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Abstract 

Originally, the categorical calculus of relations was developed using the canonical factorisa- 
tion in regular categories. More recently, relations restricted to a proper factorisation system 

have been studied by several authors. In the present paper, we consider the general situation, in 
which relations are induced by an arbitrary stable factorisation. This extension of the calculus 
of relations is necessary for a categorical development of strongly constructive (and computa- 
tional) logic, where non-manic relations come about naturally. 

In this setting, we analyse the correspondence of the maps, i.e. the total, single-valued 
relations, and the functions, as given by the arrows in the underlying category. 

1. Introduction 

In set theory, the functions are defined as the total and single-valued binary 
relations. In a category, the concept of function is primitive, given by the arrows, while 
relations are usually presented as subobjects. The two notions are thus defined 
separately, and it makes sense to ask whether functions correspond to the total, 
single-valued relations or not. A similar question arises, for instance, in formal 
arithmetic, where functions are defined by recursion, while relations are given as 
predicates. The statement that the total (and single-valued) relations exactly corres- 
pond to the recursive functions is a (restricted form) of Church’s thesis [25,4.3(3)]. 

However, while Church’s thesis is not something one could prove, one of the 
standard theorems about regular categories (cf. [l] or [ll, 1.1.5.)) tells that every total 
and single-valued relation - a map - corresponds to a unique arrrow. Every regular 
category is thus isomorphic with its category of maps: 

%? r Map(Rel V). (1) 
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Recall that a finitely complete category is said to be regular if every arrow in it 
factorises as a regular epi (a coequaliser) followed by a manic, and if this factorisation 
is stable under pullbacks. Originally, the categorical calculus of relations was based on 
this canonical factorisation, usually denoted (Epi*, Mon). 

In [22,13], the calculus of relations has been extended from (Epi*, Mon), to stable 
proper factorisation systems (&,A). The word “proper” here means that every A- 
arrow is manic, while every b-arrow is epi. The relations are thus not given by 
arbitrary monies, but only by those from a smaller class A. However, Kelly [ 131 has 
shown that the induced calculus reduces to the ordinary calculus of relations in 
a regular category. He has characterised the maps relative to A, and proved that they 
still form a regular category. The calculus of Mon-relations in this new category 
coincides with the calculus of &!-relations in the old one. 

Such a reduction will not be possible if we further generalise the concept of relation. 
Namely, every stable factorisation provides a sufficient basis for a calculus of relations. 
By this we mean that a bicategory of relations can be formed from it, in a similar 
fashion as it is formed from the canonical factorisation in a regular category. Although 
not in full generality, this fact has been checked long time ago, in J. Meisen’s thesis 
[18]. But, in absence of applications, this general calculus of relations received little 
attention. It seemed difficult to make sense of a relation which would not be a manic 
in the first place. 

In the eighties, computer science has revived the original idea of constructivism, 
by which a proposition-as-type could have many different proofs-as-constructions. 
Presented categorically, this strongly constructive logic naturally leads to the idea that 
a relation might be more than just a subobject [19,20]. A generalised relation 
r : R + A x B can be understood as an indexed family of constructive proofs: the fibre 
r- ‘(a, b) represents the set of proofs that a E A and b E B are r-related. According to 
this interpretation, the proofs are unique if and only if r is monic2 

And so, while the possible applications of the calculi of relations restricted to 
proper factorisations seem to lie in the realm of topology, quasi-toposes and similar 
structures, the extended calculi of relations might provide more insight in constructive 
logic and its models, such as the one described in Section 2. 

Besides this model, in Section 2 we outline the construction of the bicategory of 
relations. Section 3 reviews the categorical concept of a map, due to Lawvere [16], 
and establishes its main properties in a generalised bicategory of relations. Sec- 
tion 4 sets up the background on which the relativised maps are to be compared with 
the arrows of the underlying category. In Section 5, finally, we determine a precise 
condition on the system (a,&), which guarantees an isomorphism like (l), and 
ensures that the maps relative to this factorisation exactly correspond to the 

’ D. Benson has pointed out to me that non-manic relations actually arise in computer science at a much 
larger scale: they come about, for instance, whenever one is searching tables with multiple entries for a key. 
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actual arrows. The condition is simply that all the elements of I must be regular 
epi. 

Unfortunately, we must admit that the simplicity of this result conspicuously 
contrasts the relative complexity of its proof. In posetal bicategories, the notion of 
a map as a self-adjoint relation was a fairly transparent one - with the unit and the 
counit of the adjunction expressing the totality and the single-valuedness of the 
relation. In the non-posetal case, however, the adjunction equations, imposed on this 
unit and counit, do not hold automatically any more. Showing that they are satisfied 
involves chasing rather complicated diagrams. Moreover, we are lacking logical 
intuition for these commutativity conditions, supposed to tie together the proof that 
a map is total with the proof that it is single-valued. 

Strongly constructive logic does not seem to have many other choices at this point, 
but to follow the advice of category theory. Chasing diagrams might be a good way to 
acquire some insight in the structure of proofs-as-constructions. This idea will be 
pursued in part II of this paper [21]. The logical meaning of the adjunction equations 
will unravel in a more general setting. 

2. Bicategory of relations 

Unless explicitly stated otherwise, throughout this paper we shall assume that ‘$7 is 
a category with finite limits, and that (a, &!) is a stable factorisation system in %?. The 
basic reference for factorisations is [lo]. 

Every (&, .Y) induces in V a bicategory of relations 9. Some details can be found in 
[lS]. Bicategories were introduced in [3]; see also [4,6]. 

