
The unreasonable ineffectiveness
of security engineering:

An overview

Dusko Pavlovic
Kestrel Institute and Oxford University

Email: dusko@{kestrel.edu,comlab.ox.ac.uk}

Abstract—In his 1960 essay, Eugene Wigner raised the
question of ”the unreasonable effectiveness of mathematics
in natural sciences” [32]. After several decades of security
research, we are tempted to ask the opposite question: Are we
not unreasonably ineffective? Why are we not more secure from
all the security technologies? I sketch a conceptual landscape
of security that may provide some answers, on the background
of ever increasing dynamics and pervasiveness of software and
computation.

Keywords-security; formal methods; pervasive computation;
networks

I. PROBLEM:
ALL PROTOCOLS ARE INSECURE

A. Failures are first class citizens

Security is often viewed as one among many (types of)
requirements that may be imposed on a software system.
Of course, the notion of security does not apply only to
software, as we also speak of bank security, national security,
secure locks etc. But since software nowadays permeates
most domains that need to be secured, it is useful to think
of security engineering as a part of software engineering.
Within the framework of software architectures, security en-
gineering can be viewed as the counterpart of the component
based approach, since security protocols can be construed as
abstract specifications of software connectors.

In practice, however, security engineering does not merge
smoothly with the other engineering disciplines. The main
reason is that in all other engineering disciplines failures
usually arise from engineering errors, whereas in security
engineering, they often arisein spite of the compliance with
the best practices. Failures are not exceptions, but the first
class citizens of security engineering! They are the heart of
the problem of security.

B. Verified protocols fail

Formal verification is often viewed as the process of
proving eternal mathematical truths about some given hard-
ware or software artifacts. If I prove that a system is safe,
then it will stay safe forever, unless I made a mistake,
or unless my assumptions about the environment become

Supported by ONR.

invalid. Similarly, if I prove that a system is secure, it should
remain secure forever.

Driven by the successes of formal verification of hard-
ware and software, the formal methods community quickly
adapted many of its powerful tools for reasoning about
security [10], [25], [30]. But the practice of using these tools
uncovered a remarkable phenomenon: many formally correct
security proofs abstract away real attacks. In fact, almost
every security proof eventually encounters a exception, or
an attack, on one level or another.

Examples abound. The best known (although not the most
informative) case is the Needham-Schroeder Public Key
(NSPK) protocol [21]. It was proven secure in one formalism
(BAN logic [5]), it was believed to be secure for 17 years,
and then it was attacked in another formalism (CSP [17]).
Thousands of papers cite NSPK as the crown evidence that
formal reasoning is useful for uncovering attacks. But the
fact is that different formal reasoning also concealed the
attack on NSPK. In fact, BAN logic analysis did not conceal
the attack, but eliminated it by assuming that the participants
of the protocol are honest. If they are, the security proof
is valid. The attack is launched by a dishonest responder.
The NSPK story only shows that security is not an absolute
property: the same protocol can be secure in one sense, and
insecure in another sense. This is logically unsurprising,but
it can be quite confusing in practice.

There are much deeper problems, though. Engineers gen-
erally build concrete complex systems incrementally, by
refining and composing abstract and simple subsystems.
But security is not preserved either under refinement, or
under composition. This is well-known in theory, but easily
forgotten in practice. A security proof may be valid for
an abstract protocol, but invalid for some of its concrete
implementations. Bull’s recursive authentication protocol [4]
was proven secure with a generic encryption operation [24],
but found to be vulnerable to an easy attack in a slightly
refined model, with a more concrete encryption operation
[29]. In other cases, a protocol secure on its own may
become insecure in interaction with other protocols [9].

