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D. Pavlovi�c 21. IntroductionAlgebraically, the �-abstraction arises from a property of certain structures | namely,that each polynomial can be reduced to a normal form with a single coe�cient. Thisproperty is known as combinatorial (Curry et al. 1968, ch. 6) or functional completeness(Lambek and Scott 1986, sec. I.6). Having developed the algebra of variables in termsof polynomial extensions, one uses the functional completeness to de�ne �x:�(x) as thecoe�cient a of the normal form a�x of the polynomial�(x). The abstraction thus appearsas an inductively derivable operation.The idea of hiding away the variables and eliminating the substitution for the sake offunction application goes back to (Sch�on�nkel 1924) and actually predates the �-calculus.However, Sch�on�nkel's applicative algebras were properly understood only when Curry(Curry 1930) had displayed them as the combinatorially complete kernel of the untyped�-calculus. The abstraction seemed easier to understand as an operation, than as a prop-erty. The algebraic approach had been given a boost much later, in Lambek's categoricaltreatment of the functional completeness, i.e. with respect to the composition rather thanthe application (Lambek 1974). Cartesian closed categories, as the functionally completekernel of the typed �-calculus, soon became an indispensable part of semantics of func-tional programming (Curien 1986), and even induced a new algebraic interpretation ofthe untyped calculus (Lambek and Scott 1986, sec. I.17). In a sense, the cartesian closedstructure is the algebra of the function abstraction, and Dana Scott (1980) had stronglyargued that, in a conceptual world, it should have been discovered before the �-calculusitself.However, beyond the realm of functions, the notion of abstraction is far less clear cut.And the realm of functions does not su�ce for studying computations, since they mayyield no output, or may yield several outputs, as soon as nondeterminism or concurrencyenter scene. Moggi's computational monads (Moggi 1993) measure the deviation fromfunctionality which comes with various notions of computation, while Abramsky speaksof processes as relations extended in time (Abramsky et al. 1995). In more than one way,the step from functions to computations echoes the step to relations. One of the mostconspicuous structural features in the world of computations, as well as in the worldof relations, is a tensor product, induced by what used to be the cartesian product inthe old world of functions. Quite di�erent models share it: Petri nets (Meseguer andMontanari 1990), Chu spaces (Pratt 1995), action structures (Milner 1993a), interactioncategories (Abramsky et al. 1995). . .| they all carry this monoidal structure, roughlycorresponding to the parallel composition. A \simple type theory" of processes seems tobe emerging.In this monoidal world, the abstraction arises in connection with parametrised pro-cesses, just like the �-abstraction had arisen to bind parametrised families of functions.As it is well known, the dependancy of a process on the values of data can be eliminated,i.e. reduced to a choice between atomic actions (Milner 1989, sec. 2.8). However, whenprocesses are allowed to communicate to each other names of communication channels asparameters, a genuinely new kind of situation arises. The structure of a process depend-ing on such a parameter may change during the execution, since di�erent communication



Categorical logic of names and abstraction 3channels that may be received can open di�erent computation paths, or preempt them.This is the idea of a mobile process. The corresponding generalisation of the �-calculusis the �-calculus (Milner et al. 1992). The main di�erence is that a function is applied toits input sequentially, while a mobile process can communicate with any of the processesrunning in parallel with it, provided that there is a common communication channel.The function application has been generalised to the communication, which may be non-sequential and non-deterministic.The main feature of the �-abstraction is that it does not just bind a parameter x,for which the received input is to be substituted, like the �-abstraction does, but italso speci�es a communication channel y, where the sought input must be received. A�-abstraction operator is thus in the form y(x), and it binds x, and adds y as a freechannel name, ready for the input. A process pre�xed with such an operator will notconsume just any argument immediately preceding it, and substitute it for x, like an old�-term would do. A process/�-term must �rst �nd a parallel process (another �-term)sending its output through y. It can be recognized by a pre�x in the form yu, where u isthe name being sent. In case several such are running in parallel, pre�xed, say, with yu1,yu2 etc., only one of their outputs/pre�xes will be consumed, and the choice will be madenondeterministically. Any of the channels u1; u2 : : : may thus end up being substitutedfor x.The action calculus provides means for reducing this complex reduction procedure toa familiar abstraction/application routine. There are two dimensions of this apparentsyntactic miracle: the controls, and the dynamics. The controls mark the input andthe output channels, and block the reduction unless these coincide. The dynamics is thereduction preorder that, unlike the Church-Rosser situations, cannot be hidden away fromsemantics. Indeed, upon di�erent communications, processes may reduce in essentiallydi�erent ways.However, in the present paper, we shall neglect the dynamic side, and try to show thatthe remaining static action calculus is a kind of \monoidal �-calculus" plus controls.The dynamics of the full-blown structure is undoubtedly essential for its computationalpurposes, but the underlying abstraction mechanism seems to be independant on thissuperstructure.Peculiar as it may appear at the �rst sight (due to its unusual mixture of categoricaland syntactical features) the action calculus can be formalised as a generalisation ofLambek's �-calculus (Lambek and Scott 1986, sec. I.6), the �rst-order version of thetyped �-calculus. It is extended in two directions: by adding certain graphic operations,the mentioned controls, and by weakening the cartesian setting to a special monoidalstructure. In section 2, we extend the existing theory of functional completeness forcartesian (closed) categories (Lambek and Scott 1986, part I) in these two directions. Insection 3, action categories are introduced, and shown to generate the action calculus in asimilar way as cartesian closed categories generate the �-calculus: the action abstractionarises from their functional completeness. This provides a base for categorical semanticsof the action calculus.Several classes of natural examples, modelling static action calculi, are described insubsection 3.3. A di�erent application of the obtained semantics is presented in subsection



