
IA

Derived Preconditions

and Their Use in Program Synthesis

Douglas R. Smith

Department of Computer Science

Naval Postgraduate School

Monterey, California 93940, USA

30 November 1981; Revised 9 March 1982

Abstract

In this paper we pose and begin to explore a deductive problem more general

than that of finding a proof that a given goal formula logically follows from a

given set of hypotheses. The problem is most simply stated in the propositional

calculus: given a goal A and hypothesis H we wish to find a formula P, called a

precondition, such that A logically follows from P A H. A precondition pro-

vides any additional conditions under which A can be shown to follow from H. A

slightly more complex definition of preconditions in a first-order theory is

given and used throughout the paper. A formal system based on natural deduction

is presented in which preconditions can be derived. A number of examples are

then given which show how derived preconditions are used in a program synthesis

method we are developing. These uses include theorem proving, formula simplifi-

cation, simple code generation, the completion of partial specifications for a

subalgorithm, and other tasks of a deductive nature.

0. Introduction

Traditionally, the subject of automatic theorem proving has dealt with the

problem of finding a proof that a given goal formula A logically follows from a

* The work reorted herein was supported by the Foundation Research oPrrm
of the Naval ?ostgraduate School with Thnds provided by the Chiet of T9MAl
Research.

-l1 - .. . I I[!] i

given hypothesis H. In this paper we pose a more general deductive problem and

suggest that systems for solving this more general problem can extend the util-

ity of deductive mechanisms, and provide a framework for overcoming some prob-

lematic features of current theorem provers. The problem is most simply stated

in the propositional calculus: given a goal A and hypothesis H we wish to find a

formula P, called a precondition, such that A logically follows from P A H. In

other words a precondition provides any additional conditions under which A can

be shown to follow from H.

A formal system in which preconditions can be derived is described in sec-

tion 2. Each rule in this natural deduction-like system has a reduction com-

ponent which reduces a goal AO to subgoals AI ,A2 ,... ,Ak and a composition com-
ponent which composes preconditions of subgoals A ,A2 ,...,Ak to form a precondi-

tion of AO -

After presenting basic terminology in section 1 a formal system for deriv-

ing preconditions is given in section 2. A number of examples are presented in

section 3 which show how derived preconditions are used in a program synthesis

method we are developing [9,10]. These uses include theorem proving, formula

simplification, simple code generation, the completion of partial specifications

for a subalgorithm, and other tasks of a deductive nature.

1. Terminology

The examples given below are drawn from a program synthesis system which

works within a many-sorted first-order theory TT. The theory includes data

types such as 2 (natural numbers), LIST(IN) (linear lists of natural numbers),

and BAGS(X) (multisets of natural numbers). We will use the (possibly sub-

scripted) symbols i,j,k for variables ranging over IN, x,y,z for variables over

LIST(M), and B as a variable over BAGS(2T). The theory also includes a number

of f"unctions and predicates defined on these types and axiomatic specifications

of their interactions. The notions of term, atomic formula, literal, and

(well-formed) formula have their usual definitions [5]. Let T and F be proposi-

tional constants which have the values true and false respectively in all models

of TT. We make use of a distinguished subset of the theorems of TT called known

theorems which are assumed to be immediately available to the deductive system.

The set of known theorems may change over time but initially includes all axioms

Of TT. All of the 'mown theorems required by the examples are listed in the

-2-

Lim

appendix.

Let Q1Xl Q2x 2... Qnxn G be a closed formula not necessarily in prenex form

where Qj is either 3 or V for i=1,2,...,n. A xx 2 ... x n -precondition of

Q1xj Q2x2 .. .Qnxn G is a quantifier-free formula P dependent only on variables

x ,x 2 , ... ,Xn such that

QIXlQ 2 x2 " .. Qnxn[P G]

is valid in TT. P is also a weakest x1 x2 ... xn-precondition if

QIxlQ 2x2... Qnxn[P -G

is valid in T.

'wo well-known special cases of these concepts can be given. First, if T

can be derived as a xlx2* ..xn-precondition of a goal Q1 xj Q2x2 .QnXn G then the

derivation is in fact a proof of the validity of Q1xl Q2x2 • .QnXn G since

Q1xlQ2 x2... Qnxn [T G] - Q1xIQ2 x2 ... QnX n G

Therefore any system for deriving preconditions can also be used for theorem

proving. Second, Dijkstra's concept [3] of a "weakest pre-condition" WP(S,R) of

a program S with respect to post-condition R may be defined as a weakest q-

precondition of

Vq~kgp[TNDMINATE(S,q,k,p) A R(p))]

where TERMTATE(S,q,k,p) holds iff program S activated in initial state q ter-

minates within k steps (assuming a suitable definition of a program step) in a

final state p. I.e.,

Vq[WP(S,R)[q] - 3kjp TM INATE(S,q,k,p) A R(p)]

Oar program synthesis method is not directly related to Dijkstra's approach to

algorithm design [3].