But the problems of security do not boil down to the
difficulties of composition and refinement of secure proto-
cols. Even with the advantage of hindsight, it is not always



possible to point to a single aspect of the verification process
which led to a flaw: security always finds a new way to fail.
The failures of the most popular formal model, generally
accepted in the cryptographic community, have drawn the
criticism that the complexity of that particular model is tobe
blamed: that too many people write convoluted formal proofs
which too few people read; and that complex formalisms
can be just as error prone as informal expert scrutiny [12],
[11], [13]. In fact, both are error prone, and formal modeling
often uncovers the vulnerabilities missed by many devoted
experts, whereas the experts often capture the vulnerabilities
missed in formal modeling. And both can happen even
with a carefully scrutinized, and widely deployed protocol,
included in many standards, and even formally modeled,
such as MQV [15], [14], [20].

Clearly, combining formal methods with expert scrutiny
gives the best of both worlds, and more vulnerabilities are
captured then by either approach alone. Such process has
been adopted in some of the working groups of the Internet
Engineering Task Force (IETF), where the representatives
from the industry stakeholders and the researchers from
academia collaborate to adopt the internet standards. But
the failures remain first class citizens nevertheless. E.g.,
the Group Domain of Interpretation (GDoI) of the IPSec
protocol suite was both formally verified and thoroughly
scrutinized by the best experts in the field, who reported
about it in seven Internet Drafts, released in as many years,
before standardizing it in [3]. Shortly after the standardiza-
tion, an attack on the basic functionality of a version of
GDoI was found [18].

II. BACKGROUND:
SECURITY IS AN ADVERSARIAL PROCESS

A. What is security?

It is well known since [1] that software dependability
properties can be decomposed into

• safety: bad things don’t happen, and
• liveness: good things do happen.

A similar conceptual dichotomy extends to information
security, where the properties of interest are spanned by

• secrecy: bad information flows don’t happen, and
• authenticity: good information flows do happen.

However, while the safety and the liveness of a system are
independent, and in fact orthogonal properties, secrecy and
authenticity essentially depend on each other:

• every secret must be authenticated, and
• every authentication is based on a secret.

The complexity of the reasoning about security is due to a
great extent to this circular interdependency of authentica-
tions and secret sharing.

In fact, almost everything about security is circular.

B. The life cycle of security

In cryptography, there is a slogan thatevery secret has a
lifetime: if it is not refreshed, it will be guessed. In security
engineering, it seems,every protocol has a lifetime: sooner
or later, an attack against it will be found. The protocol will
then be improved to avoid that attack: the theory of security
on which the protocol was based will be refined. In response,
the attacker will seek a situation not captured by that new
theory, and launch an attack as a counter-model for it.

Protocol

Attack
counter-model

theory

This is the ongoing adversarial process of security.
The generalassume-guaranteeview of engineering is

that the System guarantees a functionality, provided that
the Environment satisfies its assumptions. This is useful
when the Environment is passive, and does not change too
often. The characteristic of security engineering is that the
Environment actively seeks to invalidate System’s assump-
tions. While security researchers plead allegiance to the
requirement that all security assumptions and mechanisms
should be transparent (”no security by obscurity”), security
analyses often inspire attacks, by explicating the security
assumptions, suitable for the attacks. Even publishing the
patches to cover vulnerabilities triggers attacks. As a logical
process, security is a game of imperfect information.

III. G AP:
METHODS FOR PERVASIVE SOFTWARE DESIGN

A. Pervasive programming as protocol design

As computers pervade all areas of social life and pro-
duction, computation itself is becoming a social process,
distributed across the networks of computers, people, de-
vices, and other networks. In contrast with the purpose-built
electronic computers, these spontaneously evolving social
computers cannot be directly controlled, or programmed in
the traditional sense. Their global behaviors can only be
steered indirectly, by constraining the local computational
interactions. The program particles that assure that a system
of local interactions leads towards the specified global goals
can be viewed as security protocols. In this sense, security
can be defined as a family of methods to achieve some
global, social goals by means of some local, individual
constraints. Security analyses thus tackle the complexity
of global effects of local processes. This is why security
becomes the central concern in network computation.



