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Abstrat. When people perform omputations, they routinely moni-

tor their results, and try to adapt and improve their algorithms when

a need arises. The idea of self-adaptive software is to implement this

ommon faility of human mind within the framework of the standard

logial methods of software engineering. The ubiquitous pratie of test-

ing, debugging and improving programs at the design time should be

automated, and established as a ontinuing run time routine.

Tehnially, the task thus requires ombining funtionalities of au-

tomated software development tools and of runtime environments. Suh

ombinations lead not just to hallenging engineering problems, but also

to novel theoretial questions. Formal methods are needed, and the stan-

dard tehniques do not suÆe.

As a �rst ontribution in this diretion, we present a basi math-

ematial framework suitable for desribing self-adaptive software at a

high level of semantial abstration. A stati view leads to a struture

akin to the Chu onstrution. An dynami view is given by a oalgebrai

presentation of adaptive transduers.

1 Introdution: spei�ation arrying ode

One idea towards self-adaptive software is, very roughly, to introdue some kind

of \formalized omments", or Floyd-Hoare style annotations as �rst lass it-

izens of programs. Together with the exeutable statements, they should be

made available to a generalized, adaptive interpreter, extended by an automated

spei�ation engine (e.g., Speware

TM

-style), supported by theorem provers

and ode generators. This adaptive interpreter would not only evaluate the exe-

utable statements, but also systematially test how their results and behaviour

satisfy the requirements spei�ed in the formal annotations. Suh testing data

ould then be used for generating improved ode, better adapted to the spe-

i�ations, often on the y. On the other hand, the formal spei�ations ould

often also be re�ned, i.e. adapted to the empiri data obtained from testing a

partiular implementation.

1.1 Automated testing and adaptation

Coupling programs with their spei�ations in a uniform, automatially sup-

ported framework would, at the very least, allow monitoring orretness, relia-

bility, safety and liveness properties of programs, with respet to the spei�ed



requirements, as well as the partiular distribution of the input data, and any

other aspets of the exeution environment that may beome available at run

time.

In some ases, one ould hope for more than mere monitoring of the relation-

ship between an abstrat spei�ation and its implementation. Indeed, software

an often be improved and adapted to its spei�ations in a preditable fash-

ion, one its running behaviour an be observed on onrete inputs. This is, for

instane, usually possible in the ases when the orretness riteria are not ab-

solute, viz when the software only approximates its spei�ation. Software that

models physial systems, or stohasti proesses, or even just omputes genuine

real numbers or funtions, is usually of this kind: the in�nitary nature of the

output data preludes the exat solutions, whih an only be approximated. But

the approximations an, in priniple, always be improved, on an additional ost.

Comparing the atual runs of suh software with its abstrat spei�ations may

suggest optimizing this ost, say, by adjusting the oeÆients in the numeri

formulas to the observed distribution of the input data. In some ases, di�erent

distributions may even justify applying di�erent algorithms, whih an be ab-

stratly lassi�ed in advane, so that the adapted ode an be synthesized on

the y.

Self-adaptive software an perhaps be ompared with an engineer monitoring

the results of his omputations, updating the methods and re�ning the model.

The point is here that a part of this proess of adaptation an and needs to be

automated.

1.2 Dynami assembly and reon�guration

Furthermore, in a omplex software system, the adaptation yle of a software

omponent an take into aount not only the run time behaviour of the om-

ponent itself, but also the behaviour of the other omponents, and the hanges

in the environment at large.

In order to be ombined, software modules must ontain suÆient informa-

tion about their struture and behavior. Conventional appliation programming

interfaes, APIs, are intended to arry suh information but APIs are usually

under-spei�ed (they ontain just signature/type information), are often based

on unful�lled assumptions, and are prone to hange. Conventional APIs are thus

insuÆient for the task of assured omposition.

Ideally, APIs would ompletely apture all assumptions that inuene behav-

ior. However, formally verifying suh ompleteness is usually infeasible | some

degree of API partiality is inevitable in pratial software development. Nev-

ertheless, in dynamially adaptable software, API partiality should ontinually

derease as the interfaes evolve during the lifetime of a system, together with

the spei�ations and implementations of its omponents and perhaps even its

arhiteture.