D. Pavlovi�c 43.2: it is shown how allowing the ordinary substitution reduces the action calculus tothe cartesian �-calculus. This sheds some light on the degeneration of the extensionalhigher-order action calculus to the ordinary �-calculus, described in (Milner 1994a) |and shows how narrow is the passage from the cartesian to the monoidal abstraction.The simplicity with which the latter has been introduced in the action calculus concealsa genuinely fundamental idea, mostly behind the concept of name, with its constrainedsubstitution.While weakening the cartesian setting leaves the abstraction operations virtually un-changed, it has deep repercussions on the substitution, which in turn weakens the �-reduction. The original constraints of substitution, imposed in the action calculus, werecomputationally motivated: if names are channel parameters, then only the proper chan-nel names should be substituted for them, and surely not arbitrary process expressions.Variables, as the value parameters, on the other hand, accomodate the substitution ofarbitrary evaluable expressions.The algebraic treatment provides di�erent explanations. In algebra, the substitutionis implemented by means of extensions: a variable x, freely adjoined to, say, the ring ofintegersZ, leads to the polynomial extensionZ[x]. The fact that x is free for substitutionof any element means that it is transcendental, unconstrained by any equations over Z.On the other hand, an algebraic element, which does satisfy some equations, can onlybe replaced by elements satisfying the same equations. E.g., if x2 � 2 = 0 holds for x,then only �x can be substituted for it, without invalidating the equation. Of course,this x is just p2 and the substitution constraint formally means that the extensionZ[p2] =Z[x]=(x2�2) has exactly one nontrivial endomorphism �xingZ, induced by theassignment p2 7! �p2. Conversely, the \name" p2 can be viewed as an abbreviation ofsomething like [x;x2 = 2]. We shall later present names exactly in this form.The idea that names are some algebraic elements, as opposed to variables as transcen-dental elements, suggests a general treatment of the constrained substitution, along thelines of Galois theory. Luckily, this general treatment need not be developed very far: thenames arising in the action calculus turn out to be the algebraic elements of a very specialkind, characterised by a simple set of equations (23{25). They are consequences of theconversion rules of the name abstraction (cf. de�nition 3.2). The point of the functionalcompleteness is that the name abstraction, together with its conversion rules, can alsobe derived as a consequence of the equations determining the names.The basic category theory, to the extent of the �rst 30 pages of (Lambek and Scott1986) is assumed to be familiar to the reader. The next 50 pages of that book provide asuccinct exposition of the main ideas of categorical semantics, presently applied to theaction calculus. In order to align the presented constructions with that standard material,I deviated from some of the action calculus notation. In particular, the composition iswritten in the form f � g, (referring to (f � g)(x) = f(g(x))) rather than g � f . Theconnection with the pre�xing, which motivates this latter notation, is not yet consideredhere.



Categorical logic of names and abstraction 52. �-calculus2.1. Graph algebraThe elements of universal algebra over the category of graphs have been outlined inLambek and Scott's book (1986). The basic feature is that the operations take arrowsas arguments. The arity is thus not just a number, but may involve some equationsimposed on sources and targets. It is convenient to present such arities as deductivesystems, with Gentzen-style derivation rules. For instance, the pairing and the curryingcan be respectively introduced:f : k ! m g : k ! nhf; gi : k �! m� n h : k �m �! nh� : k �! nmOf course, to be able to recover f and g from hf; gi, one needs the composition and theprojections, together with the equations that tie them up into the cartesian structure(Lambek and Scott 1986, sec. I.3); and to uncurry h�, one also needs the closed structure(ibidem).In many cases, a deductive system can be reduced to a purely equational theory interms of functors and natural transformations. For instance, the cartesian structure canbe given by a symmetric tensor product 
 with a unit > and natural transformations� : k! k 
 k and ! : k !>, making each k into a commutative comonoid:(! 
 k) �� = idk = (k 
 !) �� (1)� � (�
 k) = � � (k 
�) (2)� �� = � (3)where � : k 
 k �! k 
 k is a component of the tensor symmetry. While such algebraicpresentations tend to be more succinct, deductive systems have been established as amore versatile tool for practical tasks.De�nition 2.1. A graphic signature is a set K of operation symbols, here genericallydenoted by C, each of them given with an arity rulea1 : m1 ! n1 a2 : m2 ! n2 � � � ar : mr ! nrC(a1; : : : ; ar) : m �! n (4)Together with a set of well-formed equations, such a signature presents a graphic theoryK.The notion of a model is de�ned in the usual way. For each symbol C 2 K, a K-graphA comes equipped with a distinguished partial mappingC : A r * A , satisfying whateverconstraints may have been imposed.In the present paper, we shall only be concerned with the theories that extend symmet-ric monoidal categories (MacLane 1971, sec. VII.1). Even if not mentioned, the symmetrywill be always assumed. Fix an arbitrary graphic theory K and add the composition �with the identities id, and a symmetric tensor 
 with the unit >. The resulting graphictheory will be denoted K
. For simplicity, we assume that the monoidal structure isstrictly associative and unitary. A K
-category A is thus a commutative monoid in Cat,