B. The need for high level methods

Computer science is the science of programming. Its main
feat were high level programming languages, for express-
ing and translating human commands into machine code.
Research into program abstraction led to the semantical
revolution of the 1970s and 80s, which consolidated the
mathematical underpinnings of computer programming into
a foundation for a science. Software engineering organized
programming methodologies into broader software devel-
opment and management processes. The effectiveness of
software engineering and programming methodologies is a
consequence the robustness of their mathematical founda-
tions.

But when computers got connected into networks, and
networks into networks of networks, the science of program-
ming did not follow. The high level methods for program
design were not extended or adapted into methods for secure
protocol design. The notions of program abstraction and
specification refinement have not been adequately formal-
ized for the modern forms of network computation. In
this realm, the semantical revolution did not yet happen.
The mathematical underpinnings of security research are
still scattered through many unconnected research fields,
and across several low level models. E.g. in cryptography,
completely formalized proofs still are still often writtenin
the low level language of Turing Machines. The high level
descriptions are usually written in English.

C. Pervasive computation

The idea of pervasive computation can be traced all the
way back to Vannevar Bush’s Memex memo [6], which
clearly anticipated the Web from a distance of 50 years.
The visions of ”mechanically extended man” [22] and ”man-
computer symbiosis” [16] were passionately discussed in
the 1950s, before the idea of artificial intelligence was
formulated. Building upon such visions, Doug Engelbart
pursued in the 1960s a focused research of”smart spaces”,
extending by computers human collaboration and collective
intelligence [8]. Engelbart carefully analyzed the spatial
aspect of pervasive computation, but his ideas were too
far ahead of his time, and their practical realizations were
even further. For a long time, the only practically useful
result of his investigations was the mouse interface. Al-
though it was not taken too seriously either, it caught on
when the computer screens were structured as 2-dimensional
spaces, and subdivided into windows, rather than into 80-
character command lines, as they were before. Until re-
cently, the screen was the only computationally relevant
space: local computation was a stream of symbols, and
the networks were spanned through adistance-freecyber-
space. Engelbart’s work was largely forgotten, except in
the futuristic MIT ”Media room” project from 1970es,
which experimented with computational environments with
implicit, sensor-based computational inputs.

The spirit of Engelbart’s ideas was revived in the 1990s
by Mark Weiser [31], under the name ofubiquitous com-
putation. This time the emphasis was not on the spatial
aspects of network computation (viewed as a social process,
along the lines of Vannevar Bush’s ideas), but on hiding the
computer interfaces in everyday objects, so that computation
disappears into the environment, and becomes an implicit
activity.

The reality of the wireless networking technologies up-
staged the predictions of all theories of pervasive compu-
tation, just like the reality of the Internet had upstaged the
theories of distributed computation. Nowadays, networks of
small, versatile computational devices overlay and amplify
social networks. They promulgate through physical space,
and communicate through their humans on their social
channels, just like the humans communicate through their
devices on their electronic channels.

D. Pervasive software

But the advances in device design, network technology
and deployment have not been met by the advances in
program design, system composition and security. Pervasive
hardware has been adopted, it permeates many aspects of
modern life, and dominates the markets. Pervasive software
design is largely ad hoc. Pervasive security hardly exists.

The methodologies for pervasive software design include
Web and network programming, iPhone application design
and development, mashup building, and some other ap-
proaches to building widely distributed software systems.
Pervasive software developers share many tools and lan-
guages with the Web developers. Both require a wide
gamut of programming and scripting techniques, sometimes
include extensive protocol and interface design efforts. In
both cases, social engineering is a central rather than a
marginal concern. However, while the Web development
methodologies are well supported and carefully analyzed by
the industry, and on the enterprise level, pervasive software
has been left to the individual developers. It is built on a
large scale, it is supported by some powerful development
tools, yet it has not attracted much attention of the research
community. As a consequence, an important part of modern
software — perhaps the most important part — has not yet
been covered by formal methods or by rational engineering
methodologies. The resulting lack of assurance and security
imposes limits the critical applications of the available
technologies.

