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2 Kestrel InstituteAbstrat. Although Breadth-First Searh (BFS) has several advantages over Depth-First Searh (DFS) its prohibitive spae requirements have meant that algorithmdesigners often pass it over in favor of DFS. To address this shortoming, we introduea theory of e�ient BFS (EBFS), along with a simple reursive program shema forarrying out the searh. The theory is based on dominane relations, a long standingtehnique from the �eld of searh algorithms. We also show that greedy and greedy-like algorithms form a very useful and important sub-ategory of EBFS. Finally, weshow how the EBFS lass an be used for semi-automated program synthesis byintroduing some tehniques for demonstrating that a given problem is solvable byEBFS. We illustrate our approah on several examples.1 IntrodutionProgram synthesis is experiening something of a resurgene [SGF10,SLTB+06,GJTV11℄[PBS11,VY08,VYY10℄ following negative pereptions of its salability in the early 90s. Manyof the urrent approahes aim for near-automated synthesis. In ontrast, the approah wefollow, we all guided program synthesis, also inorporates a high degree of automation but ismore user-guided. The basi idea is to identify interesting lasses of algorithms and aptureas muh generi algorithm design knowledge as possible in one plae.The user instantiatesthat knowledge with problem-spei� domain information. This step is often arried outwith mahine assistane. The approah has been applied to suessfully derive sores ofe�ient algorithms for a wide range of pratial problems inluding sheduling [SPW95℄,onurrent garbage olletion [PPS10℄, and SAT solvers [SW08℄.One signi�ant lass of algorithms that has been investigated is searh algorithms. Manyinteresting problems an be solved by appliation of searh. In suh an approah, an ini-tial searh spae is partitioned into subspaes, a proess alled splitting, whih ontinuesreursively until a feasible solution is found. A feasible solution is one that satis�es thegiven problem spei�ation. Viewed as a searh tree, spaes form nodes, and the subspaesafter a split form the hildren of that node. The proess has been formalized by Smith[Smi88,Smi10℄. Problems whih an be solved by global searh are said to be in the GlobalSearh (GS) lass. The enhanements in GS over standard branh-and-bound inlude a num-ber of tehniques designed to improve the quality of the searh by eliminating unpromisingavenues. One suh tehnique is referred to as dominane relations. Although they do notappear to have been widely used, the idea of dominane relations goes bak to at least the70s [Iba77℄. Essentially, a dominane relation is a relation between two nodes in the searhtree suh that if one dominates the other, then the dominated node is guaranteed to leadto a worse solution than the dominating one, and an therefore be disarded. Establishinga dominane relation for a given problem is arried out by a user. However this proess



is not always obvious. There are also a variety of ways in whih to arry out the searh,for example Depth-First (DFS), Breadth-First (BFS), Best-First, et. Although DFS is themost ommon, BFS atually has several advantages over DFS were it not for its exponentialspae requirement. The key to arrying out BFS spae-e�iently is to limit the size of thefrontier at any level. However, this has not been investigated in any systemati manner upto now.This paper has two main ontributions:� We show how to limit the size of the frontier in searh using dominane relations,thereby enabling spae-e�ient BFS. Additionally, we show that limiting the size of theundominated frontier to a onstant results in a useful lass of greedy algorithms.� Even though our method is not automati, we believe that the proess should be straight-forward to apply, without requiring Eureka steps. For this reason, we have devised teh-niques that address roadbloks in derivations, whih are illustrated on some simple butilluminating examples. Further examples are in [NSC12℄2 Bakground To Guided Program Synthesis2.1 ProessThe basi steps in guided program synthesis are:1. Start with a logial spei�ation of the problem to be solved. A spei�ation is a quadru-ple 〈D,R, o, c〉where D is an input type, R an output or result type, o : D × R is aprediate speifying orret or feasible outputs for given inputs, and c : D×R → Int isa ost funtion on solutions. An example spei�ation of the Shortest Path problem isin Eg. 1 (This spei�ation is explained in more detail below)2. Pik an algorithm lass from a library of algorithm lasses (Global Searh, LoalSearh, Divide and Conquer, Fixpoint Iteration, et). An algorithm lass om-prises a program shema ontaining operators to be instantiated and an axiomati theoryof those operators (see [Ned12℄ for details) . A shema is analogous to a template fun-tion in Java/C++ with the di�erene that both the template and template argumentsare formally onstrained.3. Instantiate the operators of the program shema using information about the problemdomain and in aordane with the axioms of the lass theory. To ensure orretness, thisstep an be arried out with mehanial assistane. The result is an e�ient algorithmfor solving the given problem.4. Apply low-level program transforms suh as �nite di�erening, ontext-dependent sim-pli�ation, and partial evaluation, followed by ode generation. Many of these are auto-matially applied by Speware [S℄, a formal program development environment.The result of Step 4 is an e�ient program for solving the problem whih is guaranteedorret by onstrution. The power of the approah stems from the fat that the ommonstruture of many algorithms is ontained in one reusable program shema and assoiatedtheory. Of ourse the program shema needs to be arefully designed, but that is doneone by the library designer. The fous of this paper is the Global Searh lass, andspei�ally on how to methodially arry out Step 3 for a wide variety of problems. Detailsof the other algorithm lasses and steps are available elsewhere [Kre98,Smi88,PPS10℄.