2.1. Relations, cells 

The objects of the bicategory of relations L%! = L%$~,~,~~ are the same as the objects 
of 55’. The horn-categories are 

L%(A,B):=JV/AxB 

i.e. the subcategories of %?/A x B spanned by the &-arrows. The objects of W(A, B) are 
what we call the (J%‘-) relations from A to B. The arrows between them generalise the 
inclusion of one relation in another. Notice that not just the objects, but also the 
arrows of the category .,&/A x B belong to &‘, since this class is closed under the 
division on the left. 

It is sometimes convenient to refer to the objects of a bicategory as to O-cells, to its 
arrows, which are the objects of horn-categories, as to l-cells, and to the arrows of its 
horn-categories as to 2-cells. The l-cells, our relations, are usually denoted using the 
arrow symbols with a slash: instead of (I: R -+ A x B) E .%?(A, B), we shall write 
r : A-B. The ordinary arrows will be kept for 2-cells. By CI : r + r’ we shall denote an 
arrowin&jAxB,fromr:R+AxBtor’:R’+AxB. 
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2.2. First examples 

In any %’ with finite limits, the simplest calculi of relations are induced by the trivial 
factorisation systems (Iso, All) and (All, Iso), where All is the class of all arrows of $?, 
while Iso are the isos. The latter system induces uninteresting relations, but the former 
leads to the calculus of spans [3,6,30] in the bicategory Span = %‘,,,,,,A,,,. A span 
from A to B is an arbitrary arrow to A x B. When %? is the category of sets and 
functions, the spans can be represented by possibly infinite matrices of cardinal 
numbers; if we restrict to finite sets, they become ordinary matrices of natural 
numbers. 

To compose spans r = (Y,,, rl) : R + A x B and s = (so, sl) : S -P B x C, one forms 
a pullback of rl and s0 

(2) 

and takes the span (rOpO, slpl ) as the composite s @ r : P + A x C. In the category of 
sets, this operation exactly corresponds to the matrix composition. 

Besides the two trivial factorisations, the category of sets allows only the epi-mono 
factorisation, which, of course, induces ordinary calculus of relations. Recall that 
binary relations on sets can be represented as matrices with entries 0 or 1. To compose 
them in this form, one first applies the ordinary matrix composition, and then reduces 
all the non-zero entries in the result to 1. Categorically, this last step means taking the 
image of the span (ropo,slpl), constructed as in (2), but for manic spans r and s. The 
same procedure determines the composition of the Mon-relations in arbitrary regular 
category %’ as well as the composition of the relations relative to any stable factorisa- 
tion. 

2.3. Composition, identity 

To compose relations, one thus manipulates with spans, using the adjunction 

%?(A, B) = M/A x B 2 %?fA x B = Span(A, B) 
in 

of the inclusion and the image functor. In principle, the bicategorical structure of 
9 can be derived from the requirement that the global assignment im: Span + 9 
yields a homomorphism of bicategories. It determines that l-cells r: AttB and 
s: B-C must compose to s @ r = im (ropo,slp,) : A+L Furthermore, any 2-cell 
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a : I + I’ in W(A, B) induces an arrow a from (rope, slpl) to (rbpb, sIpi) in %?/A x C; 

- with (rb, r; ) = r’, and with pb and p; obtained from r’ and s in a diagram like (2). 
The 2-cell s @ c(: s 0 r + s 0 r’ is now the arrow im(a) from im (ropo,slpl) to 
im ( rbpb,slp;) in d/A x C. 

Given /I : s + s’ in W(B, C), the 2-cell /? @ r: s 8 r + s’ @ r will be calculated in 
a similar fashion. One easily checks that the constructions s @ (-) and (-) @ r are 
functorial, and that a and /3 are “natural”, in the sense that, for a suitable choice of 
images (or up to isomorphism) 

(Bor’)(sOa)=(s’Oa)(/3Or) (3) 

holds. By definition, this 2-cell is taken to be the composite fi 0 tl. 
The stability of the factorisation is necessary and sufficient for the associativity of 

0. An early discussion about this can be found in [ 141. 
The identities in 9 will be denoted ig : B-B. By definition, zg is the &-image of the 

diagonal 6s: = (id, id) : B + B x B, which is the identity in Span. Let us show, for 
instance, that rg 0 r E r, since this definition does not seem to be a part of common 
knowledge. (E.g. Meisen [ 181 assumes that all diagonals are in .&!, apparently for no 
other reason than to use them as identities. This assumption then implies, for instance, 
that all d-arrows are epi.) 

Consider the diagram 

id (4) 

Both squares are pullbacks. Let e be the coimage of h8, i.e. (id, id) = (lo, tl ) e. 

A suitable choice of pullbacks in (4) yields ropOe’ = r. and lIpIe’ = rl. By the stability, 
e’ is an b-arrow. With a suitable choice of images (or up to iso), we get 

~BOr=im(ropo,rlpl) =im(rOpO,~,pl)e’=im(rOpOe’,zlple’) =r. 

2.4. Structure 

In [8,3.5.] and [11,11.2.154], bicategories of relations induced by the canonical 
factorisation in regular categories have been characterised and axiomatised. Our 
generalised bicategories of relations could be pinned down in a similar way. However, 
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the axioms appear to be significantly more complicated, due to the fact that we are not 

dealing with posetal bicategories. 

Without going into details, let us just point out that a bicategory of relations 

relative to a factorisation still carries all the structure of a ‘&category of reEations’2 as 

defined by Carboni and Walters [S], but suitably generalised. It can also be regarded 

as a glorified allegory of Freyd and Scedrov [ll]. 

For instance, every horn-category %!(A, B) = &!/A x B has finite products. Obvi- 

ously, the product of relations r : R + A x B and r’ : R’ -P A x 3 will be their pullback in 

%. We shall denote it by r A I’. The canonical terminal object of .!%(A, B) is represented 

by the identity idA x B in Q?. 

For the record, note that the composition (2) can be presented combining the local 

product A of .4? and the global product x of %: 

s 0 r = im(z((A x s) A (r x C))), (5) 

where 7c : A x B x C -+ A x C is the projection. 