In general a given goal may have many preconditions. Characteristics of a

useful precondition seem to depend on the application domain. In program syn-

thesis we generally want preconditions which are a) easily computable, b) in as
simple a form as possible, and c) as weak as possible. (Criterion (c) prevents

the boolean constant F from being an acceptable precondition for all goals.)

Clearly there is a tradeoff between these criteria. We are currently investi-

lil~i I I I I II I-3-I

gating the possibility of measuring each criterion by a separate heuristic func-

tion, then combining the results to form a net complexity measure on precondi-

tions. For reasons to be discussed later we assume that such a complexity meas-

ure ranges over a well-founded set (such as IN under the usual < relation) and

that we seek to minimize complexity over all preconditions. In this paper how-

ever we are mostly concerned with setting up a formal system within which

preconditions can be derived, and showing how to solve some program synthesis

problems using it.

2. A Formal Sytem for Deriving Preconditions

2.1 Goal Preparation

In presenting a set of rules which allow us to derive preconditions we use

the notation H to denote the statement that well-formed formula A logically fol-

lows from the set of hypotheses H in TT, i.e., hi A h2 A ... A hk A is

valid in TT where H = jhj h2,...hk1.

A goal statement H and the known theorems of TT are prepared as follows.

First, all occurences of equivalence (--) and implication (;) signs are elim-

inated and negation signs are moved in as far as possible. H and the known

theorems of TT are then skolemized in the usual way [5], i.e., existentially
quantified variables are replaced by skolem functions of the universally quanti-

fied variables on which they depend. Quantifiers are then dropped with the

understanding that all remaining variables are universally quantified. The goal

A is skolemized in a dual manner with universally quantified variables replaced

by skolem functions of the existential variables on which they depend. All

quantifiers are then dropped with the understanding that all variables in A

which remain are existentially quantified. The preparation of A is equivalent

(via duality of goals and assertions) to preparing -A as an hypothesis then tal-

ing the negation of the result as our prepared goal.

2.2 Reduction/Composition Rules

Rules which reduce a goal statement to two subgoal statements are expressed

_n the following form:

-4-

<P0 > A0 100

<F1 > A1 e <P2 > A2 e2
HI H2

where Ao,AI, and A2 are goal formulas, 1), HI, and F2 are sets of hypotheses,

&O, e, and e2 are substitutions, PC, P, and P2 are formulas (the derived

preconditions), and @ is either V or A. A rule of this form asserts that if

Pi is a (weakest) precondition of H1ei Aie i where i=1 ,2 then PO is a (weak-

est) precondition of H0 @0 = Ace O . PO generally is P1 i P2 . Substitution @0
is formed from substitutions el and e2 in ways that depend on @.

If $ is A then o is the unifying composition of el and 92' denoted uc(e 1 ,
92) [7]. If eO = uc(el ,9 2) then e0 is a most general substitution such that for

any literal L

(Le 1)e0 = (Leo)e 1 = Le o = (Le 2)eO = (Lo)e2 .

uc(81 ,e2) may be computed by finding the most general unifier of

(t I ,...,tn~tn+1I ,---,tn+m)

(v1,--.. ,VnVn+1P .. • Vn+m)

where

91 = {t I /V1, . . . , tn/vn}

e 2 = {tn+l / Vn + ,...,tn+m/Vn+ml •

If these expressions cannot be unified then the result is a special atom NIL.

For example,

uc(a/z, {b/zi) = 11IL

uc(UJ,fa/zl) =a/z}

*uc(Jf(x)/zJ, f(a)/z) = If(a)/z,a/xl

If t is V then 90 is formed by the disjunctive composition of P1, 31, P2

and e2, which is denoted dc(P 1, 1,P2,C2). The disjunctive composition may be
computed as follows assuming that the derived preconditions P1 and ?2 contain no

variables. let 1S1,S 2,...,Sm} be the set of skolem function names in P1 which

come from the top level goal in the current deduction. For example if the top

level goal is Q(u,f1 (u)) => R(x,f 2 (x),f 3) and PI is W(fI(f3),g2(f3)) then

Ifl ,f)} is the set of skolem function names in P1 which comes from the top level

goal. Let P (Y1 ... '7k) be the formula resulting from the replacement of each

occurence of skolem function Sj by variable y in P1. In the above example

Pl(yly 2) denotes W(yI,g2(y2)). Function dc is defined as follows.

dc(P 1,E81 ,P2,82) = if e1=NIL and e2=NIL then NIL

else if P1=T or 82=NIL then

else if P2=T or e1=NIL then 82

else if e1=fl then 92
else Ihx(S1,S2,...,Sm)/X I t/xFe1 or t/xre 2 }

where

hx(Yl,...,ym) = if P1(yI,''"Ym) then xeI else x;2 .

