nat to fNatg, we an now de�nezWN (x::xs,y::ys) = (x,y,fst xs,fst ys,snd xs,snd ys)zWN (xs,ys) = Onewhere fst and snd are the obvious projetions fX � Xg �! fXg, and andderive zipWN : fNatg�fNatg �! fNat� Natg as [(zWN)℄ again. On the otherhand, working out the paranaturality ondition in C C allows liftingssumN : {Nat�Nat} -> NatssumN [℄ = 0ssumN (x,y)::zs = x + y + ssumN (fst zs)+ ssumN (snd zs)to ssumN' : F(Nat) �F(X) -> 1+X�X�F(X�X) -> NatssumN' F X f d = ase d Nat f ofOne -> 0(n,m,g) -> m + n + ssumN' FF X g dd13

where FF and dd are the instanes with X�X instead of X. (Here we madethe type parameters expliit, to show how the funtor is transformed in thereursion.) The fusionsumzipN = ssumN' Nest�Nest Nat _ zWNis this time sumzipN : {Nat}�{Nat} -> NatsumzipN (x::xs,y::ys) = x + y + sumzipN (fst xs,fst ys) +sumzipN (snd xs,snd ys)sumzipN (xs, ys) = 04.2 Proess fusion on streamsWhenever we have two proesses, a Stream Produer (SP) and a StreamConsumer (SC), their omposition an be fused into a single proess, doingaway with the intermediate stream.To apply this, there is basially one requirement: the SP has to be ex-pressed in the form of an anamorphism. This is not so muh a restrition asa task to massage the expression denoting the SP into a suitable form.If the SC is itself an SP (SC/P), we see the following two speial patternsof proess fusion: SP �! SC/P ! = SP0 ! (15)! SC/P�! SC/P0 ! = ! SC/P00 ! (16)(The equality sign implies that, viewed as transformations, these steps arereversible, and in program derivation temporarily going the \wrong" waymay be ruial to getting to the desired result.)In priniple, this an be asaded, and in a pipeline of proesses likeSP �! SC/P �! SC/P0 �! � � � �! SC/P(n�1) �! SC14

any subsegment ould be fused. (The result of fusion for patterns (15) and(16) may not produe its result immediately in the required anamorphi form;to what extent this is the ase, and if so whether there is an automati teh-nique for getting it there, requires further study.) Beause of the generiity,the method is not restrited to single streams, but applies equally to multiple(parallel) streams.It should be lear how this applies to, for example, some issues in theevent-hannel arhiteture. In partiular, it makes preise how lient �lter-ing an be moved to the (proxy) server side. Depending on the require-ments of the appliation, further forms of lient proessing ould be movedto the server, suh as data smoothing or interpolation. Likewise, queuinghigh-priority events an be by-passed if they would next immediately getdequeued.Given the rihness of the event hannel model, pratial appliation willrequire a substantial amount of work. But note that the transformationsan be done already at the level of spei�ations; it is not neessary to haveexeutable soure ode.We give a onrete example. We apologize for how trivial it is, but weneed a really simple example to avoid the exposition of the tehnique gettingdrowned out by the details. We want to fuse a produer proessloopget xif x > 0 then put xend-loop(whih happens to be a stream �lter) with a onsumer proessloopget xput x-1end-loop(whih happens to be a stream map).We do not bother to introdue the language, as it is meant to be intuitivelyobvious and introdued for exposition purposes only, but it an easily be15

extended with guards and loal state. As a side remark, it is easy to see howthe data passing by the put statement of the produer may be modeled at alow level as an invoation of a onsumer method.First we express the produer proess as a stream funtion:f (x::rest) = (x::f rest) if x > 0= f xs otherwiseIntroduing the auxilary funtion ff byff (x::rest) = (x, rest) if x > 0= ff rest otherwisewe an transform the produer proess into the oindutive pattern of ananamorphism for the stream data type (the oindutive data type NF orre-sponding to the funtor FX = Message �X):f xs = (y::f ys)where (y, ys) = ff xsor, using the anamorphism ombinator:f = [(ff)℄The onsumer proess, expressed as a stream funtion, is:g (x::rest) = (x-1::g rest)To make the onsumption expliit, we use the funtion nu (i.e., the �naloalgebra morphism � : NF ! FNF), funtionally de�ned by:nu (x::rest) = (x, rest)Using this, we rewrite the de�nition of g into:g z = (x-1::g rest)where (x, rest) = nu z16

Generalizing this with an embedding transformation abstrating from nu intoa g' that is parametri as in (8) (the type parameter X is left impliit asbefore), g = g' nuwhere g' n z = (x-1::g' n rest)where (x, rest) = n zProess fusion (10) tells us now thatg � [(ff)℄ = g' ffGiving the fusion result a name, say h, we haveh = g' ffwhere g' n z = (x-1::g' n rest)where (x, rest) = n zBy speialization we remove the use of g' { the onverse of the generalizationstep above:h z = (x-1::h rest)where (x, rest) = ff zWe now remove the use of ff { the onverse of the step that introdued it:h (x::rest) = (x-1::h rest) if x > 0= h xs otherwiseCompiling this into our simple proess language results in:loopget xif x > 0 then put x-1end-loopAnalogously, we an fuse the produer proess17

loopget xput x-1end-loopwith the onsumer proessloopget xif x > -1 then put xend-loopFor brevity the details are omitted, but this happens to give the idential re-sult as before. Sine the transformations are \reversible" (forms are replaedby equivalent forms), we have also shown shown that the �lter in the proessomposition�! loopget xput x-1end-loop �! loopget xif x > -1 then put xend-loop �!may leap-frog to the left position in modi�ed form:�! loopget xif x > 0 then put xend-loop �! loopget xput x-1end-loop �!
5 Future workFurther work will explore mehanization of the tehnique and its appliationto realisti problems. As the simple examples above have shown, manualappliation will be quite laborious for non-trivial ases. Partiular ques-tions to be investigated are the automation of the transformations leading toanamorphi forms. 18

AknowledgementsI am indebted to Lambert Meertens for helping me arry out the detailedtransformations of Setion 4.2.Referenes[1℄ R. Bird and L. Meertens. Nested datatypes. In Proeedings MFPS'98, volume 1422 of Leture Notes in Computer Siene, pages 52{67.Springer, 1998.[2℄ P. J. Freyd. Algebraially omplete ategories. In A. Carboni, editor,Proeedings of the 1990 Como Category Theory Conferene, volume 1488of Leture Notes in Mathematis, pages 95{104. Springer, 1991.[3℄ P. J. Freyd. Strutural polymorphism. Theoretial Computer Siene,115(1):107{129, 1993.[4℄ P. J. Freyd, J.-Y. Girard, A. Sedrov, and P. J. Sott. Semanti para-metriity in polymorphi lambda alulus. In Proeedings Third AnnualSymposium on Logi in Computer Siene, pages 274{279. IEEE Com-puter Soiety Press, July 1988.[5℄ A. Gill, J. Launhbury, and S. Peyton-Jones. A short ut to deforestation.In Proeedings of FPCA '93. ACM, 1993.[6℄ J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CambridgeTrats in Theoretial Computer Siene. Cambridge University Press,1989.[7℄ D. Pavlovi. Maps II: Chasing diagrams in ategorial proof theory. Jour-nal of the IGPL, 4(2):1{36, 1996.[8℄ P. Wadler. Theorems for free! In Proeedings of FPCA '89. ACM, 1989.
19