Finally, every bicategory of relations is self-dual: the bifunctor 

(-)” : ‘%op-&% 

leaves the objects and the 2-cells unchanged, while it takes each _&Z-relation 

r = (rO,rl):R + A x B into the opposite relation r” : = ( rl, ro) : R 4 B x A. 

2.5. More examples 

As observed in [9,15], every category GZ generates afree factorisation system, It is 

couched in the arrow category V/V, and a telling notation is (A, v). Namely, among 

the arrows 

which are just the squares uf= gu, the abstract “epis” A can be recognised as the 

“upper triangles” 

A= u i( > E%/%Iu is is0 , 
u 1 

while the abstract “monies” V correspond to the “lower triangles” 

‘The quotation marks are due to the authors. 1263 seems to be dealing with a related non-posetal structure. 
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A square thus decomposes into a V-part and a A-part along the south-east diagonal. 
This factorisation is clearly stable, since the pullbacks in V/%? are created by the 
functor %?I%? -+ %Y x V, projecting an arrow to its domain and codomain. 

Another factorisation in V/%2 - stable for similar reasons - is obtained if we take 

V as the class of abstract “epis”. We get the system (V, q ), where 0 denotes the class 
of the pullback squares. 

The calculus of relations with respect to (A, 77) can be almost reduced to the 
calculus of spans in %?. A V-relation is just a span, but equipped with an additional 
arrow coming out of its domain and another one coming out of its codomain. (Indeed, 
the category of V-relations is formed upon the objects of +2/V.) Since a function out of 
a set induces a partition on it, a span with the arrows out of its domain and its 
codomain can be viewed as a matrix divided in blocks. The calculus of V-relations thus 
resembles algebra of blocked matrices. 

The calculus of relations with respect to the factorisation (V, 0) can be interpreted 
in a similar fashion. 

A particularly interesting factorisation, especially from the point of view of strongly 
constructive logic, can be found in the category Y of encoded sets (also called 
assemblies [S], or w-sets [17]). An encoded set can be presented as a function 
K : lK[ + C*, where lK1 is an arbitrary set and C* is the set of inhabited (nonempty) 
sets of natural numbers. An arrowf: K + L between two encoded sets in an ordinary 

function f : 1 K I + I LI, but effectively encodable, in the sense that it can be traced on the 
codes by a partial recursive function. More precisely, for eachf E Y(K, L) there must 
exist a natural number n E N such that, for every x E ) K 1, the partial recursive function 
n‘: N-N, encoded by n, is defined on all of K(x) E C*, and maps it into L( f(x)). This 
is summarised on the following picture 

IKI- f ILI 

(6) 

where n “1 Z*-Z* denotes the partial direct image of n‘. This function is defined on 
X E C* if and only if n‘ is defined on all of X, and then 

n“X:= {n‘mjmEX}. 

Otherwise, n “X is undefined. Therefore, to compose n“ and K on (6), we must require 
that the range of K is contained in the domain of n“. 

Now we define the modest factorisation on 9’. Each encoded set K comes with 
a symmetric, reflexive relation 

X-Y o 3n E K(x)nK(y). 
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The set ‘K is said to be modest if - is as small as possible: 

K is immodest if 11(1 is inhabited and - is large: every two elements of 1 K 1 must be 
related in the transitive closure of - . 

We say that an arrow of Y is (im)modest if it is such fibrewise: 

Mod:= {fe YlVy.f-‘(y) is modest}, 

Imm := { fe YlVy.f-‘(y) is immodest}. 

The pair (Imm, Mod) forms a stable factorisation in Y. It can be seen as the 
externalisation of the internal category of modest sets. The fact that we are obtaining 
a stable factorisation by externalising it means that this small category is cocomplete 
(in the fibrational sense). On the other hand, it is complete too. While contradicting 
the classical commonplace that the only small (co)complete categories are lattices, the 
category of modest sets can be thought of as the small category of strongly construc- 
tive truth values, with the small products and coproducts providing, respectively, the 
universal and the existential quantification. The encoded sets and the modest fac- 
torisation offer a basis for systematic semantical investigations, where the results of 
the present paper might be of use [20]. 

3. Maps 

Definition 3.1 (following Lawvere [16]). In an arbitrary bicateg&y, a l-cell is a map 
if it has a right adjoint. 

Thus, for a map r: A++& there must exist a l-cell r* : BtrA and two 2-cells 
q : iA + I* @I r and E : I @ r* + zg, satisfying the adjunction identities 

(eOr)(r@q) = r, (7) 

(r* 0 &)(q 0 r*) = r*, (8) 

In any bicategory, the maps form a subbicategory: they are closed under the 
composition and contain the identities. In the bicategory of relations as described in 
the preceeding section, they even form a subcategory. The reason is that they are quite 
rigid: two maps become isomorphic as soon as they are connected by a 2-cell which 
commutes with the adjunction structure. Some intuitive explanations will be provided 
at the end of this section. 
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Lemma 3.2. Let W be any bicategory; let r, s E W(A, B) be maps, with right adjoints r* 
and s*, units n,, nS and counits Ed, E,; and let CI: r + s and a* : r* + s* be 2-cells satisfying 

&,(a 0 a*) = E,. (10) 

Then r and s must be isomorphic: a must be an isomorphism. (Dually, the same holds for 
r*, s* and a*.) 

Proof. The following diagram shows that a must be a split manic. 

(11) 

The right-hand square commutes by (10); the left-hand square, by the bicategorical 
naturality law (3). Since the adjunction r + r* gives 

(GOr)(rOn,)=id,, 

the commutativity of (11) tells that 

(12) 

is the left inverse of a. 
A diagram dual to (11) yields a left inverse 6* of a *. And then a third version of (11) 

yields a left inverse of 6. To get this third version, switch r and s everywhere in (1 l), put 
&in place of a and &* in place of a*. The left-hand square in this diagram will commute 
by naturality again. The commutativity of the right-hand square will boil down to 
condition (9) in a completely straightforward, though lengthy chase, using only the 
naturality and the definitions of E and L?*. 

