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Coinduction is often seen as a way of imple-
menting in�nite objects [8, 4]. Since real num-
bers are typical in�nite objects, it may not come
as a surprise that calculus, when presented in a
suitable way, is permeated by coinductive rea-
soning. What is surprising is that mathemati-
cal techniques, recently developed in the context
of computer science, seem to be shedding a new
light on some basic methods of calculus.
We introduce a coinductive formalization of el-

ementary calculus that can be used as a tool for
symbolic computation, and geared towards com-
puter algebra and theorem proving. So far, we
have covered parts of ordinary di�erential and
di�erence equations, Taylor series, Laplace trans-
form and the basics of the operator calculus.
Our point of departure is the observation that

the algebraic structure of streams, given by the
equations

head(a :: �) = a (1)

tail(a :: �) = � (2)

head(�) :: tail(�) = � (3)

captures much of calculus. Given an analytic
function f , de�ne

head(f) = f(0)

tail(f) = f 0

a :: f =

�
x 7! a+

Z x

0
f

�
Equation (3) now expresses the so-called Fun-
damental Theorem of Calculus, whereas equa-
tions (2) and (1) normalize the integral with re-
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spect to the subintegral function and the interval
of integration.1

Reapplying equation (3) yields the Taylor
(Maclaurin) expansion

f = f(0) :: f 0

= f(0) :: f 0(0) :: f 00

...

= f(0) :: f 0(0) :: � � � :: f (n)(0) :: � � �

Unfolding the above de�nition of ::, which a-
mounts to iterated integration, one �nally gets

f(x) = f(0) + f 0(0)x+ � � �+ f (n)(0)xn=n! + � � �

The idea of in�nitely applying (3) is formally cap-
tured by the notion of a stream (co)algebra. The
set of in�nite sequences forms a �nal stream coal-
gebra. Taylor expansions are then obtained using
the unique homomorphism from the stream coal-
gebra of analytic functions.
From another point of view, a :: f is the unique

solution of the di�erential equation g0 = f with
the initial value g(0) = a. The above derivation
of Taylor series now leads to the usual power se-
ries method for solving di�erential equations [2,
ch. 4]. For example, the equation f (4) = f , with
initial values f(0) = 0, f 0(0) = 1, f 00(0) = 0 and
f 000(0) = �1, becomes f = 0 :: 1 :: 0 :: �1 :: f .
Solving it amounts to running a corecursive pro-
gram, which outputs the stream of Taylor coe�-
cients (corresponding, in this case, to f = sin).

Following these ideas, we introduce in sections
1 and 2 a formal setting for studying and imple-
menting analytic structures by coalgebraic meth-
ods. Section 3 proceeds from our stream algebras

1This example may be suggested by Hoare's notation �0

and �0, respectively for the head and the tail of a trace [5].
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of Taylor coe�cients to derive an abstract charac-
terisation of a di�erent analytic method: Laplace
transform. We show that it also arises, like Tay-
lor series, as a coalgebra homomorphism induced
by speci�c stream operations. We compute them
and derive the corresponding integral expressions.
As a byproduct of the coalgebraic treatment, we
obtain a simple characterisation of the Laplace
duals of analytic functions.

1 Stream algebras

Our main tool are the �xpoints of functors in the
form �� (�) : Set ! Set.

De�nition 1.1 Let � be a set. A �-stream al-
gebra is a set A together with an isomorphism

A

hh;ti

�=
,,
�� A

c

kk

With c(a; �) written in the in�x form a :: �,
this isomorphism exactly corresponds to equa-
tions (1{3).

The stream homomorphisms are required to
preserve all three operations. (In fact, it suf-
�ces to require the preservation of c alone, or of h
and t.)

1.1 In�nite lists

The basic example of a stream algebra is, of
course, the set A = �! of in�nite lists of ele-
ments from �. If � 2 A is a list [�0; �1; �2; : : :],
the operations will take it to

h = head : �! �! �
� 7�! �0

t = tail : �! �! �!