We believe that the requirement of dynamially adaptable software naturally

leads to the idea of spei�ation-arrying ode: an adaptable program must

arry a urrent spei�ation of its funtionality, an adaptable spei�ation must



ome with a partial implementation. Adaptability requires a simultaneous and

interative development of the logial struture and the operational behavior.

Moreover, spei�ation-arrying ode is the way to aommodate and sup-

port, rather than limit and avoid, the rih dynamis of ever hanging interfaes,

so often experiened in large software systems, with the unpreditable intera-

tions arising from the ever hanging environments. The fat that spei�ations,

implementations, interfaes and arhitetures in priniple never stop hanging

during their lifetime, should not be taken as a nuisane, but reognized as the

essene of the game of software, built into its semantial foundation, and imple-

mented as a design, and when possible a runtime routine.

Of ourse, adjusting the behaviour of autonomous software omponents to

eah other, tuning them in on the basis of their behaviour, or getting them to

interat in a desired way, an be a very hard task. But if their abstrat spei�-

ations in a generi language are maintained on a suitable formal platform, and

kept available at run time, their possible interations and joint onsisteny an

be analyzed abstatly, e.g. using theorem provers, and their implementations an

be modi�ed towards a desired joint behaviour. This may involve reimplementing,

i.e. synthesizing new ode on the y, and is ertainly not a straightforward task.

However, it seems unavoidable for the independently implemented omponents,

neessary for the ompositional development of systems | and we believe that

it is also within the reah of the urrent software synthesis tehnologies.

1

In any ase, a software system that needs to adapt its ode and behaviour

the run time data, or to the hanges of the environment, while maintaining its

essential funtionality, will surely need to arry and maintain a spei�ation of

this funtionality in some form, perhaps inluding a history reord, and a ur-

rent orretness erti�ate. Sine this task, and the strutures involved, learly

go beyond the existing software methodologies, a areful analysis of the semanti-

al repreussions seems neessary. Building the suitable design and development

environments for the spei�ation arrying self-adaptive software will require a

mathematial framework with some nonstandard features. In the present paper,

a rude, initial piture of some of these features is outlined. Setion 2 desribes

the struture and the intended interpretation of an abstrat ategory of spei�-

ation arrying modules. This an be viewed as a �rst attempt at denotational

semantis of suh bipartite modules, involving a strutural and a behavioral om-

ponent. Setion 3 briey outlines the strutures needed for a dynami view of

the adaptation proess, and the way to adjoin them in the desribed semantial

framework.

1

The idea of adding abstrat logial annotations to ode an be seen as a gener-

alization of Neula and Lee's [12℄ ombination of proof-arrying-ode and ertifying

ompilers. While mainly onerned with the seurity properties of mobile ode, many

of the ideas that arose in that work do seem to apply in general, and provide evidene

for the imminent realizability of the present ideas.



2 Category of spei�ation arrying programs

As the name suggests, a spei�ation arrying program onsists of a program P ,

a spei�ation S, and a satisfation, or model relation j= whih tells how they

\arry" eah other, i.e. establishes the sense in whih P satis�es S. Formally, a

spei�ation arrying program is thus a triple hP; j=; Si.

But what preisely are P , j=, and S? In priniple, a formal spei�ation

S is a logial theory in a generi spei�ation language (e.g., the higher-order

prediate logi). A program P , on the other hand, here means a desription

of a omputational behaviour in one of the available formalisms: it an be a

transition system, an automaton, or simply a piee of ode in a suÆiently

general programming language. Finally, the satisfation relation q j=  tells

whih of the formulas  of S are satis�ed at eah of the states q of P .

Although diverse formalisms an be used for the partiular presentations of

P and S, they an always be uniformly represented as ategories. The lassifying

ategories P and S are derived respetively from the program P and the spei-

�ation S using the known proedures of operational semantis and ategorial

model theory. The satisfation relation j= then beomes a funtor from P� S.

But we shall not attempt to present this abstrat framework diretly, but

rather begin by motivating its main features and the underlying ideas, espeially

as they arise in extant frameworks. Some of the underlying mathematis will be

outlined, but the details are beyond the sope of this presentation.