Since it has both a left and a right inverse, 5 is an iso. Therefore, a must be an iso 
too. 0 

The preceding lemma allows a significant strengthening of the concept of map in 
bicategories of relations: every map must have a canonical right adjoint there. This is 
a clue for the “intended meaning” of Definition 3.1. 

Proposition 3.3. If r: AtrB is a map in the bicategory of relations 9, its right adjoint 
must be r’: B-A. 
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Proof. To simplify notation, let s : = r * : BttA be some given right adjoint of the map 
r : At*B now. Dualizing r i s, we get so -1 r0 : B*A. So both r and so are maps. We need 
to construct 2-cells a : S” + r and ~1* : r” + s satisfying (9) and (10). Applying Lemma 
3.2, we shall then be able to conclude that so z r, and hence r i r“, as asserted. 

The 2-cell 01: so + r will be obtained by dualising 

CC’:= (rD@E)(~@s):s-+rO@r@s+rO, (13) 

where E : r @ s + lg is the counit of the adjunction r i s. The 2-cell K : zA + r” 0 r will be 
constructed below. In fact, we shall construct an arrow k from bA to r” 0 r in %?/A x A. 

By the universal property of the d-image 1 A = im(6,), this arrow will induce K from I~ 

to r0 @ r in &!/A x A. 

First of all, consider the following diagram in %?. 

4 

(VIII) (IV) j? (III) 

1 ,I 

7CXA (V 

im (rO) 

+/>-.; 6 Ax A\ 
> 

4’ 

(14) 

The arrow d in (I) is induced by the fact that r A r is obtained by pulling back r along 
itself. Of course, d is a diagonal in .@(A, B). Squares (II) and (III) are clearly pullbacks. 
Squares (IV) and (V) are obtained by forming the &‘-images of the arrows r. = nr and 
(rr x A)((A x f’) A (r x A)), respectively. Finally, the arrows d’ and 4’ are induced by the 
universal property of the images. 

We shall now show that im(ro) has a section h. Using it, we shall be able to define 
the arrow k in VIA x A as 

k : = q’d’h : 8*-r’ @ r. (15) 
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The following diagram will help us produce h. 

W) n W) nxA (IV) (VIII) 

19 

(16) 

The arrow p in (I) is this time the projection (A x s) A (r x A) -+ r x A. Squares (II) and 
(III) are pullbacks again; and (IV) and (V) are again formed by factoring. The former is 
based on (5). Further decompose (rc x A)(r x A) to get im(r, x A); then form (VI), (VII) 
and (VIII) using the universal property of the images. The stability of the factorisation 
implies that (VI) must be a pullback square, because (II) and (III) are, and (VI) is 
obtained by factorising two sides of their composite. Square (VI) is again displayed as 
the upper square on the next diagram. In the lower square, z 0 e is the &A?-decomposi- 
tion of 6. 

(17) 
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The equation 

im(r, x A)op’o~oe = 6 

induces the section h of im(r,). Going back to (15), we get k. Hence rc for (13). 
The other 2-cell, CI* : r” + s, can be constructed in a similar fashion: 

a*:= (s @ EO)(X @ f):r’-s @ so 0 P-s, (18) 

where x : lA + s @ so is derived from the unit r,+’ : zA + r0 0 so in exactly the same way as 
K:lA-+rOQr wasderivedfrom q:lA-*sQr. 

To complete all the conditions for Lemma 3.2, we must check that the constructed 
2-cells satisfy (9) and (lo), i.e. that we have 

(a*@a)r”=n, 

&(a @ a*) = E’ 

This is a completely “deterministic” task, which consists in “unfolding” the given and 

the omitted definitions. For the sake of brevity, we must leave it to the reader. 0 

Corollary 3.4. Let W be a bicategory of relations; let r, s E g(A, B) be maps. Zf there is 
a 2-cell r + s, then r z s. 

Proof . Since r* = r” and s* = so, every 2-cell a : r + s automatically induces 
a* : = a0 : r* + so. It is easy to see that condition (10) is satisfied. But it is not easy at all 
to prove (9). Fortunately, in the bicategory of relations, we can show that a is an iso 
without referring to condition (9). 

A left inverse a” of a is constructed just as in Lemma 3.2: use diagram (ll), 
substituting (-)” for (-)* everywhere. And now, in order to construct a left inverse of 
2 : s + r, just repeat the same procedure. 

This time, the right-hand square commutes without further ado, simply because (10) 
holds for every 2-cell /I between maps and for its dual /I* = p. 0 

We have proved that the maps in the bicategory of relations %? are absolutely rigid: 
the only 2-cells between them are isomorphisms. The skeleton of the subcategory 
spanned in %?(A, B) by maps is discrete: just a set. Taken modulo isomorphism, the 
maps of W thus form a category Map@?). By definition, the objects of Map(W) are the 
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same as the objects of B?. The arrows of Map(W) are the equivalence classes of 
isomorphic maps from &?. 

In fact, it will follow from [21, 5.3(b)] that a pair of maps in B(A,B) can be 
connected by at most one isomorphism. This means that the subcategory of %?(A, B), 
spanned by the maps, is equivalent with its skeleton. The category Map@) is thus 
biequivalent with the subbicategory of W spanned by the maps. 