D. Pavlovi�c 6equipped with the K-operations. Since every monoidal category is equivalent to a strictone, this strictness assumption causes no loss of generality.2.2. ExtensionsGiven a K
-category A , we want to extend it by a set of formal arrows X = fx; y; z : : :gfrom > to various objects of A . X can thus be viewed as a set symbols with a functiontype : X ! A , or as a multiset of objects from A . Furthermore, a set Q of well-formedequations in the elements of X and K
 may be imposed. The resulting extension will bedenoted A [X;Q]. The pair [X;Q] is a set of names. The extension A [X;Q] is the smallestK
-category generated by A and [X;Q]. It is formed in the following stages:� for each x 2 X of type k 2 A , add to the graph A an edge x : >! k;� close the resulting graph under the K-operations and� generate a 
-category; �nally� enforce the Q-equations.Clearly, the objects remain unchanged: the obvious functor ad = ad[X;Q] : A �! A [X;Q]is identity on objects. It is furthermore universal among the K
-functors from A to thecategories with an interpretation of [X;Q].Conventions. The arrows of an extension A [X;Q] will be denoted by �; �; : : : ; ', whilethe arrows of A remain a; b; : : : ; f . The objects of both categories are k; `;m; n.As usually in the polynomial notation, instead of, say, A [fxg [ Y [ Z;Q], for x 2 Xand Y; Z � X, we simply write A [x; Y; Z;Q].2.3. Functional completenessProposition 2.2. Let A be a K
-category and A [x;Q] its extension by a name [x;Q] oftype k 2 A . The following conditions are equivalent:(a). For each � : m �! n in A [x;Q] there is a unique �x:� : k 
m �! n in A , suchthat � = ad(�x:�) � (x 
m) (5)(b). The functor ad : A �! A [x;Q] has a left adjoint ab, such that the composite ab�adis just tensoring with k. The unit and the counit of the adjunction are respectively inthe forms �m = x
m and "m = ! 
m, for some ! : k !>.(c). A [x;Q] is isomorphic with the Kleisli category for a comonad over the endofunctork 
 (�) : A �! A .Proof. (a))(b) Consider the mapsA [x;Q]�m;n� //�x:(�) A �k 
m;n�o o ad(�)�(x
m) (6)Condition (5) says that going to the right and back yields the same arrow. The otherway around, take any g 2 A (k 
m;n) and apply (5) to � = ad(g) � (x
m). Hencead(g) � (x
m) = ad��x:ad(g) � (x
m)� � (x
m): (7)



Categorical logic of names and abstraction 7The uniqueness part of (a) now givesg = �x:ad(g) � (x
m): (8)In other words, going on (6) to the left and back yields the same arrow again. (6) is abijection.The required adjunction is now obtained by extending this bijection to a natural iso-morphism A [x;Q]�m; ad(n)� �= A �ab(m); n�: (9)The object part of ab : A [x;Q] �! A clearly maps m 7�! k 
m. The requirement that(9) be natural in m determines that ' 2 A [x;Q](m0;m) must be mapped toab(') = �x:(x
m) � '; (10)which is the only arrow making the squarem0 //x
m0��' k 
m0 # #ad(�x:��')GGGGGGGGG��ad�ab(') nm //x
m k 
m ; ;ad(�x:�)wwwwwwwww (11)commute. In the presence of (a), this commutativity is equivalent to the equation �x:��' = (�x:�) � ab('). This is the required naturality of (9) in m.The naturality in n boils down to the equation �x:ad(f) � � = f � �x:�, for all f 2A (n; n0). But this is again a consequence of the uniquess part of (a).Hence the adjunction ab a ad. By correspondence (6) its unit and counit will be asasserted in (b). So it remains to prove that ab � ad(f) is k 
 f for all f from A .Since A [x;Q] is a monoidal category, any ' : m0 ! m in it satis�es(x
m) � ' = x
 ' = (k 
 ') � (x
m0): (12)Putting ' = ad(f), we get that m0 //x
m0��ad(f) k 
m0�� ad(k
f)m //x
m k 
m (13)commutes, since ad is a monoidal functor, identity on objects, and hence k 
 ad(f) =ad(k
 f). But (13), together with the uniqueness part of (a), implies that k
 f is equalto �x:(x
m) � ad(f), which is just ab � ad(f), by de�nition (10).