IV. TOWARDS A SOLUTION:
SEMANTICS OF NETWORKS

A. Three paradigms of computation

In simple computation, as realized, e.g. by a Turing
Machine, a computer takes a string as the input, and returns
a string as the output, both explicitly structured, and both



at explicitly specified interfaces. Computation can thus be
construed as mechanized symbol processing, or calculation.
It is off-line, in the sense that its only interactions with the
environment are the input and output operations.

In network computation, as realized by a computer net-
work designed according to the ”end-to-end” architectural
principle, the comfortable explicitness of the data structuring
and of the interfaces is lost: data may be differently struc-
tured at different network nodes. Moreover, data may be
transformed not only through calculation within a node, but
also through communication between nodes. Computation
as local calculation is thus extended by non-local commu-
nication, and its effects. Its interfaces may be distributed
between multiple network nodes, and even redistributed by
a process. Explicitly specified data structures and interfaces
are thus replaced by dynamically changing semantics and
evolutionary network structures. The user interface of a
network-as-a-computer requiresmeta-computation, which
includessearch, data mining, latent semanticsextraction,
and other methods to gather and analyze statistics of data
and information flows. The network indexing methods that
underlie this meta-computation, are rapidly evolving intoa
branch of software engineering on its own. The high-level
operations ofweb programmingare crystallizing on top of
the spidering and indexing practices, and some view them
as the first basic operations of a ”machine language” for
harvesting data from networks [23], [7].

Pervasive computationfurther extends the paradigm of
network computation in two directions.

• On one hand, the simple ”end-to-end” network ar-
chitecture, where the communicating computers are
connected by insecure links1, and all security require-
ments are pushed to the ”ends” — is replaced by the
heterogenous network models, as increasingly diverse
computational devices get connected through increas-
ingly diverse communication links.

• On the other hand, the abstract notion of cyber-space,
where every two nodes are each other’s neighbors as
soon as there is a network route between them, is
replaced by richer notions of space, since some of the
network links implement a notion of distance, and some
are even directly embedded into social and physical
spaces [19], [33], [27].

In summary, the notion of computation has evolved from
calculation and string processing, through end-to-end com-
munication in cyber space, as the distance-free space of
costless communication, to the rich interactions in physical
and social spaces, that constitute our social life. What was
originally a mechanization of a simple part of our most
abstract symbol processing capabilities has evolved into a
practical support for our most concrete social interactions.

1”End-to-end” means that the principals are at the network nodes, and
the attacker controls the network links.

Remark: The term cyber-spaceusually denotes the
abstract space of end-to-end networks: the location and the
physical distance of the end nodes are irrelevant; every
two nodes appear to each other as neighbors, as long as
a connection can be established. Introducing mobile devices
as carriers of computation introduces the concept of distance
among the computational interactions. We use the terms
”cyber-network” and ”end-to-end network” interchange-
ably.

B. Security protocols in pervasive computation

A protocol is a distributed computational process, given
with a set of desired runs, or the properties that the desired
runs should satisfy. To prove security of a protocol we usu-
ally demonstrate that only the desired runs are possible, or
that the undesired runs can be detected through participants’
local observations.

Security protocols are thus formally modeled within a pro-
cess calculus, or with partially ordered multisets (pomsets)
[28]. In order to model security protocols run in pervasive
networks, we extend the pomset process model, used for
analyzing security protocols in cyber networks [26]. The
main complication is that in this previous work, the network
itself was abstracted away, i.e. left implicit. More precisely,
the service of routing and relaying messages was taken for
granted, and hidden from the observer. As unobservable, this
service was assumed to be controlled by the adversary. An
attack in an end-to-end network can only be detected through
local observations at the ends, and without insight onto the
message delivery processes in-between.