� 7�! [�1; �2; : : :]

c = cons : � ��! �! �!

ha; �i 7�! [a; �0; �1; : : :]

(4)

With the pair hhead; taili as the structure map,
�! is the �nal coalgebra for the functor �� (�) :
Set ! Set. The initial algebra is empty. The �-
nality of �! means that every �-coalgebra hk; si :
A �! �� A induces a unique function

Lk; sM : A �! �!

x 7�! [k(x); ks(x); ks2(x); : : :]

making the diagram

A

Lk;sM

���
�

�

�

�

�

hk;si // ��A

��Lk;sM

���
�

�

�

�

�

�!

hhead;taili
// �� �!

commute. This step from a coalgebra hk; si to the
induced homomorphism Lk; sM is what we usually
call coinduction. Most of the time, we shall be
constructing ��-colagebras and then study the
homomorphisms derived from them by coinduc-
tion.

1.2 Sequences

Now suppose � is a group, say Z, the integers.
Besides the described list operations, the set A =
Z! supports various sequence operations, e.g.

h : Z
! �! Z

� 7�! O� = �0

t : Z
! �! Z

!

� 7�! ��

c : Z�Z! �! Z!

ha; �i 7�! a+��

where

�� = [�1 � �0; �2 � �1; �3 � �2; : : :];

a+ �� = [a; a+ �0; a+ �0 + �1; : : :]

Essentially employing the commutativity of Z,
one �nds that this stream algebra structure on
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Z
! is actually isomorphic with (4), via

Z!

� �=

��

hO;�i // Z�Z!

Z�� �=

��
Z!

e�

TT

hhead;taili
// Z�Z!

Z�e�

SS

The n-th entries of the sequences �(�), resp.e�(�), are de�ned:
�(�)n =

nX
i=0

�
�n
i

�
�i

e�(�)n =
nX
i=0

�
n

i

�
�i

Note that � is actually the discrete Taylor trans-
formation, because �(�)n = (�n�)0. The de-
scribed isomorphism thus switches between a se-
quence of numbers and the sequence of its �nite
di�erences of �nite orders, evaluated at 0.2

1.3 Analytic functions

Passing from integers Zto reals R, and from the
di�erence operator � to the derivative D, we get
the stream algebra from the introduction, on the
set A of functions analytic at 0.

h : A �! R

f 7�! Of = f(0)

t : A �! A

f 7�! Df = f 0

c : R� A �! A

ha; f(x)i 7�! a+
R x
0 f(t) dt

As pointed out before, the essentials of calculus
can be presented in terms of this algebra. Ele-
mentary functions arise as solutions of equations,

2On the other hand, extended toR!, � and e� can also be
understood, along the lines of formula (9), as multiplying
with the functions e�x and ex respectively.

e.g.

exp = 1 :: exp

sin = 0 :: 1 :: 0 :: �1 :: sin

ch = 1 :: 0 :: ch

In general, all initial value problems induce
stream equations: e.g.

y00 = y � 5 sinx+ x2 (5)

y(0) = 0; y0(0) = 3

corresponds to

y = 0 :: 3 :: (y � 5 sinx+ x2) (6)

The point that we wish to make is that stan-
dard analytic methods of solving problems like
(5) conspicuously often boil down to stream alge-
bra manipulations with equations like (6). The
upshot is that the procedures apparently based
on the intuitions of continuum, and on result-
ing deeply in�nitistic concepts, hardly compu-
tational, can actually be formalized in terms of
the familiar list operations, provided that circu-
lar and in�nite lists | i.e. streams, are allowed.

So how do we deal with (6)?

2 Solving equations

2.1 Lifting the structure

In order to lift the real numbers into A , we �rst
de�ne b0 2 A to be the unique solution of the
equation

b0 = 0 :: b0
Each real number a 2 R can now be represented
in A by the induced constant function ba = a :: b0.
Since the mapping d(�) : R �! A is injective,
identifying ba and a should not cause confusion.

The variable x can now be de�ned as 0 :: 1, x2

is 0 :: 0 :: 2, x3 is 0 :: 0 :: 0 :: 6 etc. Of course, x is

3



just a way the identity function is usually denoted
in calculus. Explaining xn, however, requires a
de�niton of the multiplication of functions.