2.1 Contrats: the game of re�nement and adaptation

Intuitively, an adaptive module hP; j=; Si an be thought of as a ontrat be-

tween a programmer and a lient: the lient spei�es the requirements in S, and

the programmer provides the program P in response. This intuition yields a

oneptual basis for the disipline and theory of software re�nement [1, 11℄.

The proess of software adaptation an now be viewed as a game played

between the lient and the programmer: the former re�nes the spei�ation S,

say to S

0

, and the latter tries to respond aordingly by adapting the program

P to P

0

aordingly, i.e. in suh a way that the satisfation j= is preserved. This

means that a prediate ' from S should be satis�ed in a state q of P if and only

if the translation '

0

of ' to S

0

is satis�ed in all states q

0

of P

0

that simulate the

state q.

In summary, an adaptation transformation of hP; j=; Si into hP

0

; j=

0

; S

0

i on-

sists of

{ a simulation P

f

P

 � P

0

, and

{ an interpretation S

f

S

�! S

0

,

suh that for all prediates ' in S and all states q

0

in P

0

holds

q

0

j=

0

f

S

(') () f

P

(q

0

) j= ' (1)



The pair f = hf

P

; f

S

i, satisfying (1), is an adaptation morphism

hP; j=; Si

f

�! hP

0

; j=

0

; S

0

i

An abstrat semantial framework for software adaptation is thus given by the

ategory C of spei�ation arrying programs, viewed as ontrats C = hP

C

; j=

C

; S

C

i, with the adaptation morphisms between them.

Contrats as intervals. Note that the morphism f : hP; j=; Si �! hP

0

; j=; S

0

i

is running onurrently with the spei�ation re�nement f

S

: S �! S

0

, but

in the opposite diretion from the simulation f

P

: P

0

�! P . An impreise,

yet instrutive analogy is that a ontrat hP; j=; Si an be thought of as a real

interval [p; s℄. The desired software funtionality, that S and P are approximating

in their di�erent ways, then orresponds to a point, or an in�nitely small interval

ontained between p and s. The re�nement/adaptation game of the lient and

the programmer now beomes an interative searh for greater lower bounds p,

and smaller upper bounds s, i.e. for smaller and smaller intervals, nested in eah

other, all ontaining the desired point. This proess brings the programs and

their spei�ations loser and loser together, so that they better approximate

the desired funtionality from both sides, i.e. in terms of the behavior and the

struture. Viewed in this way, an adaptation morphism beomes like a formal

witness of the interval ontainment

[p; s℄ � [p

0

; s

0

℄ () p � p

0

^ s

0

� s

The morphism hP; j=; Si �! hP

0

; j=

0

; S

0

i thus orresponds to the ontainment

[p; s℄ � [p

0

; s

0

℄, the interpretation S �! S

0

to the relation s � s

0

, and the

simulation P

0

�! P to p

0

� p.

Of ourse, the analogy breaks down on the fat that a spei�ation S and a

program P are objets of di�erent types. Nevertheless, the satisfation relation

j= measures \the distane" between P and S, and the mathematial strutures

arising from re�nement/adaptation remain similar to those enountered in ap-

proximating numbers by intervals. In spite of its impreision, the metaphor re-

mains instrutive. Moreover, the view of S and P as the approximations of an

ideal point where the program is optimally adapted to the spei�ation, does

seem oneptually orret. To better approximate this point, S presribes a

minimum of struture neessary for expressing some part of the desired fun-

tionality, whereas P provides the simplest behaviour suÆient for implementing

it. The lient's strategy is to re�ne S to S

0

along f

S

: S �! S

0

, to onstrain

the input/output requirements more, and make programmer's task harder. The

programmer, on the other hand, must enrih the behaviour P to P

0

, in order

to better �t the task. This means that P

0

must at least be able to simulate P ,

along f

P

: P

0

�! P .

In any ase, the lient provides the input/output requirements S, whereas

the programmer supplies in P the omputation steps transforming the inputs

to the outputs. Semantially speaking, the strutural, \upper bound" desrip-

tions of software are thus driven by its denotational aspets, viz the struture



of the datatypes and the funtions that need to be re�ned and implemented.