Let us close this section by summarising some consequences of Proposition 3.3. On 
the technical side, this proposition greatly simplifies checking whether a relation I is 
a map or not. First of all, it is now sufficient to consider just one candidate for the right 
adjoint: the opposite relation r’. Secondly, only one of the adjunction equations needs 
to be checked, since the other one will follow. Indeed, with r* : = r“, identities (7) and 
(8) are dual to each other: 

(rO 8 E)(V 0 r’) = ((s 0 r)(r 0 rl))o. (20) 

On the conceptual side, Proposition 3.3 explains how the categorical notion of map, 
as a relation with a right adjoint, captures the idea of a map as a total and 
single-valued relation. If each relation r : At*B is thought of as a predicate r(x, y), the 
identity relation rA: A++A becomes the equality x = x’. On the other hand, the 
composition of relations r : At*B and s : h-d can be written in the form 

sQr = ily.r(x,y) A s(y,z). 

In this logical notation, the adjunction data for a map r appear as “proofs” 

q:x = x’-!ly.r(x,y) A r(x’,y) (21) 

&:3x.r(x,y’) A r(x,y)-y’ = y (22) 

Here we are neglecting the order of variables, so that both r and r0 correspond to 
r(x, y). Evidently, the 2-cell E “proves” that r(x, y) is single-valued in y: if y and y’ are 
both r-related to some x, then they must be equal. On the other hand, the 2-cell v tells 
that r(x, y) is total in x: if we put x’ : = x, the domain of rl becomes true and we can 
derive a “proof’ of 3y. r(x, y). 

Similar ideas motivate all the bicategorical constructions in this section. For 
instance, diagram (19) shows how a “proof” di from a total relation s(x, y) to a single- 
valued relation r(x, y) induces a “proof” in the opposite direction 

r(x,y) + !lx’y’.r(x,y’) A s(x’,y’) A s(x’,y) 

+ ilx’y’.r(x,y’) A r(x’,y’) A s(x’,y) 

+ s(x, Y). 

Construction (11) is a variation on the same theme. On the other hand, diagram (16) 
can be understood as deriving from ‘I: x E x’ + 3y. s(x, y) A r(x,y) a “proof” of 
3y. r(x, y), i.e. a splitting h of im(r,). From this, K :x - x’ + 3y. r(x, y) A r(x’, y) is then 
derived on diagram (14). 
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4. Convergence 

Let us now address the central question of this paper: What is the connection 
between the maps in the bicategory of relations 9 = Rel(%) and the arrows of the 
underlying category Q?? The first observation in this direction is that every arrow 
of %? induces a map in W. We say that this map converges to the arrow which has 
induced it. 

Lemma 4.1. (a) For any arrow f~ %(A, B), the relation rf : = im (id, f) E W(A, B) is 
a map. It is the graph of the function5 

(b) As an arrow in %, a graph of a function is always a manic. 
(c) For any relation s = (c, d) E d/C x D holds s = Td Q Tc”. 

Proof. Parts (a) and (c) can be demonstrated by extending standard arguments about 
spans [6, Section 21. 

Towards a proof of(b), observe that each graph of a function is a pullback of the 
identity relation 1 

rf=(fxB)*l. (23) 

To prove that I'f is a manic, it suffices to prove that z = im(6) is a manic. We shall now 
show that the arrows p and p’ on the next diagram are equal isomorphisms. Hence the 
result. 

e’ I I e 

(24) 

Let both squares be pullbacks by definition. Since the factorisation is stable, we have 

6*i : = 6* im(6) = im(6*6). 

So 6*z must be iso, since 6*6 is one. But now it follows that 

zap = im(606*2) g im(6) = I, 

poe’ = eoS*i 2 e. 
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Since 1 is in 4, the first equation implies that p is in A. Since e and e’ are in b, the 
second equation implies that p is in 6. Being both in _M and in 6, p must be iso. 

But p and p’ constitute a kernel of 1. So they have a common right inverse. Since p is 
iso, they must be equal. 0 

All the notions that will now be defined are, of course, relative to the factorisation 

system (8, A). 

Definition 4.2. A map r: At*B in the bicategory of relations %? is said to converge to 
a function f: A + B from G$ if r E rf: 

Definition 4.3. An object B E L%’ is separated if a map to it can converge to at most one 
function; in other words, rf E rf’ implies f =f’ for all f, f’ E %(A, B). 

Definition 4.4. B is said to be Cauchy complete if every map to it converges to a unique 
function. 

Definition 4.5. The category %? satisfies the principle offunction comprehension if all its 
objects are Cauchy complete. 

With the exception of the function comprehension, which stems back to Frege, 
Russell and Whitehead [29, Subsection *30], these concepts are developed along the 
lines proposed in Lawvere’s seminal paper [16]. Hence somewhat metonymical 
terminology. Cauchy actually entered scene only through Lawvere’s striking example 
of Cauchy complete spaces, which are exactly the Cauchy complete objects in the 
R+-enriched category of metric spaces. For more about the Cauchy completeness, see 
[12,5.5.]. 

On the other hand, Walters [27,28] has observed that the Cauchy completeness is 
the bicategorical version of the fundamental concept of sheaf: Thus, in some sense, we 
are studying sheaf theory relative to a factorisation here. (See also [23,24].) Some 
propositions indeed sound familiar. 

Proposition 4.6. An object B is separated with respect to (8, M) if and only if the 
diagonal aB is in A. 

Proof. ( G) If &, is in .M, then ( idA,f ) must be in .J%’ for every arrowf: A + B, since 
(idA,f ) is a pullback of dB alongfx B. Therefore, rf= ( idA,f ). 

But (idA,f) g (idA,f’) obviously impliesf=f’. 

( 3) Assume that B is separated. We first want to show that for the identity relation 
zg = (i,,,rr) holds TzO E G1. 
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Consider the following diagram, consisting of pullbacks again. 

(25) 

The external square is obviously a pullback of 1 along itself. As a component of 
a kernel pair, the arrow q must be a split epi. By going along its section and then along 
p, we get an arrow (id, ri) + ZiO in V/Z x B. The factorisation induces Zll + Zr,, in 
A/Z x B. 