In general, the addition and the multiplication
on A are determined by the systems

h(f + g) = h(f) + h(g)

t(f + g) = t(f) + t(g)

and

h(f � g) = h(f) � h(g)

t(f � g) = t(f) � g + f � t(g)

Axioms of stream algebra (1{3) imply that these
systems are respectively equivalent to

(a :: f) + (b :: g) = (a+ b) :: (f + g) (7)

and

(a :: f) � (b :: g) =

(a � b) ::
�
f � (b :: g) + (a :: f) � g

�
(8)

Note that these de�nitions are inductive only for
the inductively de�ned f and g, i.e. those that are
derived from the constants in a �nite number of
steps, not involving �xpoints. Such functions are,
of course | the polynomials. For functions like
exp, de�ned using �xpoints, the above de�nitions
are circular | and resolved by �xpoints again:

exp+ exp = (1 :: exp) + (1 :: exp) =

= (1 + 1) :: (exp+ exp) =

= 2 :: (exp+ exp)

But how do we know that there is a �xpoint?
How do we know whether an equation like y =
0 :: 3 :: (y � 5 sin x + x2) has a unique solution?
In a general setting, such questions are addressed
in [11].

2.2 Using Taylor series

To see things in a familiar setting, note that the
Taylor representation again induces an isomor-

phism:

A

T �=

��

hO;Di // R� A

R�T �=

��
R<!

eT

SS

hhead;taili
// R�R<!

R�eT

SS

where R<! is the set of sequences of Taylor coef-
�cients, i.e. of � 2 R! such that

P1
i=0

�i
i! x

i < 1
for some x > 0. The Taylor representation is, of
course

Tffg = [f(0); f 0(0); f 00(0); : : :]

eTf�g =
1X
i=0

�i
i!
xi

Transferred along T, the stream algebra equations
become the usual power series manipulations: the
coe�cients of the unknown function are deter-
mined recursively.

E.g., the T-image of the equation y = 0 :: 3 ::
(y � 5 sin x+ x2) will have Tfyg = [y0; y1; y2; : : :]
on the left-hand side; whereas the right-hand
side will be the sum of the same Tfyg, with
Tf�5 sin xg = [0;�5; 0; 5; : : :] and Tfx2g =
[0; 0; 2; 0; : : :], all of that pre�xed with 0 and 3.
The equation thus becomes:

[y0; y1; y2; y3; y4; y5; y6; : : :] =

[0; 3; y0; y1 � 5; y2 + 2; y3 + 5; y4; : : :]

In this simple case, the coe�cients can be ex-
tracted explicitly, and even eliminated by recog-
nizing the elementary functions behind them

y = [0; 0; 0; 0; 2; 0; 2; 0; : : :] + [0; 3; 0;�2; 0; 3; 0;�2; : : :]

= 2ch x� x2 � 2 + 1

2
(sh x+ 5 sin x)

Every ordinary di�erential equation involving
only analytic functions can be solved in this fash-
ion [2, thms. 4.4{4.5], as well as many important
higher order equations [3, ch. 10]. In fact, the
general Cauchy-Kowalevskaya method for solv-
ing initial value problems [6, ch. 3] boils down
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to a recursive procedure for computing the Tay-
lor coe�cients, and can be presented in a coin-
ductive setting as above, suitably extended for
several variables [11].

Of course, many important problems are not
in a form suitable for this simple approach; and
those that are often lead to intractable recurrence
relations on the coe�cients. But the methods de-
vised for dealing with such cases, also tend to lead
to stream algebras and their homomorphisms, al-
beit in a di�erent way.

3 Laplace transform

3.1 Rings of streams

Now consider the algebra

head : R
! �! R

� 7�! �0

tailN : R! �! R!

� 7�! [�1; 2�2; 3�3; : : :]

consN : R�R! �! R!

ha; �i 7�! [a; �0;
�1
2 ;

�2
3 ; : : :]

This is yet another version of the stream algebra
of in�nite lists of numbers, isomorphic with the
\original" via

R!

g �=

��

hhead;tailN i // R�R!

R�g

��
R
!

eg

TT

hhead;taili
// R�R!