D. Pavlovi�c 8(b))(c) The adjunction ab a ad : A �! A [x;Q] induces a comonad in the standardway (Lambek and Scott 1986, prop. I.6.2). The isomorphism of A [x;Q] and the Kleislicategory A k
 is identity on objects, while its arrow part is given by the mapping �x from(6). Indeed, the morphisms of A k
 are detemined exactly as to make �x functorial.y(c))(a) When A [x;Q] is transformed along the given isomorphism into A k
 , the map-ping �x becomes the presentation of the Kleisli arrows as they appear in A . Viewed inA k
 , the arrow x
m becomes the identity on k
m, while the functor ad : A �! A k
 be-comes the cofree one: it is identity on objects, and sends a : m �! n to !
a : k
m �! n.With the described data, and the Kleisli composition, equation (5) easily follows. 2De�nition 2.3. A K-category A is functionally complete with respect to a name [x;Q]if either of the equivalent conditions of proposition 2.2 is satis�ed. The functor ad : A �!A [x;Q] adds a dummy x, whereas ab : A [x;Q] �! A abstracts over x.A is functionally complete with respect to a set of names [X;Q] if for all x 2 X andY � X r fxg, A [Y ;Q] is functionally complete with respect to [x;Q]. Moreover, theabstraction should be uniform, in the sense that the diagramA [x; Y ;Q] //abYx��adx;YZ A [Y ;Q]�� adYZA [x; Y; Z;Q] //abY;Zx A [Y; Z;Q] (14)must commute for all Y; Z � X r fxg. Moreover, the canonical isomorphismabZy � aby;Zx �= abZx � abx;Zy : A [x; y; Z;Q] �! A [Z;Q] (15)induced by the fact that both sides are adjoint to adZx;y, must come from the symmetry� : k 
 ` �! `
 k.An abstraction situation is a pair (K; Q), such that every K
-category A is functionallycomplete with respect to any set of names [X;Q].Remarks. This last quanti�er over all sets of names is not as extensive as it appears:by proposition 2.2, A is functionally complete for [X;Q] if and only it is functionallycomplete for [X 0;Q], where X 0 is the image of type : X ! A . To check an abstractionsituation, one only needs to consider the subsets X 0 of jA j (but still for all K
-categoriesA , though).The notion of functional completeness, as de�ned above, should not be confused with itshomonym in duality theory (Lambek and Rattray 1978), where, say, the boolean algebra2 is functionally complete because every function 2n ! 2 corresponds to a polynomial. Inboolean algebras, there are thus enough polynomials to represent all functions, whereasy For a more abstract proof, note that that the Kleisli category AG for any comonad G : A ! A canbe characterised, up to isomorphism, by the existence of a functor I : A ! AG , which is identity onobjects and has a left adjoint.



Categorical logic of names and abstraction 9we are concerned with the situations when there are enough constants to represent allpolynomials. The term polynomial completeness might be better, but the usage, at leastfor the cartesian case, seems completely standard.2.4. Characterising abstractionCommutative comonoids and cartesianness. Let N be the full subcategory of Setopspanned by the natural numbers: a morphism m ! n in N is just a function m  n.Since Set is the coproduct completion of 1, Setop is the product completion (Lawvere1963). The free cartesian category generated by 1 is thus Setop�n, and N is the free strictlycartesian category over 1, with + as the cartesian product and 0 as the terminal object.Lemma 2.4. For every object k of a strict monoidal category A , there are bijectivecorrespondences between(a). the monoidal functors N! A mapping 1 7! k,(b). the commutative comonad structures on the functor k 
 (�) : A ! A ,(c). the commutative comonoid structures on k.As mentioned before, a commutative comonoid structure, dual to a commutativemonoid,is a pair > ! k �! k 
 k, satisfying (1{3). A comonoid homomorphism is an arrow umaking the following diagram commute. ` //�yy !rrrrrrr ��u ` 
 `�� u
u> k //�ee !LLLLLL k 
 k (16)The general facts about the commutative (co)monads can be found in (Kock 1970). Inthe particular case of the comonad k 
 (�), though, the commutativity is probablybest understood simply as de�ned by the above lemma: it really boils down to thecommutativity of the corresponding comonoid. In the sequel, all comonoids and comonadsare commutative, even when this is not emphasized.By proposition 2.2(c), the equivalent structures from the above lemma are necessaryfor functional completeness: they ensure the existence of the Kleisli category A k
 . Thiscategory is monoidal if and only if the comonad k 
 (�) is commutative. The abstrac-tion situations thus require that all objects are commutative comonoids. The arrows donot have to be comonoid homomorphisms, though. Hence the non-cartesian abstractionsituations, properly extending the existing categorical theory of abstraction (Lambekand Scott 1986; Curien 1986). However, the adjoined names do have to be comonoidhomomorphisms: the isomorphism A [x;Q] �= A k
 depends on that.The situations in which all objects are comonoids but some arrows are not comonoidhomomorphisms are ubiquitous. E.g., the category Rel of sets and relations, with thetensor induced by the cartesian product from Set, inherits the comonoid structures 1 k ! k � k, but the set-theoretical diagonals and the terminal functions to 1 do notform natural families with respect to all relations. Indeed, if diagram (16) is taken in