This is summarized in a spe S. On the other hand, a \lower bound" desription

of a desired piee of software is driven by its operational aspets, and in our

partiular ase by the behaviour of a given implementation P , that needs to

be adapted, or optimized for better performane. While oneptually di�erent,

the strutural/denotational and the behavioural/operational aspets an be ap-

tured in a uniform setting [22℄, whih would perhaps make the idea of ontrats

as intervals more onvining for some readers, or at least give the \intervals"

a more familiar appearane. However, as they stand, spei�ation arrying pro-

grams an be represented and implemented using mostly the readily available

semantial frameworks, on the basis of the extant spei�ation and programming

environments.

2.2 Example: adaptive sorting

To give the reader an idea of what a onrete spei�ation arrying module

looks like, and how it adaptats on the y, we sketh an (over)simpli�ed example,

based on the material from [23, 24℄. We desribe how a sorting module an be

automatially reon�gured in response, say, to the observed distributions of the

input data.

Suppose that sorting is done by a Divide-and-Conquer algorithm, e.g. Quik-

sort, or Mergesort. The idea of the Divide-and-Conquer sorting is, of ourse, to

deompose (\divide") the input data, sort the parts separately, and then om-

puse (\onquer") them into a sorted string. The abstrat sheme is:

1

i

||zz
zz

zz
zz

z
o
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FF
FF

I

�

d
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s

//
O

I � I

s�s

//
O �O

�



OO

In words, there are two sorts, I for the inputs and O for the outputs, and the

desired sorting funtion s maps one to the other. In priniple, I should be the

type of bags (multisets) over a linear order, whereas O are the ordered sequenes,

with respet to the same order. The onstants i : I and o : O are used to denote

a partiular input and the indued output. The bars over the arrows for d and

 mean that they are relations, rather than funtions. They should satisfy the

requirements that

{ if d(x; y; z), then x = y + z, and

{ if (x; y; z), then jxj+ jyj = jzj



where + is the union of bags, and j � j maps sequenes to the underlying bags.

Although they are not funtional, these relations are direted by the data ow.

That is why they are denoted by the arrows.

The formal spei�ation S

DC

of the divide-and-onquer algorithms will thus

look something like

spe Divide-and-Conquer[(S,<): Linear-Order℄

imports

bag(S),

ordered-seq(S)

sorts

I = bag(S),

O = oredered-seq(S)

operations

s:I->O,

d:I,I,I -> Bool,

:O,O,O -> Bool

axioms

d(x,y,z) => x = y + z,

(x,y,z) => |x| + |y| = |z|,

d(x,y,z) /\ (s(y),s(z),w) => s(x) = w

endspe

An abstrat program P

DC

, partially implementing S

DC

an now be repre-

sented as the transition system

?>=<89:;
q

0

s(d

0

(i)):=o

ss?>=<89:;
q

i:=d

0

(i)

33

i:=d

1

(i)

++ ?>=<89:;
q

1

s(d

1

(i)):=o

kk

where d

0

(x) and d

1

(x) denote any bags satisfying d(x; d

0

(x); d

1

(x)). In a way,

the state q hides the implementation of d and , whereas q

0

and q

1

hide the

implementation of the sorting of the parts.

The theorems of S

DC

are satis�ed at all states: they are the invariants of the

omputation. The transitions from state to state indue the interpretations of

the spei�ation S

DC

in itself, mapping e.g. i 7! d

0

(i) in one ase, or s(d

0

(i)) 7! o

in another. They all preserve the invariants, viz the theorems of S

DC

, of ourse.



The satisfation relation j=

DC

tells, moreover, for eah partiular state, whih

additional prediates, besides the theorems of S

DC

, have been made true by the

exeuted omputational steps, viz the substitutions in S

DC

.

The suitable re�nements of S

DC

yield the spei�ations S

QS

of Quiksort

and S

MS

of Mergesort. As explained in [23, 24℄,

{ taking d(x; y; z) () x = y + z implies that (x; y; z) must mean that z is

a merge of x and y | whih yields Mergesort, whereas

{ taking (x; y; z) () x�y = z implies that d(x; y; z) must mean that y

and z are a partition of x, suh that all elements of y are smaller than every

element of z | whih yields Quiksort.

Implementing S

QS

and S

MS

, one an synthesize exeutable programs P

QS

and

P

MS

. While the spei�ations ome with the interpretations S

DC

�! S

QS

and

S

DC

�! S

MS

, the programs ome with the simulations P

QS

�! P

DC

and

P

MS

�! P

DC

, showing how the implementations hidden in P

DC

have been

realized.