R�eg

SS

where

g(�)n = n!�neg(�)n =
�n
n!

Clearly, every real sequence � induces
tail�(�) = [�0�1; �1�2; �2�3; : : :], and a stream

algebra, provided that all �i 6= 0. The impor-
tance of the algebra induced by � = N is that the
composite G = eT � g assigns to a sequence � its
generating function

Gf�g =
1X
i=0

�ix
i

Interpreted in terms of G, the operation tailN

again corresponds to the derivation D, and consN

to the integration.

Transferred along T, the product of analytic
functions f and g, with ' = Tffg and  = Tfgg,
induces the operation ' �  = Tff � gg with the
entries

(' � )n =
nX
i=0

�
n
i

�
'in�i (9)

Transferring, on the other hand, along eG = eg �
T,with � = eGffg and � = eGfgg, we get � � � =eGff � gg, with

(� � �)n =
nX
i=0

�i�n�i (10)

Both � and � make R
! into a commutative

monoid, even a ring, as they obviously distribute
over the (componentwise) +. The isomorphism g

switches between the two ring structures, and in
particular satis�es

gf� � �g = gf�g � gf�g

On the other hand, for x = [0; 1; 0; 0; : : :] and
any � holds

x � � = [0; �0; �1; �2; : : :] (11)

But if � is a sequence of Taylor coe�cients, pre�x-
ing by 0 corresponds to the integration! Integral
can thus be presented as multiplication in a ring

T

�Z x

0
f

�
= x � Tffg

It is not hard to see that this ring has no zero
divisors, so that it can be extended into a �eld
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of fractions. The calculus of integrals and deriva-
tives becomes algebra over this �eld.

This is, of course, the basic idea of operator
calculus [9]. Indeed, � as in (10) is a discrete con-
volution, and g reduces it to the multiplication,
just like Laplace transform does with the contin-
uous convolution.

But g does not correspond precisely to Laplace
transform. An algebraic treatment of di�erential
equations can be built upon it, but the induced
formulas are di�erent from those encountered in
the Laplace tables.

We shall now proceed to modify g in order to
capture the actual Laplace transform.

Lifting g from coe�cients to functions in the
same way as we shall do in a moment, the reader
will �nd that g actually corresponds to what is
sometimes called Heavyside transform: it maps f
to the coe�cients of s

R1
0 e�stf(t)dt.

3.2 Laplace transform of Taylor coe�-
cients

The crucial point about Laplace transform is that
it is not an isomorphism, but a proper embedding
of the convolution ring of real analytic functions
into an ideal [7, 14] within the multiplicative ring
of analytic (or better holomorphic) functions. We
�rst spell this out on Taylor coe�cients, and em-
bed R! into

R
!
0 = f� 2 R! j �0 = 0g

The embedding is realized using the following
stream algebra:

� : R! �! R

� 7�! �1

# : R! �! R!

� 7�! [�0; �2;
�3
2 ;

�4
3 : : :]

& : R�R! �! R!

ha; �i 7�! [�0; a; �1; 2�2; 3�3; : : :]

Since hhead; taili : R! �! R�R! is the �nal R�-
coalgebra, there is a unique homomorphism è.

R!

e`

�� ��

h�;#i // R�R!

R�e`

�� ��
R!

JJ

`r

TT

hhead;taili
// R�R!

KK

R�`r

SS

The sections `r of èare indexed by the real num-
bers r: è(�)n =

�n+1
n!

(12)

`r(�)n =

�
r if n = 0
n!�n�1 if n > 0

(13)

Laplace transform corresponds to ` = `0. Its im-
age R!

0 , with �, # and & restricted to it, is thus
isomorphic to R!, as an R�-coalgebra. The iso-
morphism ` moreover preserves the ring opera-
tions

`f�+ �g = `f�g+ `f�g (14)

`f� � �g = `f�g � `f�g (15)

as well as the zero [0; 0; : : :], but the unit
[1; 0; 0 : : :] lies outside R!

0 , just like all constants
[a; 0; 0; : : :] do, for a 6= 0. In the �eld of frac-

tions over R!
0 , each a 2 R is represented by

`fag
`f1g ,

which ensures that the extension of ` to this �eld
is R-linear.