Loosely speaking, the disjunctive composition of P1 'e,P2e and e2 behaves like

91 when PI holds and behaves like 62 otherwise. Some examples:

dc(ao>3, 1f1(aO)/x}, T, a/x}) = /x

dc(f1>f2 (fl), Jf1/z'f2(f3)/x' f1<f2 (f3), If2(fl)/z'f3/xl)

= lh(ff2,f3)/Z, hx(fI ,f2,f3)/xl

where

hz(yi ,y2 ,y3) = if yl >y2 then Yl else

hx(YI ,y2,y3) = if Yl >y2 then y2 else y3

A cimplete deduction involving a disjunctive composition is given in section

2.5.

Rules which reduce a goal statement to one subgoal are notated

<P°> A e°
HOI

<P1 > A1 31
. -6-

, ,I IIIII I I I fi T "

OccasionalJ.,V, as in the application of kniown theorems which are implica,.
tioris, the relation between goal and subgoals is not one of equivalence but
implication. Rules of this kind are notated

<P1 > AO 1

H1

which asserts that if P, is a precondition of H 1 => A,@,1 then P0 is a precon-
dition of BbE~o = A09. For rules of this kind we cannot assert that P0 is a

weakest precondition of rioeo =: A0 %9 even if P1 is laiown to be a weakest

precondition of H1G ==> A1 G1.

The following rules are for the most part extensions of typical goal reduc-
tion rules [2,5,8].

RI. Reduction of Conjunctive Goals

<P1 A P2> A AB uc(e 1 ,e2)
H

(P1> A 91 <P2> B 2
H

R2. Reduction of Disjunctive Goals

<P1 V P2 > A V B dc(P 1 ,e 1,P2 ,82)

<I'1> A 81 <P2> B e
H Hi

-7-

R3. Reduction of Conjunctive Hypotheses

<P> A e <P 1 V B2> A dc(P1,e1,P2,e2)IB ACI UH IB A C1UH

<P 1> A G 21PC>A e

R4. Reduction of Disjunctive Hypotheses

<P1 A P > A u(81 e

<(,1 > A 81 P>Ae92
* B} UH CU

R?5. Application of an 3quivalence Tormula

<P> A ,
H

C mB is a known theorem of TT

or an hypothesis in Hi and 9 unifies JAB
<F> B 1

H

R6. Application of an Implicationa. ?ormula

<P> A ee1
H

if C==B is a known theorem of TT' or hypothesis --n

and D is ce where e uni-fies {A,BI

or D is -Be6 where e unifies JA,-CJ or IAC
I. <P> D 61

R7. Forwrd Inference from ani Hypothesis

ifD or D =E is a kn'own theorem of TM

or hypothesis in H and e1 unifies jB,Dj

I B,B3 11 U(H

R.Goal/Hypothesis Duality rules

Ba R~b

<P>-B VA e B

(lHe <P> '-B V A e
JBJ UHH

R9. Oubstitution of Equal Terms

<P> A(r) e

if r=s is an hypothesis in H

I or a known theorem of TT
<>A(s) 9

H

R10. Conditional !Equality Stbstitution

<P1 AP2> A(r) uc(e1,e2)
H

A, iB : sl =s2 is an hypothesis

or a kniown theorem and 9o unifi.es !r,sil
<Pj > A(s2)e0 '91 <P2> B@0 E?2

H6eo H190

2.3 Primitive Goals

There are several types of primitive goal atatements in our system. Each

are described by notations of the form <P> A e which assert that ? is a
H

-9-

precondition of H6 Ae if the associated condition holds.

P. T> A e if e unifies {A,Bj where B is a known theorem of TT or BEH

P2. <F> A NIL if e unifies jA,-B1 or I-A,B1, where B is a known theorem ofH

In addition to P1 and P2 any goal with a null hypothesis may be taken as primi-

t ive:

P <A'> A m<' A ifAhastheform V Ai and A' has the form V Ai where
Ui=1 J=1 j

JAijij=1,m c {Aiji=1, k and for each j, 1<j<m, Ai depends

on the variables x1 ,x2 ,...,x n only when we seek a

xI ,x2 , ... ,xn-precondition.

Primitive goals of type P1 and P2 yield weakest preconditions but in general

primitive goals of type P3 do not. Note that any goal statement can be con-

verted to an equivalent goal with a null hypothesis by repeated applications of

rule R~b.

2.4 The Deduction Process

The derivation of a precondition of goal statement A can be described by a

two stage process. In the first phase rules are repeatedly applied to goals

reducing them to subgoals and generating a goal tree. Rules are not applied to

a goal satisfying the primitive goal tests PI and P2 or if the goal has been

specially converted to satisfy P3. If for some reason, such as limits on compu-

tational resource, it is desired to terminate the reduction process before all

subgoals have been reduced to primitive goals of type P1 or P2, then any

subgoals waiting for rule application can be converted to a primitive goal of

type F3. The result of this reduction process is a goal tree with primitive

goals as leaf nodes.