Example 1. Spei�ation of the Shortest Path problem is shown in Fig. 2.1 (The 7→ readsas �instantiates to�) The input D is a struture with 3 �elds, namely a start node, end nodeand a set of edges. The result R is a sequene of edges ([] notation). A orret result is onethat satis�es the prediate path? whih heks that a path z must be a ontiguous pathfrom the start node to the end node ( simple reursive de�nition not shown). Finally theost of a solution is the sum of the osts of the edges in that solution. Note that �elds of astruture are aessed using the '.' notation.2.2 Global Searh
D 7→ 〈start : Node, end : Node, edges : {Edge}〉

Edge = 〈f : Node, t : Node, cost : Nat〉
R 7→ [Edge]
o 7→ λ(x, z) · path?(z, x.start, x.end)

path?(p, s, f) = ...
c 7→ λ(x, z) ·

∑
edge∈z edge.costFig. 2.1. Spei�ation of Shortest Path problem

Before delving into a program shema forGlobal Searh, it helps to understand thestrutures over whih the program shemaoperates. In [Smi88℄, a searh spae is rep-resented by a desriptor of some type R̂,whih is an abstration of the result type
R. The initial or starting spae is de-noted ⊥. There are also two prediates split:
D × R̂ × R̂, written ⋔, and extrat : R̂ ×R,written χ. Split de�nes when a spae is asubspae of another spae, and extrat ap-tures when a solution is extratable froma spae. We say a solution z is ontained in a spae y (written z ∈ y) if it an be ex-trated after a �nite number of splits. A feasible spae is one that ontains feasible so-lutions. We often write ⋔ (x, y, y′) as y ⋔x y′ for readability, and even drop the sub-sript when there is no onfusion. Global Searh theory (GS-theory) [Smi88℄ axiomati-ally haraterizes the relation between the prediates ⊥, ⋔ and χ, as well as ensuringthat the assoiated program shema omputes a result that satis�es the spei�ation.In the sequel, the symbols R̂,⊥,⋔, χ,⊕ are all assumed to be drawn from GS-theory.Example 2. Instantiating GS-theory for the Shortest Path problem requires instantiatingthe free terms in the theory. The type of solution spaes R̂ is the same as the result type R.However, there is a ovariant relationship between an element of R̂ and of R. For example,the initial spae, orresponding to all possible paths, is the empty list. A spae is split byadding an edge to the urrent path - that is the subspaes are the di�erent paths that resultfrom adding an edge to the parent path. Finally a solution an be trivially extrated fromany spae by setting the result z to the spae p. This is summarized in Fig. 2.2 ([] denotesthe empty list, and ++ denotes list onatenation).2.3 Dominane Relations
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, p, pe) · ∃e ∈ x.edges · pe = p++[e]
χ 7→ λ(z, p) · p = zFig. 2.2. GS instantiation for Shortest Path

As mentioned in the introdution, a domi-nane relation provides a way of omparingtwo subspaes in order to show that one willalways ontain at least as good a solutionas the other. (Goodness in this ase is mea-sured by some ost funtion on solutions).The �rst spae is said to dominate (⊲) the



seond, whih an then be eliminated fromthe searh. Letting c∗ denote the ost of anoptimal solution in a spae, this an be for-malized as (all free variables are assumed to be universally quanti�ed):
y ⊲ y′ ⇒ c∗(x, y) ≤ c∗(x, y′) (2.1)Another way of expressing the onsequent of (2.1) is