We can now conclude that Zr, % Z’rl either using Lemma 4.1(a) and Corollary 3.4, 
or by constructing an arrow &, + Zzi and then applying Lemma 4.1(b). Since B is 
separated, we get z. = ri and hence z B = (zo, lo). Recalling the &‘A-decomposition 
ds = rg 0 e, which defines the identity relation zg, we get r. 0 e = idB. On the other hand, 
by the uniqueness of decomposition, the diagonal in the square 

(26) 

must be identity. Hence e 0 r. = id1. So lo is an iso and zg = (lo, lo) is isomorphic to 
bB = ( idB, idB). So d8 is in JY. 0 

The “global” appearance of the concepts defined in Definitions 4.2-4.5 is reflected 
in the properties of the graph finctor 

G: %?-Map(Rel U). 

By definition, it is the identity on the objects and takes an arrowfto the equivalence 
class Gf of all &-maps isomorphic with Z’f: 

It follows immediately from the definitions that the graph functor G is faithful if and 
only if all objects of V are separated. But Proposition 4.6 allows some more informa- 
tive characterisations. (Recall that Mon* denotes the class of all regular monies in 
a category.) 

Corollary 4.7. For a stable factorisation (8, A) in finitely complete 9, the following 
conditions are equivalent: 

(a) The graphfunctor G:48 + Map(RelW) isfaithjiil, 
(b) 8’ E Epi, 
(c) .4l =, Man*. 
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Proof (sketch). By definition, Gf = Gf o rf z rf’. Condition (a) thus means that 
all objects 9? are separated. By Proposition 4.6, it further means that all diagonals are 
contained in JY. But it is well-known that this condition is equivalent with (b) and (c). 
(A proof can be found in [l&2.4].) 0 

Remark 4.8. When the graph functor is faithful, the “logic” of factorisation is, in 
a sense, faithful too. For instance, it is easy to see that the condition 

an arrow f is epi whenever im( f) is a split epi 

is equivalent to Corollary 4.7(b). What does it mean? If im( f) is the predicate 
3x .f (x) = y and if a section of im( f) is a “proof” of 3x .f (x) = y, this condition means 
that f must really be epi if the factorisation says so. 

Analogous statement about the monies can be derived from the next lemma, which 
will also be useful later. 

Lemma 4.9. An object B is separated if and only if, for any pair f, f’ E %?(A, B), the 
existence of an arrow im ( f; f ‘) + ig implies f = f ‘. 

Proof. (-z=) Take f = zO and f’ = 11, to conclude to = zl, for lg = (zO,tl). Then 
proceed as in the proof of Proposition 4.6 to derive hB E JY. 

( a) If 68 E A, then lg = &. The existence of an arrow cp : im(f; f ‘) + tg now 
implies that im(f, f’) = (cp, cp). But then f = qe =f’, where e is the coimage of 

(Lf’>. 0 

5. Function comprehension 

To make the story shorter, we shall not derive a global characterisation of the 
function comprehension by extending the corresponding local property, the Cauchy 
completeness, like we derived Corollary 4.7 from Proposition 4.6. A characterisation 
of the Cauchy complete objects will be left implicit in our direct description of the 
function comprehension, the situation when all objects are Cauchy complete, and all 
maps converge to unique arrows. This is precisely when the graph functor G is full and 
faithful. Being by definition bijective on objects, G will actually be an isomorphism of 
categories in this case. 

Theorem 5.1. AJinitely complete category 59 is function comprehensive with respect to 
a stable factorisation (&,A) if and only if d c Epi*. 

The proof of this theorem requires some prerequisites. 
Recall, first of all, that the kernel of an arrow f: A + B is a pair of arrows 

ker( f) : = ( kO, kI ) : K + A x A, obtained by pulling back f along itself. More pre- 
cisely, a kernel is an isomorphism class of such pairs, a subobject of A x A. Viewed in 
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this way, kernels of the arrows with the same domain are partially ordered. Using the 
couniversal property of the pullbacks, one easily shows that the inclusion 

ker(a) E ker(b) 

is equivalent to the statement that 

ax=ay * bx=by forallx,y. 

For reasons explained in the end of Section 3, let us call a relation Y : A++B totd if 
there is a 2-cell rA + r” 0 r; and let us say that r is single-valued if there is a 2-cell 
rQrO+Ig. 

Lemma 5.2. An &T-relation r = (rO, rl) : R + A x B is 
(a) total if and only if im(ro) is a split epi; 
(b) single-valued if ker(rO) c ker(r,); the converse holds when B is separated. 

Proof. (a) q : I + f’ @ r induces a section j of im(r,,), because the upper square on the 
next diagram is a pullback. Conversely, j induces q because e is an d-arrow and r0 @ r 
is an d-arrow. 

(27) 

(b) ker(r,) E ker(r,) actually means rlpo = rlpl, for (po,pI) = ker(r,). In other 
words, there is an arrow (rIpo,rlpI) + hs. Hence 

r @ r0 = im(ripo,ripi)+ im(6B) = rg. 

The other way around, if there is a “proof” im(rIpo,rlpl) --t LB, then rlpo = rlpl 
must hold by Lemma 4.9, whenever B is separated. But the last equation means 
ker(r,) c ker(r,). 0 

Remark 5.3. It is well-known [6, Proposition 23 that in the calculus of spans all maps 
converge. In other words, every map is isomorphic to one in the form (id,! ). On the 
other hand, by Lemma 5.2, a span r = (ro, rI) is total and single-valued as soon as r. 
is a split epi and ker(r,) G ker(r,). Clearly, such a span need not be isomorphic to one 
in the form (i&f ); not all total, single-valued spans are maps. This shows that, in 
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general, maps cannot be reduced to the total, single-valued relations: the proofs of the 
totality and of the single-valuedness must be suitably connected. The adjunction 
equations do matter. Their meaning will be analysed in [21]. 