The second phase involves the bottom-up composition of preconditions and

substitutions. Initially each primitive goal yields a precondition and a sub-

stitution. 3ubsequently whenever a precondition or substitution has been found

for each subgoal of a goal H then a precondition and substitution is composed

-10-

for A according to the reduction/composition rule employed. Each newly composed

precondition is then run through a simplification process to be described later.

Usually several rules can be applied to a given goal and each rule will

generate a precondition. In an computer implementation of this system we would

make use of a complexity measuring function and select that precondition of

least complexity among the alternatives.

2.5 An cample

As an example of the use of this system suppose that we wish to show that

VioVi 2i 2[(io<i A i 2--O) V (ioi 1 A i 2=1)] (1)

is valid in TT where io,i I,i2 are variables over 2N (natural numbers). We do

so by trying to derive T as a ioili 2-precondition of (1). The goal after

preparation is:

(ro<r I A i 2--0) V (ror I A i 2 =1)

where r 0 and r, are skolem constants of type IN. The derivation is depicted

below in figure 1. Initially (1) is reduced via rule R2 to two subgoals then

each of these subgoals are reduced via rule RI to two other subgoals. Subgoals

i 2 = 0 and i 2 = 1 match axiom i = i (theorem nO in the Appendix) with substitu-

tion 10/i 2 l and 1/i 2 1 respectively and thus are primitive goals of type P1.

Suppose that goals ro<rl and rar 1 are taken as primitive goals of type P3. The

composition phase now begins. Subgoals ro<r A i 2=0 and roar1 A i 2 =1 yield

preconditions (T A ro<r I) and (T A ror I) respectively. A simplification pro-

cess reduces these preconditions to ro<rl and ror I respectively. The composed

substitutions for the immediate subgoals of (1) are just the unifying compcsi-

tions uc(IO/i 2 1,1 1) = 10/i 2 1, and uc(I1/i 2 1,i 1) = 11/i 2 l respectively. The

derived precondition of goal (1) is (ro<rl V rar1) which simplifies (via

theorem n4) to T. The composed substitution is the disjunctive composition

{fi 2 (ro,r 1)/i2 1 where

f12(J1,j2) = if J1<J2 then 0 else 1.

The lerivation shows that T is a precondition of

-1 1-

(ro<rI A fi2(ro,r)--O) V (ror1 A fi2 (r0 ,ri)=I)

i.e., that our original goal is valid. Furthermore we have obtained a substitu-

tion term for the one existentially quantified variable in (1). After requanti-

fying we obtain the valid formula:

1VioVi1(io i A fi 2(io,i)=O) V (i0 .ij A fi2(io,i)i)].

In this example and all that follow we annotate the arcs with the name of

the rule and theorem used and note the primitive goal type of each leaf node.

Also in this example we write the simrlified form of the composed precondition P

immediately under P. Hereafter in examples we will simply omit the composed

precondition in favor of its simplified form. Also we omit substitutions when

they are inessential to an understanding of a derivation.

2.6 Formula Simplification

Any deductive mechanism needs a means to simplify formulas which are gen-

erated during the deductive process. Simplification can be usefully viewed as

the task of finding a weakest precondition (in all variables) of formula A. The

search for a simple weakest precondition is kept short by using only a few of

the known theorems of TT. The strategy followed in the examples is to repeat

<ro<rI V roar1> (r0<rl A i2--0) V (roarI A i2=1) {fi2(ro,rl)/i 2}

<ro<r i A T> (ro<r A i2=O) {0/i 2 1 <(ror I) A T> (r0 r1 A i2=1) {1/i 2 l

ro<r i> <rorl >

A R1 R i

(ro~ri> ro<r1 fj <T> i2 --O 1O/i2 l <rQ~r1 > ra~rj 1 1 <T> i2=1 1i/i2 l

Pi nO Pi -nO

Figure 1.

-12-

the following sequence of rule applications until the goal has been reduced to

literals:

a) simplify the goal as much as possible using known equivalence theorems of TT,

b) multiply subexpressions out using p9 and p10 (DeMorgan's Laws),

c) break the result of (b) down to subexpressions using Ri or R2.

4. The multiplication step allows us to mix preconditions which were returned from

different branches of the goal tree.

A precondition generating mechanism used for simplification purposes must

be carefully controlled in order to avoid infinite regress. One way around this

problem is to prohibit simplification of preconditions generated during the sim-

plification process. Instead we check whether the final derived precondition P

is simpler than the initial goal formula A. If not then A is returned otherwise

we attempt to simplify P. If our complexity measuring Ifunction ranges over a

well-founded set then this simplification process will terminate.

Suppose that we need to simplify the expression

(i>j V i--O) A (i<j V j--O) (2)

where i and j vary over M. The derivation in figure 2a yields

(i>O A j--o) V i--O

as a weakest precondition (i.e. equivalent form) of (2). The derivation in fig-

ure 2b yields

(i-_0 V j-O) (3)

as a weakest precondition. The result is that (2) has been simplified to (3).