All together, we now have three ontrats, DC, QS andMS, with two adap-

tation morphisms between them.

�� ��
�� ��S

DC

||yy
yy

yy
yy

""EEEEEEEE

�� ��
�� ��S

QS

�� ��
�� ��S

MS

P

DC

P

QS

<<yyyyyyyy

P

MS

bbEEEEEEEE

This sorting module an thus run in one of the two modes: Quiksort or Merge-

sort, and adapt, when needed, between one and the other. At eah point of

time, though, only one of them needs to be present, sine the other an be au-

tomatially generated when needed. The module an be set up to monitor its

performane, and reon�gure when it falls below some treshold.

Suppose that the module is running as Quiksort, and the input data are

oming in almost sorted, whih brings it lose to the worst-ase behavior. The

adaptive interpreter aligns P

QS

and S

QS

, observes that 98% of the omputation

time is spent on the divide routine d, and deides to simplify it. It generalizes

from S

QS

to S

DC

, and hooses the simplest possible d, namely

d(x; y; z) () x = y + z

The theorem prover an now derive that must be merge, and thus automatially

re�nes S

DC

to S

MS

. Sine S

MS

ompletely determines the algorithm, the ode



generator an now synthesize P

MS

in a hosen language. The adaptation path

was thus

P

QS

�! S

QS

�! S

DC

�! S

MS

�! P

MS

Of ourse, in this simple ase, the reon�guration between the two modes

ould be ahieved within a program, with a Quiksort and a Mergesort blok. One

ould build in a performane monitor into the program, maintain its statistis,

and then, depending on it, branh to one of the sorting bloks, more suitable for

the observed input distributions.

However, the real-life examples, that genuinely require self-adaptation [21℄,

often involve hoie between modules too large to be loaded together. One an,

furthermore, easily envisage situations when modules ouldn't even be stored

together, either beause of their sizes, or beause of their large numbers. With

the advent of the agent tehnologies, there are already situations when there are

in�nitely many logially possible modes of operation, among whih one might

pro�tably hoose on the y. With the urrent level of the program synthesis

tehniques, of ourse, this approah would be very hard to realize. Coneptually,

however, it seems to be well within reah, and developing the tehniques needed

for realizing it is a very attrative hallenge.

2.3 Institutions, and satisfation as payo�

The bipartite setting of spei�ations oupled with programs via a satisfation

relation will probably not appear unfamiliar to the ategorially minded mem-

bers of the software spei�ation ommunity. They will reognize the ategory

C of ontrats as oneptually related to institutions, although not in all details.

An institution is a very general model theoreti framework. introdued by

Goguen and Burstall in [3℄, and pursued by many others in several di�erent

forms. Its main purpose was to �ll a oneptual gap in semantis of software.

While the formal methods of software engineering are in priniple based on

universal algebra and model theory, with spei�ations statially desribing some

omputational strutures, programs at large are dynami objets, they hange

state, and behave di�erently in di�erent states. And while the mathematial

theories ompletely determine the lasses of their stati models, as well as the

notion of homomorphism between them, the software spei�ations do not pin

down the programs that realize them

2

. In model theory, the Tarskian satisfation

relation j= is a �xed, primitive onept; in theory of software spei�ations, on

the other hand, there are many degrees of freedom in deiding what does it

mean for a program to satisfy a spei�ation, in partiular with respet to its

operational behaviour. It is then reasonable to display an abstrat satisfation

relation j= as a strutural part of an institution, that an be varied together with

theories and models, while stipulating whih models satisfy whih theories.

3

2

Not in the sense that all programs implementing a spei�ation an be e�etively

derived from the spei�ation, like all mathematial models of a theory, and indeed

the whole model ategory, are e�etively determined by the theory.

3

Institutions thus bridge the gap between stati theories and dynami models by

allowing the abstrat satisfation relation to vary. Another way to bridge this gap



Following this oneptual lead, the satisfation relation an be generalized

from an ordinary relation, where q j=  is evaluated as true or false, to an M -

valued relation, where q j=  an be any element of a distributive lattie, or

a suitable ategory, say M , measuring the degree to whih the ondition  is

satis�ed at the state q.