In a pervasive network, the message delivery services
cannot be abstracted away. The assumption that every two
nodes are network neighbors is not justified any more: e.g.,
some devices may be internet nodes, some may have access
to a cellular network, and may communicate through their
human carrier. Some may be connected directly, others may
have to seek a relay. To express such situations, we must
make the network explicit.

Moreover, the toolkit of security primitives and security
tokens, available to establish secure communication, is es-
sentially richer in pervasive networks.

C. Principals and security tokens

The principals are the computational agents that control
one or more network nodes, where they can send and
receive messages. A principal can only observe (and use
in his reasoning) the events that happen at his own network
nodes. Principal’s observations of other principals’ actions
are modeled as messages received oversocial channels.

Security tokens are the data used by the principals to
realize secure communication. Informally, security tokens
are usually divided in three groups:



• something you know: digital keys, passwords, and other
secrets

• something you have: physical keys and locks, smart
cards, tamper-resistant devices, or

• something you are: biometric properties, e.g. finger-
prints, or written signatures, assumed to be unforgeable

The difference between these three types of security tokens
lies in the extent to which they can be shared with others:

• what you know can be copied and sent to others,
• what you have cannot be copied in general, but can be

given away, whereas
• who you are cannot be copied, or given away.

The most common end-to-end security goals are usually
realized entirely by means of cryptographic software, and the
principals only use the various kinds of secrets. This means
thata principal can be identified with the list of secrets that
she knows. If Alice and Bob share all their secrets, then
there is no way to distinguish them by the challenges that
can be issued in a standard cyber network . For all practical
purposes, they have the same network identity.

In pervasive networks, on the other hand, security is also
supported by cryptographic hardware: besides the secrets,a
principal is also supplied with somesecurity devices. They
are represented as some of the network nodes, given to the
principals to control. A dishonest principal (or an honest
certificate authority) can relinquish control of a security
device, and give it to another principal.

To capture the third and the strongest kind of security
tokens, and distinguish the principals by who they are,
we need somebiometric devices. They are represented as
network nodes. Principals’ biometric properties, on the other
hand, are represented as some of the network nodes as well,
available to respond to the challenges from the biometric
devices. The only difference of a biometric propertyp from
the other network nodes given to a principalA to control is
thatp always remains underA’s control, and cannot be given
away to another principal. We call the networks equipped
with biometric devices and biometric properties — biometric
networks.

D. Networks

In modeling security, principals can be identified with
their security tokens, since security tokens are the mate-
rial that security is built from. Summarizing the preceding
section, we can say that

• in end-to-end networks (or cyber-networks), the only
security tokens are the secrets, and the principals are
reduced towhat they know;

• in pervasive networks, the security tokens also include
some security devices, and the principals are identified
not just by what they know, but also bywhat they have;

• in biometric networks, the security tokens furthermore
include some biometric properties, and the correspond-

ing biometric devices, needed to test them; the princi-
pals are identified not just by what they know, or what
they have, but now we take into accountwho they are.

A communication networkconsists of
• network graphN = (L ⇉ N), whereN is the set of

nodes, andL the set of links, partitioned intoNmn =
〈δ, ̺〉−1(m,n) for m,n ∈ N ,

• channel typesC, and the type assignmentθ : L −→ C,
• set of principals (or agents)A, partially ordered by the

subprincipal relation6,
• control c© : A −→ ℘N , such that the first of the

following conditions is satisfied, and often also the
second one:

A 6 B =⇒ c©A ⊆ c©B

A 66 B ∧ A 6> B =⇒ c©A ∩ c©B = ∅

Remark: In a cyber network, the end-to-end assump-
tion, that all security is done at the ”ends” and any route
”in-between” is as good as any other route implies that the
network service can be reduced to an assumption that there is
a single link between every two nodes, i.e.Nmn = 1 for all
m andn. Moreover,C = 1, i.e. all channels are of the same
type, insecure. So the only nontrivial part of the structure
is c© : A −→ ℘N . But controlling one network node
or controlling another one makes no difference, because a
message can always be sent from everywhere to everywhere.
So the only part of the above definition visible in the process
model needed for cyber security is the posetA.