D. Pavlovi�c 10Rel, the commutativity of the square means that u is a single-valued relation; and thecommutativity of the triangle | that it is total. The comonoid homomorphisms in Relare just the functional relations.Admissibility and controls. To ensure that the K
-structure extends from A to A k
 ,some additional conditions are needed. A type theoretical version is in (Gardner 1995,def. 3.6), categorical in (Hermida and Power 1995, def. 8.1(4)) and (Power 1996, def. 4.1).The following is closer to the former.De�nition 2.5. Let C` be a graphic operation with the arityb1 : ` 
m1 ! n1 b2 : `
m2 ! n2 � � � br : ` 
mr ! nrC`(b1; : : : ; br) : `
m �! n (17)Given two such, Ck and C`, an arrow u : `! k in A is said to be admissible if it satis�esC`�b1(u 
m1); : : : ; br(u
mr)� = Ck(b1; : : : ; br) � (u
m): (18)A monoidal functor M ! A is admissible if its image consists of arrows admissible withrespect to a given family fC`g`2M.Finally, a comonoid k in a K
-category A is admissible if every graphic operation C 2 Kinduces a unique family making the monoidal functor N! A : 1 7! k admissible. Suchan operation is called k-control.Each morphism m  n of N decomposes as m  - m0 ' n0 ^ n, where the �rst andthe last components are monotone. It is not hard to see that a monoidal functor N! Amust take every monotone injection m  - m0 to an arrow derived from ! and 
, everymonotone surjection n0 ^ n to an arrow derived from � and ! and every bijectionm0 ' n0 to a composite of the symmetries � . Since the class of arrows satisfying (18) isclearly closed under the composition, checking whether N! A is admissible boils downto checking separately the admissibility of the arrows derived from ! and 
, from � and
, and from � , 
 and �. These three parts correspond to conditions 1{3 from (Gardner1995, def. 3.6).On the other hand, every tensor power kj of a commutative comonoid k is a commu-tative comonoid again. Hence the Kleisli categories A kj
 for all natural numbers j. Themapping j 7! A kj
 determines an indexed category Nop ! Cat, with the reindexing in-duced by the precomposition. Condition (18) now appears as the naturality with respectto this reindexing, and a k-control is just an indexed graph operation on this indexedcategory. The setting described in (Hermida and Power 1995, def. 8.1(4)) and (Power1996, def. 4.1) is built upon this ideaz.Proposition 2.6. A K
-category A is functionally complete with respect to the exten-sion by [x;Q] of type k if and only if(i) k is an admissible commutative comonoid in A , and(ii) x is an admissible comonoid homomorphism in A [x;Q].z However, it seems that these graphic operations as natural transformations must be total and mono-tone with respect to the reduction preorder, so that, e.g., currying, or replication (Mifsud et al. 1995)cannot be treated directly.



Categorical logic of names and abstraction 11Proof. When A is functionally complete, the commutative comonoid structure > ! k �!k 
 k is ! = �x:id> (19)� = �x:x
 x: (20)Its admissibility is proved as in (Gardner 1995, sec. 4.2).The fact that x is an admissible comonoid homomorphism from > id > id! > 
 >follows directly from (5).The other way around, assume (i) and (ii). The abstraction �x is de�ned inductively.An arrow of A [x;Q] is either some a from A , or x itself, or a composite of previouslygenerated A [x;Q]-arrows, or their tensor. Finally, it may be obtained using some C 2 Kas the outermost operation.The base cases �x:a = ! 
 a�x:x = idkand the step cases k 
m //�x:� � ����
m pk 
 k 
m //k
�x:� k 
 nOO �x:�k 
m 
m0 //�x:�
 �0���
m
m0 n
 n0k 
 k 
m 
m0 //k
c
m0 k 
m 
 k 
m0OO (�x:�)
(�x:�0)are standard (Lambek and Scott 1986, prop. I.2.1), and only depend on the assumptionthat k is a commutative comonoid. The admissibility assumption is needed for�x:C(�1; : : : ; �r) = Ck(�x:�1; : : : ; �x:�r)This step is the main contribution of (Gardner 1995). The soundness of the resulting �xabstractor is proved in (Gardner 1995, theorem 4.6).Condition (ii) ensures the validity of (5): an inductive argument su�ces again. Theadmissibility of x yieldsad��x:C(�1; : : : ; �r)� � (x
m) = ad�Ck(�x:�1; : : :� � (x
m)= Ck�ad(�x:�1); : : :� � (x
m)= C�ad(�x:�1) � (x
m); : : :�



D. Pavlovi�c 12= C(�1; : : : ; �r):The remaining cases only depend on x being a comonoid homomorphism.The uniquenesspart of 2.2(a) follows by a similar inductive argument. 2Corollary 2.7. (K; Q) is an abstraction situation if and only if(i)K makes all objects into admissible commutative comonoids, while(ii)Q makes all names into admissible comonoid homomorphisms.3. Action calculi and control structures3.1. Abstraction eliminationDe�nition 3.1. A monoidal category where every object has a commutative comonoidstructure is said to be semi-cartesian.An action category is a K
-category with a distinguished admissible commutative como-noid structure on every object.A semi-cartesian category is cartesian if and only if each object carries a uniquecomonoid structure, and such structures form two natural families, � and !. The natu-rality means that all morphisms of the category must be comonoid homomorphisms.In action categories, the property of semi-cartesianness is �xed as structure: on eachobject, a particular comonoid structure is chosen. This choice may be constrained by somegiven graphic operations, with respect to which the structures must be admissible. Theproof of proposition 2.6 shows that such structures determine the abstraction operators,and are determined by them. This is the essence of the equivalence of action categoriesand action calculi.As the embodiment of 2.7(i), action categories satisfyaction calculiaction categories = typed �-calculicartesian closed categories (21)On both sides, the semantics of the numerator is developed using extensions of the de-nominator: the polynomial ones on the right hand side, and the algebraic ones, satisfying2.7(ii), on the left. The former can actually be viewed as a special case of the latter, sincecartesian categories subsume under action categories, while the �-calculus is isomorphicto the corresponding special case of the �-calculus (Lambek and Scott 1986, sec. I.6). Ina sense, condition 2.7(ii) is thus the \value" of fraction (21). To give a precise meaningto this idea, we need a formal de�nition of the action calculus.De�nition 3.2. (Milner 1993b;Mifsud et al. 1995) Given a K
-category A and a multisetX over A, let A [X ; ab] be the smallest K
-category obtained by extending A with� ! : k!> for every k, and� x : >! k for each x 2 X of type k,and then closing the obtained K
-category under the operation� : m! nabx� : k 
m �! k 
 n (22)