Proof of Theorem 5.1. ( *) First suppose that every map from .!S converges to 
a unique arrow in %?. Let e : X + C be a member of d and let g : X + B be any arrow 
that equates the kernel pair (h,, hi) of e: 

Qh =gh. (28) 

We shall show that there is a unique arrowfsuch that g =fe. This means that e is the 
coequalizer of its kernel pair, a regular epi. 

Let the relation r = (c, b) be defined as the A-image of the pair (e, g). The arrow 
c must be in d, because both e = ce’ and the coimage e’ of (e,g) are in d. 

Further decompose b = im(b) 0 d, and take s : = (c, d). The arrow s is still in A+!, 
because both I = (id x im(b))o s and id x im(b) are in A. 

We claim that the relation s must be a map. In Lemma 5.4 below, this will be 
derived from the hypotheses that 

(i) both c and d are in d, while 
(ii) ker(c) c ker(d). 

We shall prove (ii), since (i) is clear. 
Let us first relate (h,, hi) : = ker(e) and (k,, k1 ) : = ker(c). 

(29) 

The stability of the factorisation implies that the arrow e” from (29) must belong to b. 
Hence 

im(b&bkr) = im(ghO,gh,). (30) 

But assumption (28) tells that there is an arrow from im(gh,, ghr ) to lg. Hence there 
is one from im(bk,, bkl). Lemma 4.9, now yields 

bko = bk,. (31) 

Indeed, the assumption that ‘6 is function comprehensive implies that B is Cauchy 
complete and, a fortiori, separated. Hence the hypothesis for Lemma 4.9. 
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Since c is in 8, the arrows k,, and k1 must be in d too: as its kernel pair, they are 
obtained from c in a pullback. On the other hand, d is by definition the coimage of b. 
The arrows dkO and dkl are thus in d and they must be the coimages of bko and bkl 
respectively. (31) thus implies 

dko = dkl. (32) 

And this is equivalent to (ii). 
Now we can use Lemma 5.4 to conclude that s is a map. Since V is function 

comprehensive, s must be isomorphic to a unique graph (id,&). The relation 
r = (id x im(b)) 0 s is thus isomorphic which the graph (id, f ), wheref = im(b) 0 d’. But 
r was defined as an ./Z-image of (e,g). If we choose I = (i&f ), the decomposition 
becomes (e, g) = (id,f ) 0 e, and we have g = fe, for unique f: 

(-=) Now suppose d c Epi*. To show that %? is function comprehensive, 
we must, for any given map I : A-H& find a unique arrow f: A + B in %?, such that 
r E l-f: 

In fact, the uniqueness is easy, since we already know from Corollary 4.7 (and 
the remark preceding it) that d E Epi* implies that all objects are separated. 
Moreover it implies that all the diagonals, and hence all the arrows in the form (id,f ) 

are in .& (indeed, even all monies). The graphs of functions are thus in the form 
rf= (id,f). Given r E %‘(A, B), we are thus looking for some fE %‘(A,B) such that 
r E (id,f ). 

The desired arrow f will be obtained as the composition fi ofO, according to the 
following scheme 

(33) 

where r = (a, b), while c is the coimage of a. Note that (c, b) is still an &-arrow, 
because both r = (im(a) x B)o (c, b) and im(a) x B are in A. 

The sectionfO of im(a) is obtained from Lemma 5.2(a), since a map r is, of course, 
total. The arrowfi is obtained using the fact that r is single-valued, and the assump- 
tion 8 E Epi*. 

Actually, we first use the fact that B is separated, a consequence of d c Epi*. 

It allows us to apply Lemma 52(b) and express the single-valuedness of r in the 
form 

ker(a) E ker(b). (34) 
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Since ker(c) G ker(a) obviously holds, we get ker(c) G ker(b). In terms of 
(k,,k,) = ker(c), this is 

bko = bkl . (35) 

Now we use the assumption that c E 6’ is a regular epi again: it coequalizes its kernel 
pair, i.e. the arrows kO and kl. Eq. (35) thus induces a unique arrow fi, such that 
b = fit. 

In fact, c must be an iso: it is in A, because it satisfies (id,f,) 0 c = (c, b), with 
(id, fi ) and (c, d) in A; and it is in 8 because it was defined as the coimage of a. We 
can take c = id, so that fi = 6. Now we have 

ufO = id, 

The arrow& is thus a 2-cell between the maps (id,f ) and r = (a, 6). By Corollary 
3.4,& is an iso. The map r is isomorphic to (id,f). 0 

Finally, let us prove the main lemma, crucial in the first part of the preceeding proof. 

Lemma 5.4. Let s = (c, d) : S -+ C x D be an .A-relation. Suppose that c and d are 
b-arrows, and that ker(c) E ker(d). Then s is a map. 

Proof. Once again, translate the assumption ker(c) E ker(d) into dkO = dkl, where 
(k,, k,) is the kernel of c. From this equation, and the fact that d, k. and k, are all in 
8, it follows that 

SO s” = im(dk,,,dkl) = im(dk,,dkO) = im(bcdkO) = im(&) = rc. 

These equalities, of course, hold for a suitable choice of images. With this choice, the 
counit E : s @ so + ic, induced by the arrow dkO from (dkO, dkl) to 6,-, is repre- 
sented by an identity. Furthermore, the 2-cell E 0 s : s 0 so 0 s -+ s can be chosen as 
identity too. 