3. The Use of Derived Preconditions in Program Synthesis

In this section we show how derived preconditions can play a central role

in the design of algorithms [9,10]. Many of the key steps in the design process

involve finding a precondition of a formula constructed by instantiation of a

formula schema with functions, predicates and types from the specification and

the partially designed algorithm. The resulting derived precondition is used to

either strengthen or complete some aspect of the target algorithm.

Initially a user supplies a complete formal specification of a problem

which he desires to solve. The specification consists of a naming of the input

-13 -

<(i>o A j--O) V i--O> (i>j V i=O) A (i<j V j--o)
-=-V R5+p9, P2

<i>O A j=O> i>j A (i<j V j=O) <i=o> i=o A (i<j V j=O)

V5+p9, R2 " R5eel

<F> ~j A ij <i>O A j--O> i>j A j=O <i--O> i=O A (O<j V j=O)

P2+n5
/R5+el A Ri

<i>O A j--O> i>O A j=O <i--O> i--O <T> O<j V j--O

P3 P1 +n2

<i>O> i>O <j=o> j=O
P3 P3

Figure 2a. First pass at simplifying goal formula (2).

<i--O V j=O> i=O V (i>O A j--O)

<T> i=0 V i>O <i--O V j=o> i--O V j=O
PI +n2

V R2

<i-O> i=O <j--O> j=o
P3 P3

Figure 2b. Second pass: simplifying the result of figure 2a.

and output data types, and two formulas called the input and output conditions.

The types, functions and predicates involved in the specification must be part

of the language of TT. For example, the problem of sorting a list of natural

numbers may be specified as follows:

QSORT(x) = z such that ORD(z) A BAG(x)=BAG(z)
where .SORT: LIST(IN) - LIST(MN).

, ' -1 4 -

Here the input and output types are LIST(N) (lists of natural numbers). There

is no input condition (except the implicit condition of the input type) and the

output condition is ORD(z) A BAG(x)=BAG(z) where ORD(z) holds iff the list z is
in nondecreasing order, and BAG(x)=BAG(z) holds iff the multiset (bag) of ele-

ments in x and z is the same.

We will construct a divide and conquer algorithm (quicksort) of the form:

QSORT(x) = if

PRIM(x) - QSORT := f(x)

-PRI4(x) -9 (xl,x 2) := DECOMPOSE(x);
(z 1 ,z 2) := (QSORT(x 1),QSORT(x 2));
QSORT := COMPOSE(zl,z 2)

fi

where PRIM is a predicate which determines when to terminate recursion, f is a
function which provides a solution for primitive inputs, DECOMOSE and COMPOSE
are decomposition and composition functions respectively. In this program

schema PRIM, f, DECOMPOSE, and COMPOSE are uninterpreted functions whose value
we have to determine. The if-fi construct is Dijkstra's nondeterministic condi-

tional statement [3]. Associated with the algorithm schema is a correctness

schema which will be introduced later.

The first step in the synthesis process involves the representation of the

users problem by a problem reduction model [10]. This format extends the

specification of a problem and restricts the type of algorithms which can be
used to solve the problem to one of a small number of algorithms which work by
problem reduction. For present purposes the relevant parts of the representa-

tion for QSORT are:

a) a relation IDR, called the input decomposition relation, which constrains the

way in which input x0 can be decomposed into objects x, and x2 and serves as a

partial output condition on subalgorithm DECOMPOSE in the divide and conquer

schema:

IDR(xo,xl,x 2) - BAG(xo)=BAG(xl) UBAG(x2)

where BI UB2 denotes the bag-union of bags B and B2 .

b) a relation OCR, called the output composition relation, which constrains the

-15-

way in which output object z0 can be formed from objects z, and z2 and serves as

a partial output condition on the subalgorithm COMPOSE:

OCR(zO,z ,z2) = BAG(zo)=BAG(zl) UBAG(z2)

c) a well-founded ordering relation >- on LIST(IN) is used to ensure that the

target program terminates on all inputs:

x0) -x1 - Ya(x)>m(x1)

where the function LG(x) returns the length of the list x.

3.1 Checking and Enforcing Compatibility in the Representation

The representation of the user's problem by a problem reduction model is

constructed by heuristic means. A formula expressing the mutual compatibility

of various parts of the model is constructed and an attempt is made to verify

it. If the derived precondition P is T then the parts are compatible otherwise

we use P to modify the model to ensure compatibility. For example we want the

input decomposition relation IDR to be compatible with the well-founded ordering

(., in the sense that

Vx0Vxo Vx 2 [IDR(x 0,xlx 2) > x Ixl A xo.x2]

i.e., if x0 can decompose into lists x, and x2 then x, and x2 must both be

smaller than xO under the >- relation. After substituting in the form of IDR

and the well-founded ordering for the QSORT example, and preparing the formula

we obtain the goal:

BAG(a0)=BAG(a1) UBAG(a2) = IG(ao)>LG(a1) A LG(ao)>LG(a2) (4)

where aO,a1 , and a2 are skolem constants for the (universally quantified)

variables x0, x1, x2. The derivation of a xoxlx 2-precondition of (4) is given

in figure 3. The resulting precondition is

BAG(xo)=BAG(xl) UBAG(x2) =-5 LG(x1)>O A LG(x2)>O

which means that IDR is not strong enough to imply the consequent of the origi-

nal goal. From the definition of preconditions it follows that the conjunction

of IDR and the derived precondition will in fact imply the consequent of (4).