Categorical logic of names and abstraction 13which is required to be functorial and further to satisfy� : (�x:�) � (y 
m) = �(y=x) (� : m! n)� : �x:x
m = idk
m (x : >! k) : �x:a = ! 
 a (x 62 fn(a))� : (�
 �) � pkm = p`n � (� 
 �) (� : m! n; � : k! `)where �x:' abbreviates (!
n) � abx' and pk` is �xy:y
x for x : >! k and y : >! `.(The inductive de�nition of the set fn(�) of free names of � is as usually, with abx bindingx.)The resulting K
-category A [X; ab] is a (static) action calculus.The dynamic part of the action calculus is a preorder enrichment of the categoryA [X; ab]. This reduction preorder is expanded from a set of reduction rules, taking carethat the free names are preserved, and that the identities do not reduce to anythingelse. This enrichment is essential for capturing possibly nondeterministic computations,which preclude reducing the reduction preorder to a conversion relation. However, it maybe that sharper specifying of the reduction preorder is needed. With its current axioms,it only precludes some models, but does not really change anything in the theory ofabstraction: the statements simply go through enriched.In principle, the main point of this theory is to eliminate the abstraction as an imposedstructure, and reconstruct it as an intrinsic property, viz the functional completeness. Inthe action calculus, just like in the �-calculus, the functional completeness is enforced bythe abstraction operators; and just like there, these operators can be omitted from thepresentation, and recovered as de�nable.Proposition 3.3. A (static) action calculus A [X; ab] is isomorphic with the extensionA [X; �], where A is an action category, and � is the set of equations! � x = id>; (23)� � x = x
 x; (24)Ck(b1; : : :) � (x
m) = C (b1(x
m1); : : :) ; (25)on all x 2 X and all C 2 K.Proof. � is the smallest set of equations satisfying condition 2.7(ii). A [X ; �] is thusthe free functionally complete extension of the action category A by X. The equivalentconditions of proposition 2.2 are thus satis�ed for every x 2 X. We show that this settingcoincides with the structure of action calculus.First of all, axiom � trivially implies equation (5). The converse follows from 2.2(c).Axioms  and � follow from the uniqueness part of 2.2(a). The converse uses thefunctoriality of abx.Finally, axiom � corresponds to condition (15), while (14) remains implicit in thede�nition of a uniform abx in all contexts. 2Control structures (Mifsud et al. 1995). While an action calculus is built up inductively,as the extension of a given K
-category by names and abstractions, a (static) controlstructure is a K
-category readily given with abstraction functors and with names as



D. Pavlovi�c 14distinguished arrows. The syntactic concepts, such as context, or substitution, are thenreconstructed algebraically.Corollary 3.4. A K
-category C is a (static) control structure if and only if it isequivalent with an extension A [X;Q] of a action category A , where Q � � (23{25).Proof. By (Mifsud et al. 1995, thm. 4.15), C is a control structure if and only if it isa quotient of some action calculus B [X ; ab] along an abstraction preserving K
-functor.Proposition 3.3 thus yields C as a quotient of B [X; �]. The subcategory A , spanned inC by the image of the functor B ! B [X ; �] ! C is an action category, since B is.We show that C is a quotient of A [X ]. The functor A [X ] ! C is induced as an extensionof A ,! C , by the universal property of polynomial categories. This functor must be fulland essentially surjective, because B [X] ! C , with these properties, factorises throughit.Letting Q identify two polynomials if and only if they are identi�ed by A [X] ! C , weget the equivalence A [X ;Q] ! C . 23.2. SubstitutionOn the basis of the preceding results, the logical status of names can perhaps be deter-mined a bit more precisely. So far, we have seen that names are provided with the sameabstraction power as variables, but tightly constrained by as regards substitution: the�-rule only allows the renaming. In fact, a stronger rule can be added conservatively.Proposition 3.5. Let u : `! k be a morphism in an action category A , and x; y namesof types k and ` respectively. Substituting u � y for x induces a structure preservingfunctor u� : A [x; �] ! A [y; �] if and only if u is an admissible comonoid homomorphism.A is thus a cartesian category if and only if all of its morphisms induce substitutionfunctors.Proof. Because of the functional completeness, the structure preserving functors A [x;Q] �!A [y;Q] correspond to the structure preserving functors between the Kleisli categoriesA k
 �! A `
 . But such functors are in a bijective correspondence with the admissiblecomonoid homomorphisms ` ! k. (This is routine category theory: the arrow part oflemma 2.4.) 2Restricted to the admissible comonoid homomorphisms, the action calculus thus sup-ports the usual substitution mechanism: names behave like variables. Indeed, we havealready seen that the comonoid homomorphisms in Rel are just the old functions. As anaction category, Rel thus contains the whole world of substitution along functions, withnames playing the role of variables. But it also contains much more.The �-rule can thus be consistently strengthened by allowing any comonoid homomor-phism u : `! k for substitution. Conversely, any action u : `! k, allowed for substitu-tion, becomes a comonoid homomorphism. An action calculus with unconstrained �-rulemust degenerate into a cartesian category.Allowing the substitution of arbitrary actions in the form d : > ! k, as in (Milner1994a, sec. 8), does not cause such degeneration directly, but it does in presence of