We shall construct a 2-cell q: zA + so 0 s, such that s @ 4: s + s @ so 0 s is an 
identity. The adjunction equation 

then holds trivially. Hence the result. 
To analyse the way in which s 0 q comes about, we shall use a picture of the 

composition @ based on Lemma 4.1 (c). Let us first outline this picture abstractly. For 
relations t, t’ : B-HC, a 2-cell r : t + t’, and a relation s : Ct*D, where s = (c, d), the 
2-cell s 0 r : s @I t --t s @I t’ is constructed in two steps, recalling that s = Td @ Tc”. 
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The squares on the left-hand side are defined as pullbacks; the squares on the 
right-hand side are &‘A’-decompositions. Namely, composing with a relation in the 
form rc’, for any arrow c from %?, boils down to pulling back along B x c. On the other 
hand, a composite with a relation in the form Td boils down to an image: given any 
u: B-HS and d: S + D, one easily calculates that Td 0 u = im((B x d)o u). 

Now we apply the above scheme to the actual data. 

(37) 

F 

The objects P and Q, and the arrow q : P + Q, are defined on the following pullback 
diagram: 

P 

(38) 

S 

D 
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Evidently, P can be viewed as the limit of the zig-zag at the bottom, consisting of three 
copies of s: S + C x D. Three copies of id: S + S form a cone to this zig-zag. Let 
p: S + P be the limit factorisation of this cone. p is thus the common right inverse of 

qoq,qiq and 4’. 
On the other hand, so @ s in the A-image of (cqo, cq,). Let the arrow e on (37) be 

the coimage of this pair. 
With the data defined like this, faces (I) and (II) on (37) commute when joined 

together: 

W 0 4 ew = (c90, c91> 4p 

= (c9om C919P) 

= (c,c) 

= 6c 

= lk (39) 

The unit q : lc --, so @ s is determined as the arrow which makes (I) and (II) commute 
separately. Its existence and uniqueness are guaranteed by the fact that &Z E d and 
so @ s E A? are orthogonal to each other. 

We proceed as on (36) and define (III) and (IV) as pullbacks, (VI) and (VII) as 
&A-factorisations. 

Since it is obtained by pulling back 6c = ice” along C x c, the arrow 
(rc’ @ so 0 s)(rc’ @ q)e^ must be (isomorphic and can be chosen as) equal to (id, c). 
Postcomposed with C x d, this arrow becomes s. The 2-cell Ze^ is thus an endomor- 
phism of s. Therefore, it must be in A’. On the other hand, as a composition of 
d-arrows, it is obviously in 8. So &? is iso. Choose the images as to get be^ = ids. Hence 

soy = E(rc”Qq)e^. (40) 

On the other hand, the equation 

h(Tc” Q r]) e^ = tjv?c = eqp (41) 

and the fact that (III) is a pullback imply that (V) must commute. Eq. (40) now 
becomes 

We claim that 66 = qoq. If this is true, we are done, since p is by definition a right 
inverse of qoq, so that (42) yields 

S @ v] = i!ip = qoqp = id. (43) 
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The following calculation actually completes the proof: 

‘2 (cqoq,&‘) 

‘2 (cqo4, &1q > 

‘2 (cqoq, dqoq) 

= (c,d)qoq 

= sqoq. (44) 

Step (1) is just the commutativity of (VII). At step (2), we are using the equation 

(Tc” 0 so 0 s) c = (cqoq, q’ ). 

To derive this one, recall that (so @ s)e = (cq,, cq,) holds by definition, and that (III) 
and (IV) are pullbacks. So (Tc” @ so @ s) P is a pullback of ( cqo, cq, ) along C x c. But 
diagram (38) shows that this pullback yields (cqoq, 4’). 

At step (3) of (44), we are using the assumption ker(c) s ker(d), which implies 

cq’ = cq1q =s dq’ = dq,q. 

The equation on the left-hand side is true by the definition of q and q’ in (38). Finally, 
the equation dq, = dq, , used on step (4), is true by the definition of q. and q1 in (38). 

The desired equation Zd = qoq follows from (44), using the uniqueness of decompo- 
sition. Calculation (43) is thus justified, and lemma is proved. 0 

6. Final remarks 

If needed, more precise characterisations could be extracted from the preceding 
proofs. For instance, one could prove that the situation when G is just full (rather than 
full and faithful, as in Theorem 5.1) is characterised by the requirement that each 
b-arrow is a weak coequalizer of its kernel pair. The same scheme of the proof could 
be followed, with inessential but tedious complications at points where we used the 
separation properties. Instead of applying Lemmas 4.9 and 5.2(b) to “externalize” the 
equality of arrows, one would have to manipulate the “internal equality” of arrows, 
expressed in the form im( f,f’). 

Notice further that the condition d YE Epi* obviously implies JX 2 Mon. If % is 
a regular category, with all strong epis regular, the last condition is even equivalent to 
d c Epi*, and thus characterises the function comprehension. In general, though, this 
may not be the case. 



D. Pavlovi~lJournal of Pure and Applied Algebra 99 (1995) 9-34 33 

Going back to remarks preceding Proposition 4.6, let us mention what would be the 
meaning of Theorem 5.1 in the context of “sheaf theory” relative to a factorisation. If 
the category W with a stable factorisation (8, A) is regarded as a “site”, the objects of 
Q? correspond to “representable presheaves”. If being Cauchy complete means being 

a “sheaf”, then V is function comprehensive if and only if the “topology” (8, A!) is 
“subcanonical”: all “representables” must be “sheaves”. 

Understood in this way, Theorem 5.1 appears familiar [2, 6.7, Proposition 41: an 
ordinary site is indeed subcanonical if and only if the covers are (jointly) regular epi. 
Corollary 4.7 also comes up as a generalisation of a well-known fact that represent- 
ables are separated with respect to a topology if and only if the covers are (jointly) epi. 

The ways in which geometric logic of sites can be extended in a genuinely categori- 
cal (non-posetal) setting of strong constructivism will be systematically explored in the 
sequel to this paper [21]. 
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