1) Cyber networks: principals are what they know:
The fact that the principals can be identified with the lists
of secrets that they know is represented by an inclusion
Γ : A →֒ T ∗, which we callenvironment. However, since a
principal may learn new secrets when a process is run (or
during a protocol execution), her environment may grow:
at each stateσ, she may have a different environmentΓσA

such that for every transitionσ1 � σ2 holdsΓσ1
A ⊆ Γσ2

A.
During a protocol execution, different principals may thus
become indistinguishable, if they learn each other’s secrets,
sinceΓA = ΓB ⇒ A = B. This means that the set of
principalsA may also vary from state to state in the execu-
tion: there is a familyAσ, with the surjectionsAσ1

։ Aσ2

for every transitionσ1 � σ2, induced by identifying the
principals that become indistinguishable. In this case, the
model thus boils down to the one used in Protocol Derivation
Logic [18], [26].

Digression: Network identities:One often hears about
network identities and identity theft. But what exactly is
a network identity? Formal reasoning requires a formal
definition. The termsprincipal and entity are often used to
denote the carriers of a network identity.

Statically, a network identity is a set of secrets. Two
principals who know the same keys cannot be distinguished



by cryptographic challenges. And cryptographic challenges
are the only authentication method in cyber networks.

Dynamically, however, different principals may become
identical after the keys which distinguish them have been
published. Or a principalA, which was independent of
(incompatible with)B, may becomeB’s subprincipal, if
A’s keys whichB did not know are published. In general,
two different principals may become indistinguishable even
without any action on their own, entirely through the actions
of others. E.g., suppose that

A = P ∪Q B = P ∪R C = Q ∪ S D = R ∪ T

If C publishesQ andD publishesR, thenA andB will
become indistinguishable. A dynamical view thus shows
principals asvariable sets of keys, i.e. sets of keys changing
through possible worlds.

2) Pervasive networks: principals are what they have:
A pervasive networkis obtained by distinguishing, within
a cyber network as defined above, a set of mobile nodes
(i.e. security devices)̃N , from the fixed nodesN , so that
N = Ñ +N .

Besides the send, receive, and match actions, the process
calculus now has two new kinds of actions, which allow
each principal to:

• move a mobile node under his control, and reconnect
it elsewhere in the network;

• pass control of a mobile node to another principal.

This means that the network connections and controls of the
mobile nodes can dynamically change during a process run.

3) Biometric networks: principals are what they are:A
biometric networkis obtained by distinguishing, among the
nodes of a pervasive network as defined above, two more
sets

• Br ⊆ Ñ of biometric properties, and
• Bc ⊆ N of biometric verifiers.

The intended interpretation of these two sets of nodes is
implemented by ther requirement that:

• control of the elements ofBr cannot be passed to
another principal,

• the elements ofBc are related with the elements ofBr,
so that the former can issue biometric challenges to the
latter.

E. Message delivery modes

The main source of the new security phenomena in a
pervasive network is the fact that the different types of
channels have different message delivery modes. In cyber
networks, a message is usually in the formA to B : m,
whereA is the claimed sender,B the purported receiver, and
m the message payload. As explained before, the network
service is implicit in this model, so thatA and B refer

both to the principals and to the network nodes that they
control. All three message fields can be read, intercepted,
and substituted by the attacker. The point of the end-to-end
security is that the receiver can still extract some assurances,
even from a spoofable message, because the various crypto-
graphic forms ofm limit attacker’s capabilities. Moreover,
this message form is an abstract presentation of the fact that
the message delivery service provided by the network and
the transportation layers, say of the Internet.