Categorical logic of names and abstraction 15the extensional higher order, as Milner points out in [ibidem, sec. 10]. However, theessence of the problem does not lie in the extensionality, as suggested, but rather inthe unconstrained substitution. Without either the extensionality or the higher order,the unconstrained substitution of data d : > ! k alone will enforce the cartesiannesswhenever there are enough such data to generate, i.e. to ensure that8d:u � d = v � d =) u = v:The unconstrained substitution of all u : ` ! k will of course enforce the cartesianneswithout further ado, by proposition 3.5 alone. And the computational meaning of thecartesianness is determinism. To put this formally, one probably needs computationalmonads, but already the fact that the cartesian kernel of Rel consists of the functionalrelations may give an idea.3.3. Examplesi. Since the comonoid structures in a cartesian category are unique, it is not just semi-cartesian, but always an action category, in a canonical way, and assuming no controls.The action calculi, described in (Milner 1993a, 3.1{3.3), are of this kind: cartesian cate-gories, or their polynomial extensions, supporting the �-calculus. No controls.ii. The departure from the cartesian setting is essentially due to introducing controls.In spite of their diversity, all the original action calculi can be subsumed under a simplesyntactic construction of molecular forms (Milner 1994b) | which actually yields thefree extension of a free cartesian category by a given set of controls. Of course, suchextensions turn out to be action categories.Consider a formal expression (~x)h~yi, where all xi from ~x = x0 � � �xm�1 are distinct,whereas each yj from of ~y = y0 � � �yn�1 occurs as some xi in ~x. Setting f(j) = i wheneveryj = xi, we get a function f : n! m. The morphismsm! n of the free strictly cartesiancategory N, which are, as explained in subsection 2.4, just functions n ! m, can thusbe presented as expressions (~x)h~yi, modulo the renaming of ~x. If (~x) is construed as abinding operator, this renaming is, of course, just the �-conversion.In fact, viewing (~x) as �~x, we have a rudimentary version of the �-calculus. The closedterms correspond to the arrows of N, while terms in the form (~x)h~y; ~zi, where ~y � ~x but~z \ ~x = �, belong to the polynomial extension N[~z]. On the other hand, if the namesfrom ~x; ~y; ~z are assigned types from some set �, the closed part of the calculus will yieldthe free strictly cartesian category generated by �. The rest of the calculus will give thepolynomial extensions of this category.Milner's molecular forms are in principle obtained by adding suitable control expres-sions, the molecules, to the terms of this �-calculus. For details, the reader is referredto (Milner 1994b). All syntactical action calculi provided so far can be presented as cal-culi of molecular forms. On the other hand, the closed molecular forms constitute actioncategories: the canonical comonoid structures ! = (x)hi and � = (x)hxxi are actually in-herited from the free cartesian construction. The open forms yield the suitable algebraicextensions by names of these action categories.



D. Pavlovi�c 16As the calculus of molecular forms thus boils down to the �-calculus plus controls, theaction categories derived from it are not far from being the term models of action calculi.iii. Moving to the less syntactical examples, we must drop the strictness assumption:as everyone knows, monoidal categories coming about in nature tend to be non-strict.Nevertheless, the developed theory applies: in view of the coherence of monoidal cate-gories, it is a priori clear that all the stated results and de�nitions remain valid with thecanonical isomorphisms introduced where needed. Alternatively, one could use the factthat every monoidal category is equivalent to a strict onex and extract strictly monoidalexamples from the concrete ones.The �rst and the most basic concrete example is the mentioned category Rel. Itsmonoidal structure and the commutative comonoids are induced by the cartesian struc-ture of Set. But note that these standard comonoids are not the only ones in Rel. Ingeneral, the binary relations ! : k!j 1 and � : k!j k 
 k (i.e. ! � k and � � k � k � k)form a commutative comonoid if and only if for every a 2 k holds!(a) () 8bc:�(a; b; c), a = b = c (26):!(a) () 9!b: !(b) ^�(a; a; b)^�(a; b; a): (27)Such nonstandard comonoid structures o�er a choice of nonstandard action categorystructures on Rel, with di�erent names, extensions etc. In fact, a morphism from m ton in the extension of Rel by any name x : 1!j k, standard or nonstandard, is always ak-indexed family of relations m!j n, but the composition and the identities vary with thecomonoid structures on k. The reader can work this out using 2.2(c), or noticing that aname x, as an arrow of the extension, is a family fxa : 1!j kga2k, the components xa � kof which are xa(b) () a = b ^ !(a): (28)Which controls can be added to Rel? In principle, this is a bit like asking which op-erations can be added to the signature of a given algebra. For action categories, thereis a canonical choice, though. The details will be explained in (Pavlovic 1996b), but letus here just display the control suitable for Rel (since this will perhaps su�ce for somereaders). The arity is % : m!j }nU% : m!j nwhere }n = fn0 � ng is the power set. The idea is that the U%-class of a 2 m should bethe union of its %-classesU%(a; b) () 9n0 2}n: %(a; n0) ^ b 2 n0: (29)Since it leaves the domain m of % unchanged, U induces the family fUkg, where each Ukx If a monoidal categoryVis viewed as a bicategory with one 0-cell, its strict version can be obtained asits image under the bicategorical Yoneda embedding. Roughly, an object (1-cell) i 2Vis representedby the endofunctor i
 (�) :V!V, so that the tensor product becomes the endofunctor composition,which is, of course, strict.