I, -16-.

<Q> BAG(x 0)=BAG(x) UBAG(x 2) IG(xo)>m,(x 1) A Ifl(x)>mr(x2)
RBa

<Q> ILG(x 0)>LG(xj) A MG >I~2
k- BAG(x 0)=BAG(x 1) UBAG x3f

~BAG(x 0)=BAG(xl) UBAG(x 2)1 I BAG(x 0)=BAG(x 1) UBAG(x 2)1

R7+1b2 R7'+1b2

H H
R9 ~R9

<Q>R5~i + n6x)I~x)<p R5xl+nGx)>~2

H H

RSb R8b

<Qj > Q1 <Q2 > Q2

P3 P3

where
Qis BAG(x 0)=BAG(x) UBAG(x 2) I(x 2) >0

Qis BA(xo)=BAG(x) UBAG(x 1)4tG(x2)>O
Q is BAG(x7o9=BAG(x 1) UBAG(x 2) (I(x 2)>O A IG(x1)>O)

H = BAG(x 0)=BAG(x) UBAG(x 2) ,IW(xo)=IL3(xi)+LG(x 2) I

Figure 3. Checking Compatibility of IDR and)

-17-

Thus we can form a new strengthened input decomposition relation IDR' where

IDR' (xo,xl ,x2) -IDR(xo,xl ,x2) A[BAG(xo)=BAG(x I) UBAG(x 2) = &G(xI)>OALG(x 2)>O1

The derivation in figure 3 quarantees that IDR' is compatible with the well-

founded ordering. After simplifying IDR' we have

IDR'(xo,x 1 ,x 2) a BAG(xo)=BAG(xl) UBAG(x 2) A I(xj)>O ALG(x 2)>O.

3.2 Reducing a Quantified Predicate to a Target nguage Expression

The predicate PRIM(x) in the divide and conquer schema is intended to dis-

tinguish nondecomposable from decomposable inputs. In the QSORT example it is
sufficient for -PRIM(xO) to be a xo-precondition of

V O 3x, 2x2 IDR' (xox, ,x2)
i.e. a list is decomposable only if there are lists into which it can decompose.

The deduction in figure 4 yields the precondition LG(ao)>i and after some simple

manipulations EG(x)< and mG(x)>I can be substituted for PRIM(x) and -PRITI(x)

respectively in QSORT. One additional mechanism is needed to correctly handle
this example. The reduction/composition rule RI treats each subgoal indepen-

dently and combines the returned substitutions into their unifying composition.

This treatment does not work well when the subgoals have common variables. Most
theorem proving systems allow substitutions in one subgoal to be applied to the

other (since different substitutions may be found independently for the same
variable) and we follow this practice here.

3.3 Simple Code Generation through Substitution of a Term for an Output Vari-
able.

With the PRIM predicate in hand the synthesis process can proceed to the

task of finding a target language expression to handle primitive inputs in the
quicksort algorithm. A correctness formula for the primitive branch of the

quicksort algorithm is:

Vx~z[(x)<l 4 ORD(z) A PEm(x,z)].

The deduction in figure 5 shows that T is a xz-precondition of this formula thus

proving its validity in TT. The substitution gives us a value for z for any x,

-18- i

w(9 0)>1> BAG(a)=BAG(x 1)UBAG(x 2) A I&(xl)>O A LIG(x 2)>O

<T> LG(wl)>O el <CT> T.G(w 2)>O e2

<T> xl=cons(jl,wl) e1 <T> x2=cons(j 2 ,w2) e92

<LG(8o)>1> BAG(a0)=BAG(cons(j1 ,wl)) UBAG(cons(j2,w2))

A RI O+1b9

(IG(a0)>l> BAG(a 0)=1jl UBAG(wl) Ufj 21 UBAG(w 2)

R9+1b5, <T> cons(jl,wl)=cons(il,yl) <T> cons(j2,w2)=corzs(i2,y2)
1b7,1bB lll8 P1+lbl ,nO

<IG(90)>1> BAG(aO) = fil1 ~ UBAG(aPPend(w1 ,w2))

jR6+1b9
(LG(a0)>i> ao= cons(jl, cons(j2, append(wj,w 2)))

IR5+lbl 0

P3

where 01 = fcons(j 1 ,wl)/xll and 92= jcons(J2 ,w2)/x 2)