In standard game theoreti terms, the relation j= now beomes the payo�

matrix, displaying the value of eah programmer's response to eah lient's all.

Indeed, if the formulas of S are understood as the set of moves (or strategies

4

)

available to the lient, and the moves available to the programmer are identi�ed

with the states of P , then the satisfation j= beomes an P � S-matrix of the

elements of M , i.e. a map

j= : P � S �! M (2)

assigning the payo� to eah pair hq;  i. It an be understood, say, as displaying

programmer's gains for eah ombination of the moves, and the game aquires

the usual von Neumann-Morgenstern form, with the lient trying to minimize

and the programmer to maximize this gain. The intuitive and logial meaning

of the pairs of arrows in opposite diretions, like in the adaptation morphisms,

has been analyzed in this ontext in [6℄, onneting games, linear logi and the

Chu onstrution.

In any ase, semantis of spei�ation arrying programs must draw ideas

and strutures from soures as varied as institutions and game theory, although

the goals and methods in eah ase di�er essentially. On the level of abstrat

ategories, both institutions and spei�ation arrying programs an be analyzed

along the lines of the mentioned Chu onstrution [2, 14, 19℄. The lax version

[13℄ is also interesting, apturing the situation when adaptation may not just

preserve, but also improve the satisfation relation between the program and

the spei�ation. This orresponds to relaxing in (1) the equivalene () to

the impliation (=. If j= and j=

0

are taken to be general M -valued relations, or

payo� matries, as in (2), a morphism f : hP; j=; Si �! hP

0

; j=; S

0

i improving

satisfation will be a triple f = hf

P

; f

j=

; f

S

i, onsisting of

{ a simulation P

f

P

 � P

0

,

{ an interpretation S

f

S

�! S

0

, and

{ for eah q

0

2 P

0

and  2 S an arrow

(f

P

(q

0

) j=  )

f

j=

�! (q

0

j=

0

f

S

( )) (3)

in M , with the suitable naturality ondition.

is to introdue dynamis into theories. This is one of the ideas behind Gurevih's

Abstrat State Mahines (formerly known as evolving algebras) [4℄.

4

the distintion is of no onsequene here



2.4 Towards funtorial semantis of ontrats

In order to express the above naturality ondition, or work out a generi repre-

sentation of the ategory C of ontrats, one needs to present the spei�ations,

and the programs in terms of their respetive lassifying ategories.

Given a spei�ation S, say as a theory in a prediate logi, the objets of

the indued lassifying ategory Swill be the well-formed formulas of S, modulo

the renaming of variables (�-onversion). The arrows are the funtional relations

de�nable in S, modulo the provability. For instane, take formulas �(x) and �(y)

in S, as the representatives of objets in S. By renaming, we an ahieve that

their arguments x and y are disjoint. An S-arrow from �(x) to �(y) will be a

prediate #(x;y), suh that

#(x;y) ` �(x) ^ �(y)

�(x) ` 9y: #(x;y)

#(x;y

0

) ^ #(x;y

00

) ` y

0

= y

00

an be proved in S. The arrows of S thus apture the theorems of S, whereas

the objets apture the language. More details an be found in [17℄.

The point of presenting a theory S as a ategory S is that the models of S an

be obtained as the funtors S�! Set, preserving the logial struture. This is

the essene of funtorial semantis [7℄, and the foundation of ategorial model

theory [8, 9℄. The appliations to software engineering are disussed in [17℄.

Related, more diret, but less uniform proedures allow deriving ategories

from programs. They usually go under the name of operational semantis [18,

25℄, and ome in too many varieties to justify going into any detail here.

Assuming that a spei�ation S and a program P have been brought into a

ategorial form, and presented as lassifying ategories S and P, the satisfation

relation j=: S� P �! M will transpose to a struture preserving funtor S�!

M

P

. When the ategory M , measuring satisfation, is taken to be the ategory

Set of sets and funtions, j= will thus amount to a model of S in the universe

Set

P

of sets varying from state to state in P. A logially inlined reader may be

amused to spend a moment unfolding the de�nition of adaptation morphisms in

this model theoreti ontext, and on�ning herself that suh morphisms indeed

preserve the given sense in whih a program satis�es spei�ation, or improve it

along the suitable homomorphisms of models.