∀z′ ∈ y′ · o(x, z′) ⇒ ∃z ∈ y · o(x, z) ∧ c(x, z) ≤ c(x, z′) (2.2)To derive dominane relations, it is often useful to �rst derive a semi-ongruene relation[Smi88℄. A semi-ongruene between two partial solutions y and y′, written y  y′, ensuresthat any way of extending y′ into a feasible solution an also be used to extend y into afeasible solution. Like ⋔,  is a ternary relation over D× R̂× R̂ but as we have done with
⋔ and many other suh relations in this work, we drop the input argument when there is noonfusion and write it as a binary relation for readability. Before de�ning semi-ongruene,we introdue two onepts. One is the idea of useability of a spae. A spae y is is useable,written o∗(x, y), if ∃z. χ(y, z) ∧ o(x, z), meaning a feasible solution an be extrated fromthe spae. The seond is the notion of inorporating su�ient information into a spae tomake it useable. This is de�ned by an operator ⊕ : R̂× t → R̂ that takes a spae and someadditional information of type t and returns a more de�ned spae. The type t depends on
R̂. For example if R̂ is the type of lists, then t might also be the same type. Now the formalde�nition of semi-ongruene is:

y  y′ ⇒ o∗(x, y′ ⊕ e) ⇒ o∗(x, y ⊕ e)That is, y  y′ is a su�ient ondition for ensuring that if y′ an be extended into afeasible solution than so an y with the same extension. Now if c is ompositional (that is,
c(s⊕ t) = c(s) + c(t)) then it an be shown [Ned12℄ that if y  y′ and y is heaper than y′,then y dominates y′ (written y ⊲ y′). Formally:

y  y′ ∧ c(x, y) ≤ c(x, y′) ⇒ y ⊲ y′ (2.3)Dominane relations are a part of GS-theory [Smi88℄.Example 3. Shortest Path between two given nodes in a graph. If there are two paths p and
p′ leading from the start node, if p and p′ both terminate in the same node then p p′. Thereason is that any path extension e (of type t = [Edge]) of p′ that leads to the target nodeis also a valid path extension for p. Additionally if p is shorter than p′ then p dominates
p′, whih an be disarded. Note that this does not imply that p leads to the target node,simply that no optimal solutions are lost in disarding p′. This dominane relation is formallyderived in Eg. 5Example 4. 0-1 KnapsakThe 0-1 Knapsak problem is, given a set of items eah of whih has a weight and utilityand a knapsak that has some maximum weight apaity, to pak the knapsak with asubset of items that maximizes utility and does not exeed the knapsak apaity. Givenombinations k, k′, if k and k′ have both examined the same set of items and k weighs lessthan k′ then any additional items e that an be feasibly added to k′ an also be added to
k, and therefore k k′. Additionally if k has at least as muh utility as k′ then k ⊲ k′.The remaining setions over the original ontributions of this paper .



3 A Theory Of Spae-E�ient Breadth-First Searh (EBFS)While searh an in priniple solve any omputable funtion, it still leaves open the questionof how to arry it out e�etively. Various searh strategies have been investigated overthe years; two of the most ommon being Breadth-First Searh (BFS) and Depth-FirstSearh (DFS). It is well known that BFS o�ers several advantages over DFS. Unlike DFSwhih an get trapped in in�nite paths3, BFS will always �nd a solution if one exists.Seondly, BFS does not require baktraking. Third, for deeper trees, BFS will generally�nd a solution at the earliest possible opportunity. However, the major drawbak of BFS isits spae requirement whih grows exponentially. For this reason, DFS is usually preferredover BFS.Our �rst ontribution in this paper is to re�ne GS-theory to identify the onditionsunder whih a BFS algorithm an operate spae-e�iently. The key is to show how the sizeof the undominated frontier of the searh tree an be polynomially bounded. Dominanerelations are the basis for this.In [Smi88℄, the relation ⋔l for l ≥ 0 is reursively de�ned as follows:
y ⋔0 y′ = (y = y′)

y ⋔l+1 y′ = ∃y′′ · y ⋔ y′′ ∧ y′′ ⋔l y′From this the next step is to de�ne those spaes at a given frontier level that are notdominated. However, this requires some are beause dominane is a pre-order, that is itsatis�es the re�exivity and transitivity axioms as a partial order does, but not the anti-symmetry axiom. That is, it is quite possible for y to dominate y′ and y′ to dominate y but
y and y′ need not be equal. An example in Shortest Path is two paths of the same lengthfrom the start node that end at the same node. Eah path dominates the other. To eliminatesuh yli dominanes, de�ne the relation y ≈ y′ as y ⊲ y′∧y′ ⊲ y. It is not di�ult to showthat ≈ is an equivalene relation. Now let the quotient frontier at level l be the quotient set
frontierl/ ≈ . For type onsisteny, let the representative frontier rfrontierl be the quotientfrontier in whih eah equivalene lass is replaed by some arbitrary member of that lass.The representative frontier is the frontier in whih yli dominanes have been removed.Finally then the undominated frontier undoml is rfrontierl − {y | ∃y′ ∈ rfrontierl · y′ ⊲ y}.Now given a problem in the GS lass, if it an be shown that ‖undoml‖ for any l ispolynomially bounded in the size of the input, a number of bene�ts arue: (1) BFS anbe used to tratably arry out the searh, as implemented in the raw program shema ofAlg. 1, (2) The raw shema of Alg. 1 an be transformed into an e�ient tail reursiveform, in whih the entire frontier is passed down and (3) If additionally the tree depthan be polynomially bounded (whih typially ours for example in onstraint satisfationproblems or CSPs [De03℄) then, under some reasonable assumptions about the work beingdone at eah node, the result is a polynomial-time algorithm for the problem.3.1 Program TheoryA program theory for EBFS de�nes a reursive funtion whih given a spae y, omputes anon-trivial subset Fx(y) of the optimal solutions ontained in y, where