Since `f1g = [0; 1; 0; : : :] is, on the other hand,
the integrator x from (11), we have `fag = ax, for
all a 2 R. The `-image of the equation f = f(0)+R
f 0 is thus `ffg = xf(0) + x`ff 0g. Multiplied

with s = 1
x
, it yields the basic formula of the

operator calculus

`ff 0g = s`ffg � f(0)

Together with (14{15), this formula determines
the Laplace duals of a bulk of elementary func-
tions. The algebra induced by ` thus looks exactly
like the algebra induced by the Laplace transform.
Indeed, we shall now show that ` exactly mimicks
the Laplace transform on Taylor coe�cients.
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3.3 Laplace transform of analytic func-
tions

Recall that Laplace transform L takes a real lo-
cally integrable function f(x) and returns a func-
tion depending on a complex variable s

Lffg =

Z 1

0
e�stf(t)dt (16)

It is well-known that Lffg is analytic, for <(s)
su�ciently large, whenever the integral in (16) is
absolutely (and therefore uniformly) convergent.
The other way around, every function analytic
for large <(s) turns out to be the Laplace dual
Lffg of some real function f , unique up to a set
of measure zero [15].

A consequence of the present analysis is that
restricting L to the real analytic functions leads
to a simpler, perhaps even more instructive cor-
respondence. It could be stated entirely within
the framework of real analysis, but probably not
really understood.

De�nition 3.1 Let f be a complex function an-
alytic (holomorphic) at 1: in other words, for
su�ciently large z, there is a Laurent expansion
f(z) =

P1
i=0

�i
zi
.

We say that a function f is coanalytic if all of
its coe�cients �0; �1; : : : are real. The set of co-
analytic (Holomorphic) functions will be denoted
H.

Examples of coanalytic functions are exp
�
1
z2

�
,

1
z3+z , and similar.

Lemma 3.2 f(z) is a coanalytic function if and
only if the real function f

�
1
x

�
is analytic at 0.

Conversely, every real function g(x) gives rise to
a coanalytic function g

�
1
z

�
.

There is thus a one-to-one correspondence be-
tween H and A . Extending it along the Taylor
representation yields the bijection 1

T
: H ! R

<!,
assigning to each coanalytic function f(z) the

Taylor coe�cients of f
�
1
x

�
. Its inverse is

e1
T
f�g =

1X
i=0

�i
i!si

Now we can �nally prove that ` indeed cap-
tures L.

Proposition 3.3 Let � = Tffg and � = 1

T
fgg.

Then

Lffg = g () `f�g = �

Proof. Using the equation Lfxig = i!
si+1

and
the fact that L is linear and continuous, i.e.
L
�P1

0 �ix
i
	
=
P1

0 �iLfx
ig, we get

Lffg = L

(
1X
i=0

�i
i!
xi

)
=

=
1X
i=0

�i
i!
L
�
xi
	
=

=
1X
i=0

�i
i!
�

i!

si+1
=

=
1X
n=1

�n�1
sn

It follows that

Lffg =
1X
n=0

�n
n!sn

() �n =

�
0 if n = 0
n!�n�1 if n > 0

�

The obvious consequence is that for every f

analytic at 0 holds

Lffg = e1
T
� ` � Tffg (17)

Laplace transform thus couples analytic and co-
analytic functions. More precisely, it maps ana-
lytic functions A into coanalytic functions H1 that
vanish at 1, because ` maps their Taylor expan-
sionsR<! into the Taylor expansionsR<!

0 of func-
tions that vanish at 0. We have thus proved

7



Corollary 3.4 A real function f is analytic at 0
if and only if its Laplace dual Lffg is a coanalytic
function vanishing at 1. Laplace transform is a
bijection L : A �! H1 .