In pervasive networks, different channel types provide
different message delivery services. In general, there is no
universal name or address space, listing all nodes. Annotat-
ing all messages by sender’s and receiver’s identities thus
makes no sense, and the principal’s identities are added to
the payload when that information is needed. There may be
no link between two nodes, and no way to send a message
from one to the other. On the other hand, a message can be
delivered directly, e.g. when a smart card is inserted into a
reader, without either of the principals controlling the card
and the reader knowing each other.

The different message delivery modes determine the dif-
ferent security guarantees of the various channel types.

V. CONCLUSION

In networks and in pervasive computation, the desired
global behaviors need to be assured by means of local
constraints. The tasks of assuring global behaviors through
local constraints subsume under security. This is why the
central problems of pervasive computation usually revolve
around security.

But security does not yield to the standard engineer-
ing techniques of incremental system development, based
on refinement and composition. One reason, discussed in
Sec. II, is that security is an intrinsically adversarial process:
the Environment can actively change in order to hamper
System’s functioning. Another reason, discussed in Sec. III,
is that the high level semantical methods for reasoning
about pervasive computation and security are still largely
missing. A sketch of a network model around which the
needed semantical methods could be developed is provided
in Sec. IV.

REFERENCES

[1] B. Alpern and F. B. Schneider, “Defining liveness,”
Information Processing Letters, vol. 21, no. 4,
pp. 181–185, October 1985. [Online]. Available:
http://dx.doi.org/10.1016/0020-0190(85)90056-0

[2] R. Barua and T. Lange, Eds.,Progress in Cryptology - IN-
DOCRYPT 2006, 7th International Conference on Cryptology
in India, Kolkata, India, December 11-13, 2006, Proceedings,
ser. Lecture Notes in Computer Science, vol. 4329. Springer,
2006.



[3] M. Baugher, B. Weis, T. Hardjono, and H. Harney, “The
Group Domain of Interpretation,” Network Working Group,
Internet Engineering Task Force. RFC 3547, July 2003.

[4] J. Bull, “The authentication protocol,” APM Report, March
1997.

[5] M. Burrows, M. Abadi, and R. Needham, “A logic of authen-
tication,” ACM Transactions on Computer Systems, vol. 8,
no. 1, pp. 18–36, 1990.

[6] V. Bush, “As we may think,”Atlantic Monthly, vol. 176, no. 1,
pp. 101–108, July 1945.

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,”Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[8] D. Engelbart, “Augmenting human intellect: A conceptual
framework,” http://sloan.stanford.edu/MouseSite/Engelbart-
Papers/B5F18 ConceptFrameworkInd.html, October 1962.

[9] J. Kelsey, B. Schneier, and D. Wagner, “Protocol interactions
and the chosen protocol attack,” inProceedings of the 5th
International Workshop on Security Protocols, ser. Lecture
Notes in Computer Science, vol. 1361. Springer-Verlag,
1997, pp. 91–104.

[10] R. A. Kemmerer, C. Meadows, and J. K. Millen, “Three
system for cryptographic protocol analysis,”J. Cryptology,
vol. 7, no. 2, pp. 79–130, 1994.

[11] N. Koblitz and A. Menezes, “Another look at ”Provable Se-
curity”. II,” in INDOCRYPT, ser. Lecture Notes in Computer
Science, R. Barua and T. Lange, Eds., vol. 4329. Springer,
2006, pp. 148–175.

[12] ——, “Another look at ”Provable Security”,”J. Cryptology,
vol. 20, no. 1, pp. 3–37, 2007.

[13] ——, “The brave new world of bodacious assumptions
in cryptography,” Notices of the American Mathematical
Society, vol. 57, no. 3, pp. 357–365, Mar. 2010. [Online].
Available: http://www.ams.org/notices/201003/

[14] H. Krawczyk, “HMQV: A high-performance secure Diffie-
Hellman protocol,” in Protocol, Advances in Cryptology
(CRYPTO) ’05, ser. Lecture Notes in Computer Science, vol.
3621. Springer-Verlag, 2005, pp. 546–566.