Figure 4. Generating a target language expression for -PRI

-19-

<T> LG(a)<1 ORD(z) A BAG(a)=BAG(z) Ja/zI

IR~a
<T> ORD(z) A BAG(a)=BAG(z) {a/zI

jIL(a)<11

<T> ORD(z) [a/zj <T> BAG(a)=BAG(z) [a/zI
ILG(a)<11 _LG(a)<l I

/R6+lb3 P1

'. <T> LG(z)<I {a/z}

ILG(a7< I
PI

Figure 5. Finding a target language term

namely x itself. Thus the primitive branch of our quicksort is completed since

x is the desired output value. The target algorithm now has the form

QSORT(x) = if

IG(x)<1 - QSORT := x

LG(x)> ->

fi

3.4 Completion of the Partial Specification of a Subalgorithm

The next step in the synthesis provides our final example and completes the

construction of the top level algorithm for QSORT. The nonprimitive branch of

QSORT has two uninterpreted functions COMPOSE and DECOMPOSE which have partial

specifications based on OCR and IDR respectively. We look for a known target

language function satisfying either partial specification and find that the

function APPEND, which appends one list onto the end of another, satisfies the

(partial) specification for COMPOSE. The algorithm schema then becomes:

QSORT(x) = if

me(x)<1 -, QSORT x U
LG(x)>1 --> (x I ,x2) := DECOMPOSE(x);

(z i,z 2) (QSORT(x I),QSORT(x 2));

QSORT := APPEND(z ,z 2)
fi

where subalgorithm DECOMPOSE remains to be synthesized and has partial specifi-

cation

DECOMPOSE(x) = (x1 ,x2) such that [LG(x)>I 4 (BAG(x)=BAG(xl) UBAG(x 2) A
LG(xl)>O A LG(x 2)>O)]
where DECOMPOSE: LIST(ONI) -* LIST(]'1) 2 .

The concern now is to find any additional output conditions needed by DEC0PICSE
in order to make QSORT satisfy its formal specifications. A sufficient condi-

tion for the total correctness of QSORT [10] is:

VxoVx1 Vx 2VzOVz l Vz 2 [[BAG(x 0) = BAG(x 1) U BAG(x 2) A
LO(x1)>o A L(x 2)>o A
BAG(xl) = BAG(z) A ORD(zl) A
BAG(x 2) = BAG(z 2) A ORD(z 2) A
zo = APPED(zi,z2)] > (BAG(xo) = BAG(zo) A ORD(zo))]

(6)

If (6) is not valid it is because the specification of DECOMPOSE is too weak.
We seek therefore a xOxlx 2-precondition of (6) and add it to the output specifi-

cation of DECOMPOSE. Preparing (6) results in the substitution of skolem con-

stants a0 ,bI ,b2 ,c0 ,c1 ,c2 for Xo,x I ,x2 ,zO,zI ,z2 respectively. Let H denote the
set of conjuncts in the antecedent of the prepared correctness formula and A the

consequent. An expression of the form P(ALL(B)) will be used to abbreviate

VxGB P(x) where B is a bag variable. The derivations given in figures 6a and
6b yield

ALL(BAG(x I))<ALL(BAG(x 2)),

Strengthening DECOMPOSE with this precondition we obtain the complete specifica-

tion

<T> BAG(a0)=BAGcO)
Ic0 =APPEND(cl ,c2)1 UH

jR9

<T> BAG(a0)=BAG(APPEND(c1 ,c2))
H

R9+1b5

<T> RAG(a 0)-BAG(c) UBAG(c 2)
fBAG(b 1)BGc),BAG b2)=BAG(c 2)l UH

IR9
<T> 3AG(ao)=BAG(b,) UBAG(b)

JBAG(a 0)=BAG(b,) UBAG(b 251
P1

Figure 6a. Nonprimitive branch of QSORT

<P> ORD(c0)

Jc0=APPRND(cj ,c2)1 UH

R9

<P> ORf(APPN(c1 ,c2))

H

<T> ORD(cl) <T> OHD(c)<P AI(Ac 1)A(BGc)

~O~fl~c1~ UII {OD~c2)I 1)BGc)=A~ 1 BAG(c 2)=BAG(b 2)} UH

<P> ALL(BAG(b1))'<ALL(BAG(b2))

R~b

<.-H V P

P3

where ? is ALL(BAG(b1))<ALt(BAG(b2))

* Figure 6b. Completing the specification of IDOMlPOSE

-22-

DECOMPOSE(x) (x 1 ,x 2) such that [LG(x)>1 ==> (BAG(x)=BAG(x 1) U BAG(x 2) A
r(Xl)>O A LGAx2)>O AAIL(BAG(x1))ALL(BAG(x2))]

where DECOMPOSE: LIST(M) --> LIST(X'I) 2 .

The synthesis process is then recursively invoked to design an algorithm meeting

these specifications.