Categorical logic of names and abstraction 17is just U itself, restricted to the relations in the form %k : k 
m!j n. Condition (18) isimmeditate, and U is a control.Mimicking the constructions of Rel over Set in more general settings yields more ex-amples. In the rest of this section, we consider two such constructions, and the resultingaction categories.v. Abstract calculi of binary relations, presented as subobjects of products, can be de-veloped in arbitrary toposes, varieties, regular categories in general (Freyd and Scedrov1990); even regular �brations accomodate a similar construction (Pavlovic 1996a). Onealways gets an action category, with the standard comonoid structures inherited fromthe cartesian base, and with a choice of nonstandard comonoids, characterised by theformulas !�o = ! 
 ! (30)9' : k!j k 8! : k!j 1:�''o � id ^ ! \ ! = � =) !�o = ('! 
 !) [ (! 
 '!)� (31)which boil down to (26{27) when the classical logic is available.In general, any allegory (Freyd and Scedrov 1990) or cartesian bicategory (Carboniand Walters 1987) subsumes an action category: the latter structure even contains com-mutative comonoids as a part of the de�nition. A range of familiar examples is obtained:categories of semilattices, total orders, total relations, partial maps. . .| they all turnout to support the name abstraction, with various classes of controls. The basic interac-tion categories (Abramsky et al. 1995) also fall into this group; SProc even appears as acategory of relations for a certain regular �bration (Pavlovic 1995).At this point, however, it is probably fair to reiterate that these considerations arerestricted to the static action calculus. The abundance of the examples suggests that thepresented theory of abstraction is actually too general to really pin down the intendedcomputationalmeaning of the full action calculus. As pointed out before, an essential partremains to be captured by narrowing down the dynamics. It conceptual importance is canbe seen, e.g., in the fact that the intuitive di�erence of interaction categories and actioncalculi can only be captured on the level of dynamics, since interaction categories supportthe static action calculus, but fail to satisfy the dynamic axioms. In fact, very few of thementioned examples, with their natural hom-set orders, satisfy these axioms. Already inRel, the identities are neither minimal nor maximal with respect to the inclusion. Theyare maximal among the partial maps, and minimal among the total relations, but moresubtle dynamic requirements will perhaps be needed to really capture ideas.vi. A di�erent class of examples is obtained by generalising Rel as the Kleisli categoryfor the commutative monad (Kock 1970) } : Set ! Set. The generalisation is based onthe following lemma (roughly from (Power and Robinson 1995, corrolary 4.7)).Lemma 3.6. A monad T on a monoidal category V is commutative if and only if theKleisli category VT and the canonical functor V!VT are monoidal.Since a monoidal functor preserves comonoids, VT will be an action category (semi-cartesian) as soon as V is.According to Moggi (Moggi 1993), many notions of computation are naturally pre-



D. Pavlovi�c 18sented as strong monads on cartesian categories: the objects are sets of values, and themonad assigns to each of them the corresponding set of computations. If the base cate-gory depicts the maps on values, the induced Kleisli category can be thought of as thecategory of computations. The above lemma now implies that such a category of compu-tations is an action category as soon as the corresponding monad is commutative. Andthe commutativity in this setting corresponds to the invariance of the order of execution.This correspondence between commutative computational monads and action calculiis pursued in (Pavlovic 1996b): we show that there is a sense in which they are ac-tually equivalent. It remains to be seen whether anything can be gained by extendingMoggi's metalanguages, drawn from his monads, by features drawn from action calculi:name abstraction, perhaps controls. And whether the action calculus can be generalisedfrom monoidal to premonoidal categories (Power and Robinson 1995), corresponding togeneral, not necessarily commutative Moggi monads.4. Related workThe \cartesian closed connection" for action calculi, has been pursued for some time,on type-theoretical (Gardner 1995, Concluding Remarks) or semantical (Hermida andPower 1995, Introduction) grounds. The control calculi themselves belong to the latterline of research. We have shown that the structure of the action calculus can be analysedinto (i) the closed part and (ii) its extensions by names | just like the �-calculus canbe decomposed into the cartesian closed structure and its polynomial extensions. Asmentioned before, the essential ideas for capturing (i) are due to Philippa Gardner (1995):action categories are just the semantic counterpart of her closed action calculi. However,the notion of extension was beyond the scope of her work, and the actual reconstructionof the whole calculus from the closed part has not been considered.Claudio Hermida and John Power (1995) have tried to eliminate names in a di�erentmanner: not by abstracting them away and studying the closed part, but by presentingthem categorically. Roughly, they represent the actions with a free name x : >! k as theKleisli arrows for the comonad k
 (�). All such Kleisli categories are then arranged intoan indexed category | a �brational control structure. More recently, Power (1996) hasproposed a simpli�cation, elementary control structure, where these Kleisli categoriesare glued in one, rather than indexed. Either way, we get a reorganised copy of theoriginal control structure, with the naming and the abstraction operators encoded in areference-free fashion. Such encodings are sometimes very important, like e.g. de Bruijnindices, but they should not be confused with the actual elimination of the references,like in combinatory logic or categorical semantics. Power and Hermida's constructions donot �t in the standard semantical framework: applying them them to a control structureinduced by a typed �-calculus does not yield a cartesian closed category, but a categoricalversion of the whole calculus, with the Kleisli abstraction instead of the usual, reference-driven one. The underlying cartesian closed category is contained as a very small part:in the �brational case, a single �bre. In general, the action category underlying a controlstructure is contained as a single �bre of its �brational form. The point is that all of the
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