[15] L. Law, A. Menezes, M. Qu, J. A. Solinas, and S. A. Van-
stone, “An efficient protocol for authenticated key agreement,”
Des. Codes Cryptography, vol. 28, no. 2, pp. 119–134, 2003.

[16] J. Licklider, “Man-computer symbiosis,”IRE Transactions on
Human Factors in Electronics, vol. 1, pp. 4–11, Mar. 1960.

[17] G. Lowe, “An attack on the Needham-Schroeder Public-
Key authentication protocol,”Information Processing Letters,
vol. 56, pp. 131–133, 1995.

[18] C. Meadows and D. Pavlovic, “Deriving, attacking and de-
fending the GDOI protocol,” inProceedings of ESORICS
2004, ser. Lecture Notes in Computer Science, P. Ryan,
P. Samarati, D. Gollmann, and R. Molva, Eds., vol. 3193.
Springer Verlag, 2004, pp. 53–72.

[19] C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and
P. Syverson, “Distance bounding protocols: authentication
logic analysis and collusion attacks,” inSecure Localization
and Time Synchronization in Wireless Ad Hoc and Sensor Net-
works, R. Poovendran, C. Wang, and S. Roy, Eds. Springer
Verlag, 2006.

[20] A. Menezes and B. Ustaoglu, “On the importance of public-
key validation in the mqv and hmqv key agreement pro-
tocols,” in INDOCRYPT, ser. Lecture Notes in Computer
Science, R. Barua and T. Lange, Eds., vol. 4329. Springer,
2006, pp. 133–147.

[21] R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers,”Commun.
ACM, vol. 21, no. 12, pp. 993–999, 1978.

[22] J. North, “The rational behaviour of mechanically extended
man,” Wolverhampton, UK, Sep. 1954.

[23] D. A. Patterson, “Technical perspective: the data center is the
computer,”Commun. ACM, vol. 51, no. 1, p. 105, 2008.

[24] L. C. Paulson, “Mechanized proofs for a recursive authentica-
tion protocol,” inProceedings of CSFW ’97. IEEE Computer
Society, 1997, pp. 84–95.

[25] ——, “Proving properties of security protocols by induction,”
in Proceedings of CSFW ’97. IEEE Computer Society, 1997,
pp. 70–83.

[26] D. Pavlovic and C. Meadows, “Deriving secrecy properties
in key establishment protocols,” inProceedings of ESORICS
2006, ser. Lecture Notes in Computer Science, D. Gollmann
and A. Sabelfeld, Eds., vol. 4189. Springer Verlag, 2006.

[27] ——, “Deriving authentication for pervasive security,” in
Proceedings of the ISTPS 2008, J. McLean, Ed. ACM, 2008,
15 pp.

[28] V. R. Pratt, “The pomset model of parallel processes: Unify-
ing the temporal and the spatial,” inSeminar on Concurrency,
Carnegie-Mellon University. London, UK: Springer-Verlag,
1985, pp. 180–196.

[29] P. Ryan and S. Schneider, “An attack on a recursive authenti-
cation protocol. a cautionary tale,”Inf. Process. Lett., vol. 65,
no. 1, pp. 7–10, 1998.

[30] ——, The modelling and analysis of security protocols: the
CSP approach. Addison-Wesley Professional, 2000.

[31] M. Weiser, “Some computer science issues in ubiquitous
computing,”Commun. ACM, vol. 36, no. 7, pp. 74–84, 1993.

[32] E. P. Wigner, “The unreasonable effectiveness of mathematics
in the natural sciences,”Communications on Pure and Applied
Mathematics, vol. 13, no. 1, pp. 1–14, February 1960.

[33] F. L. Wong and F. Stajano, “Multichannel security protocols,”
IEEE Pervasive Computing, vol. 6, no. 4, pp. 31–39, 2007.