Fx(y) = optc{z | z ∈ y ∧ o(x, z)}3 resolvable in DFS with additional programming e�ort



Algorithm 1 pseudo-Haskell Program Shema for EBFS (shema parameters underlined)solve :: D -> {R}solve(x) = bfs x {initial(x)}bfs :: D -> {RHat}-> {R}bfs x frontier =let loalsof y = let z = extrat x yin if z!={} && o(x,z) then z else {}loals = (flatten.map) loalsof frontierallsubs = (flatten.map) (subspaes x) frontierundom = {yy : yy∈allsubs &&(yy'∈subs && yy' `dominates` yy ⇒ yy==yy')}subsolns = bfs x undomin opt(loals ∪ subsolns)subspaes :: D -> RHat -> {RHat}subspaes x y = {yy: split(x,y,yy))opt :: {R} -> {R}opt zs = min { x z | z ∈zs}
optc is a subset of its argument that is the optimal set of solutions (w.r.t. the ost funtion
c), de�ned as follows:

optcS = {z | z ∈ S ∧ (∀z′ ∈ S · c(z) ≤ c(z′))}Also let undom(y) be undoml(y)+1 ∩ {yy | y ⋔ yy} where l(y) is the level of y in the tree.The following theorem de�nes a reurrene that serves as the basis for omputing Fx(y):Theorem 3.1. Let ⋔ be a well-founded relation of GS-theory and Gx(y) = optc({z | χ(y, z)∧
o(x, z)} ∪

⋃
yy∈undom(y)Gx(yy)}) be a reurrene. Then Gx(y) ⊆ Fx(y).The theorem states that if the feasible solutions immediately extratable from a spae

y are ombined with the solutions obtained from Gx of eah undominated subspae yy,and the optimal ones of those retained, the result is a subset of Fx(y). The next theoremdemonstrate non-triviality4 of the reurrene by showing that if a feasible solution exists ina spae, then one will be found.Theorem 3.2. Let ⋔ be a well-founded relation of GS-Theory and Gx be de�ned as above.Then
Fx(y) 6= ∅ ⇒ ({z | χ(y, z) ∧ o(x, z)} ∪

⋃

yy∈undom(y)

Gx(yy)}) 6= ∅Proofs of both theorems are in [NSC12℄. From the harateristi reurrene we anstraightforwardly derive a simple reursive funtion bfs to ompute a non-trivial subset of
Fx for a given y, shown in Alg. 1The �nal program shema that is inluded in the Speware library is the result of in-orporating a number of other features of GS suh as neessary �lters, bounds tests, andpropagation, whih are not shown here. Details of these and other tehniques are in [Smi88℄.4 Non-triviality is similar but not idential to ompleteness. Completeness requires that everyoptimal solution is found by the reurrene, whih we do not guarantee.