But it is not a mere bijection: as a morphism
it is completely determined by its preservation
properties:

Corollary 3.5 Laplace transform L : A �! H1

is the only continuous linear operator satisfying

Lfxng =
n!

sn+1

Proof. Since (17) implies that ` = 1

T
� L � eT, one

shows, exactly as in the proof of proposition 3.3,
that the assumptions about L pin down ` = `0 to
formula (13). But the other way around, because
of its linear continuity, L is also uniquely deter-
mined by `. �

3.4 Laplace transform abstractly

The �nal point to be made is that the coanalytic
ideal H1 is a stream algebra and that both L andeL are induced by that structure, as coalgebra ho-
momorphisms.

H1

eL �=

��

hH;T i // R� H1

R�eL �=

��
A

L

SS

hO;Di
// R� A

R�L

SS

This, of course, follows a priori from the estab-
lished isomorphisms: L is just the lifting of `
along T and 1

T
. The structure of H1 will thus

be the lifting of the structure h�; #; &i, which in-
duces `.

For simplicity, we �rst lift the �, # and & along
T to A 0 , the ideal of functions analytic and van-

ishing at 0.

� : A 0 �! R

f(x) 7�! f 0(0)

� : A 0 �! A 0

f(x) 7�!
R x
0

1
t
(f 0(t)� f 0(0))dt

� : R� A 0 �! A 0

ha; g(x)i 7�! x(a+ g(x)) +
R x
0 g(t) dt

The proof that this is a stream algebra is routine,
but essentially depends on the properties of the
functions from A 0 .

The desired structure of H1 is induced along
the isomorphism A 0

�= H1 from lemma 3.2, sub-
stituting 1

s
for x, and making use of the properties

of the functions involved.

H : H1 �! R

F (s) 7�! � lims!1 s2F 0(s)

T : H1 �! H1

F (s) 7�!
R1
s

H(F )
�

� �F 0(�) d�

C : R� H1 �! H1

ha;G(s)i 7�! a+G(s)
s

�
R1
s

G(�) d�
�2

Checking that this structure corresponds, along
1

T
and T, to h�; #; &i, and then using the fact that

this structure determines `, while ` determines L,
yields a \clean" proof of

Theorem 3.6 L and eL are completely deter-
mined by the commutativity of the last diagram.
In other words, Laplace transform and its in-
verse are the unique stream homomorphisms be-
tween the analytic functions, and the coanalytic
functions vanishing at 1, with the corresponding
structures described above.

4 Conclusion

In essence, calculus is coinductive programming.
It consists mostly of using �nal �xpoints and
constructing various transforms between them.
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When applying standard methods for solving dif-
ferential equations, we are actually using coinduc-
tion without even realizing it!

Of course, real analysts probably do not need
to know this either. Our point is, however, that
the computational contents of their in�nitistic
reasoning, in its standard forms, can usually be
reduced to coinduction | and implemented as
such.

In the present paper, we have provided some
initial evidence for these claims. The examples
described are, of course, very basic, but we be-
lieve that they are typical. Many other funda-
mental structures from di�erential and integral
calculus are readily seen to give rise to similar
�nal coalgebras. With some work, our stream al-
gebras are extending in many directions: beyond
analytic functions, and beyond functions, beyond
Riemann integral and ordinary derivative, beyond
real numbers, beyond deterministic analysis.

The upshot is, at least, a uni�ed framework
for presenting and implementating important an-
alytic tools. But the conceptual value of an ef-
fective presentation is hard to assess. So far, it
is clear that Laplace transform implemented on
streams is considerably easier to work with, and
reason about, than in its original integral form3.

Moreover, some frequently observed analogies
| e.g. between di�erential and di�erence equa-
tions, and their operators [3], or between Taylor
series and Laplace transform [15, ch. VII] | seem
to be acquiring formal grounds in coinduction.
We see that they are not precise correspondences:
the coalgebras capturing Taylor and Laplace are
quite di�erent | but they are both coalgebras of
the same kind. Hence the structural coincidence.

Attribution. The fact that analytic functions
form a stream algebra, and that this can be used
to explain Taylor series was discovered by Mart��n

3And all this with no loss of generality, since the re-
striction to analytic functions can be avoided; and in fact,
with a gain of generality, since ` can be implemented over
any �eld instead of R.

Escard�o in 1992. He was also aware of the role of
equation (7) in solving initial value problems.
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