The synthesis system from which we've drawn the examples is an attempt to

obtain increased synthesis performance by 1) dividing the synthesis task into a

number of relatively small deductive tasks, and 2) using large amounts of

knowledge about programming. The system makes use of two types of programming

knowledge: 1) control strategy knowledge encoded by program schemas (such as the

schema for divide and conquer used above) and their associated correctness sche-

mas, and 2) data structure knowledge represented in part by the known theorems

of TT. Other recent deductive approaches to program synthesis [1 ,4,6] also make

use of data structure knowledge, but have different approaches to representing

control knowledge and tend to construct programs on the basis of a single large

deductive task.

4. Conclusion

In this paper we have defined a new deductive problem, that of firA.9ilg a

precondition of a given formula, and presented a formal system wV*i. hich

preconditions can be derived. We have tried to convey a sense of the flexibil-

ity and usefulness of such a system through a number of examples drawn from the

domain of program synthesis. We are currently implementing a system based on

the one described here and hope to report on such issues as formula complexity

measures and control, which we have largely ignored here, in a future paper.

APPENDIX

Listed below are the known theorems used in the examples of this paper. It is

important that these assertions are expressed in their strongest form (i.e., as

-23-

equivalences rather than implications) whenever possible,
so that it can be

determined whether a weakest precondition has been derived or not. Often a

theorem is used in one direction only although it may be stated as an

equivalence.

Propositional theorems

pl. A V-A
p2. -(A A -A)
p3. T AA A

p4.T VA T

p5. F AA F

-p6. FVA -A

p7.-(AAB) m--AV-B

pS. -(A V B) m -AA-B

p9. A A (B V C) - (A A B) V (A A C)

p1O. A V (B A c)- (A V B) A (A V C)

p11. (A t B) a (- A V B)

p12. A V (A A B) - A

p12. A A (A V B) - A

Fquality theorems

el. P(x) A x=y m P(Y) A x=y where P(x) is a formula depending on term x.

Natural number theorems

Let i,j,k denote variables of type 2N.

nO. i=i

nI. i>O
n2. i-o V i>o
n3. i<j V i>J

n4. i<j V i>J
n5. -(i<j A i>j)
n6. i+j>i - J>O

n7. -(i>k) - i<k

n8. -(i<k) - i>k

n9. i>k1 A J>k2 = i+j>k1 +k2+1

-24-

List and Bag theorems

Let wo,w 1 ,w2 vary over LIST(IN), and let Bj,B 2 vary over BAGS(IN).

lb1. WO--WO
lb2. BAG(wO)=BAG(wj) U BAG(w 2) Wo(wo-)=LG(w 1)+LG(w 2)

lb3. ZG (WO)l < ; ORD (w0)

1b4. [ORD(wl) A ORD(w 2) A AL(BAG(wj))<ALL(BA(w 2))] - 0RD(APPEND(w1 ,w2))

lb5. BAG(APPEND(wo,wl)) = BAG(w o) U BAG(w1)

lb6. B, = B,

ib7. fi 1 UIi 2 = { iI,i 2 l

lb8. B, U=B2 UBi
i b9. w= =cons(i O , cons(ij,....cons(in,W2) ...) BAG(w I) 1'0io1i1,...,'i n } UBAG(w 2)

l. b10. Wo= cons(iO,cons(il....cons(in,W))...) LG(wo)>n

1. Bibel, W. Syntax-directed, Semantics-Supported Program Synthesis, Art.

Intell. 14(3), 1980, pp 243-262.

2. Bledsoe, W. Nonresolution theorem proving, Art. Intell. 9(1), 1977, pp 1-35.

3. Dijkstra, E.W. A Discipline of Programming, Prentice-Hall Inc., Englewood

Cliffs, NJ, 1976.

4. Guiho, G., and Gresse, C., Program Synthesis from Incomplete Specifications,

Proc. Fifth Conf. on Automated Deduction, Lecture Notes in Computer Science,

Eds. W. Bibel and R. Kowalski, Springer-Verlag, Berlin, 1980.

5. Loveland, D.W. (1978), Automated Theorem Proving: A Logical Basis, North

Holland Pub. Co., New York, 1978.

6. Manna, Z., and Waldinger, R. (1980), A Deductive Approach to Program Syn-

thesis, ACM Trans. on Prog. Lang. 2(j), Jan. 1980, pp 90-121.

7. Nilsson, N. Principles of Artificial Intelligence, Tioga Pub. Co., Palo

Alto, CA, 1980.

-25-

Il ...

8. Reiter, R. (1976), A Semantically Guided Deductive system for Automatic

Theorem Proving, IE Trans. on Compuiters C-25(4), 1976, PP 328-334.

9. Smith, D.R. A Design for an Automatic Program~ing System, Proc. of IJCAI-7,

Vancouver, B.C, Canada, 1981, pp 1024-1027.

10. Smith, D.R. The Synthesis of Divide and Conquer Algorithms, Forthcoming

technical report.

-26-