In any ase, the naturality ondition on the third omponent of the adapta-

tion morphisms as de�ned the preeding setion an now be expressed preisely,



on the diagram displaying the involved omposite funtors.

P

0

� S

id�f

S //

f

P

�id

��

P

0

� S

0

j=

0

��

f

j=

%

P� S

j=

//
M

3 Adaptive interpreter as oalgebra

While the desribed ategory of ontrats, implemented and supported by suit-

able tools, provides the strutural framework for software adaptation, it still does

not provide a speial handle for automated, on-the-y adaptation and reon�gu-

ration. The dynamis of self-adaptive software requires an additional dimension,

to be added to in the atual implementation of the spei�ation arrying mod-

ules. The main issue thus remains: how to implement an adaptive interpreter,

able to ompute with self-adaptive, spei�ation arrying modules?

Given a ontrat hP; j=; Si, the adaptive interpreter should be able to:

{ evaluate P ,

{ test whether the results satisfy S,

{ adapt P , or assist program transformation P  � P

0

,

{ support re�nement S �! S

0

.

In a standard setting, the denotation of a program P is a funtion p : A �!

B, where A and B are the types of the input and the output data, respetively.

An adapted program P

0

will yield a funtion p

0

: A �! B (where we are ignoring,

for simpliity, the fat that the data types A and B an be re�ned). If adaptation

is viewed as a omputational proess, all the instanes of an adapted funtion

that may arise an be aptured in the form

ep : � � A �! B

where � is the arrier of adaptation, probably a monoid, or a partial order. The

stages of the adaptation �; �

0

: : : 2 � an be assoiated with the suessive re�ne-

ments S; S

0

: : : of the spei�ation of the adaptive program, and will be derived

from them by one of the model theoreti methods developed for this purpose

(i.e. as the \worlds", or the foring onditions indued by the re�nement).

5

5

The stages of adaptation should not be onfused with the omputational states,

through whih the exeution of a program leads. The exeution runs of a program

from state to state are, in a sense, orthogonal to its adaptation steps from stage to

stage.



All the instanes p; p

0

: : : : A �! B of the adaptive funtion will now arise

by evaluating ep at the orresponding stages �; �

0

: : : 2 �, viz

p(x) = ep(�; x)

p

0

(x) = ep(�

0

; x)

� � �

In this way, the proess of adaptation is thus beginning to look like a rudimentary

dynami system. The proess of self -adaptation will, of ourse, be a system with

the feedbak

bp : � �A �! B ��

omputing at eah stage � 2 �, and for eah input x 2 A not only the output

y = bp

0

(�; x) 2 B, but also the next stage �

0

= bp

1

(�; x) 2 �, with a better

adapted funtion p

0

(x) = bp(�

0

; x). Extended in this way along the oordinate of

adaptation, the spei�ation arrying programs viewed as ontrats ome in the

form

b

j= : � � S� P �! M ��

The preditable adaptation stages are strutured in � and ontrolled by the

resumption omponent of

b

j=. Alternatively, automated adaptation steps an be

enapsulated in spei�ations and programs themselves, by individually extend-

ing the partiular funtions from stage to stage.

Independently on the level on whih it may be aptured, the denotation of a

self-adaptive funtion will in any ase be a transduer bp. Transposing it into a

oalgebra

bp : � �! (B ��)

A

brings with it the advantage that the behaviour preserving maps now arise auto-

matially, as oalgebra homomorphisms. (Instrutive examples and explanations

of this phenomenon an be found, e.g. in [20℄.) But even more importantly, it

allows a onsiderably more realisti the piture, sine it also allows introduing

various omputational monads T on the sene. A oalgebra in the form

bp

T

: � �! (T (B ��))

A

aptures an adaptive family of omputations involving any of the wide range of

features (nondeterminism, exeptions, ontinuations. . . ) expressible by monads

[10℄.

In any ase, ombining monads and oalgebra will ensure a solid semantial

foundation not just for adaptive interpreters, but also for implementing the de-

sign environments for self-adaptive software. Explaining either of these theories

is far beyond our sope here, but monads seem to have been established as a

part of the standard toolkit of funtional programmers, and the material about

them abunds. Some oalgebrai tehniques for implementing proesses have been

presented in [5, 15, 16℄.
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