3.2 A lass of stritly greedy algorithms (SG)A greedy algorithm [CLRS01℄ is one whih repeatedly makes a loally optimal hoie. Forsome lasses of problems this leads to a globally optimum hoie. We an get a harateriza-tion of optimally greedy algorithms within EBFS by restriting the size of undoml for any
l to 1. If undoml 6= ∅ then the singleton member y∗ of undoml is alled the greedy hoie.A perhaps surprising result is that our haraterization of greedy algorithms is broaderthan a well-known haraterization of greedy solutions, namely the Greedy Algorithm overalgebrai strutures alled greedoids [BZ92℄, whih are themselves more general than ma-troids. We demonstrated this in earlier work [NSC10℄ although at the time we were not ableto haraterize the greedy lass as a speial ase of EBFS.Another interesting result is that even if ‖undoml‖, for any l, annot be limited toone but an be shown to be some onstant value, the resulting algorithm, we all HardlyStritly Greedy5 (HSG), still has the same omplexity as a stritly greedy one. A numberof interesting problems have the HSG property, and these are disussed later.Note that forproblems in the SG lass, there is no longer any �searh� in the onventional sense.4 MethodologyWe strongly believe that every formal approah should be aompanied by a methodologyby whih it an be used by a ompetent developer, without needing great insights. Guidedprogram synthesis already goes a long way towards meeting this requirement by apturingdesign knowledge in a reusable form. The remainder of the work to be done by a developeronsists of instantiating the various parameters of the program shema. The seond mainontribution of this paper is to desribe some tehniques, illustrated with examples, thatgreatly simplify the instantiation proess. We wish to reiterate that one the dominanerelation and other operators in the shema have been instantiated, the result is a ompletesolution to the given problem. We fous on dominane relations beause they are arguablythe most hallenging of the operators to design. The remaining parameters an usually bewritten down by visual inspetion.The simplest form of derivation is to reason bakwards from the onlusion of y  y′ ⇒
o∗(x, y′⊕e) ⇒ o∗(x, y⊕e), while assuming o∗(x, y′⊕e) . The additional assumptions that aremade along the way form the required semi-ongruene ondition. The following exampleillustrates the approah.Example 5. Derivation of the semi-ongruene relation for Shortest Path in Eg. 1 is fairlystraightforward alulation as shown in Fig 4.1. It relies on the spei�ation of ShortestPath given in Eg. 1 and the GS-theory in Eg. 2.The alulation shows that a path y is semi-ongruent to y′ if y and y′ both end at thesame node and additionally y is itself a valid path from the start node to its last node.Sine the ost funtion is ompositional, this immediately produes a dominane relation
y ⊲ y′ = last(y) = last(y′)∧path?(y, x.start, n)∧

∑
edge∈y edge.cost ≤

∑
edge′∈y′ edge′.cost.Note the use of the distributive law for path? in step 4. Suh laws are usually formulatedas part of a domain theory during a domain disovery proess, or even as part of the pro-ess of trying to arry out a derivation suh as the one just shown. Given an appropriateonstrutive prover (suh as the one in KIDS [Smi90℄) suh a derivation ould in fat be au-tomated. Other examples that have been derived using this approah are Ativity Seletion5 This name inspired by that of the Hardly Stritly Bluegrass festival held annually in San Franiso



o∗(x, y ⊕ e)
= {defn of o∗}
∃z · χ(y ⊕ e, z) ∧ o(x, z)
= {defn of χ}
o(x, y ⊕ e)
= {defn of o}
path?(y ⊕ e, x.start, x.end)
= {distributive law for path?}
∃n · path?(y, x.start, n) ∧ path?(e, n, x.end)
⇐ {o∗(x, y′ ⊕ e), ie.∃m · path?(y′, x.start,m) ∧ path?(e,m, x.end). Let m be a witness for n}
path?(y, x.start,m) ∧ path?(e,m, x.end)
= {m = last(y).t, (where last returns the last element of a sequene)}
last(y).t = last(y′).t ∧ path?(y, x.start, n)Fig. 4.1. Derivation of semi-ongruene relation for Shortest Path[NSC10℄, Integer Linear Programming [Smi88℄, and variations on the Maximum SegmentSum problem [NC09℄. The next two setions deal with situations in whih the derivation isnot so straightforward.4.1 Tehnique 1: An exhange tatiIn the example just onsidered, and many suh others, the derivation proess was free ofrabbits (Dijkstra's term for magi steps that appear seemingly out of nowhere). However,some ases are a little more hallenging. As an example onsider the following problem:Example 6. One-Mahine Sheduling. This is the problem of sheduling a number of jobs ona mahine so as to minimize the sum of the ompletion times of the jobs (beause dividingthe sum of the ompletion times by the number of jobs gives the average amount of timethat a job waits before being proessed). A shedule is a permutation of the set of inputjobs {J1, J2, . . . Jn}. The input to the problem is a set of tasks, where a task onsists ofa pair of an id and duration, p. The result is a sequene of tasks. The output ondition orequires that every task (and only those tasks) in the input be sheduled, ie plaed at aunique position in the output sequene. Finally the ost of a solution, as stated above, isthe sum of the ompletion times of the tasks. The problem spei�ation is therefore:

D 7→ {Task}
R 7→ [Task]

Task = 〈id : Id, p : T ime〉
o 7→ λ(x, z) · asBag(z) = x
c 7→ λ(x, z) ·

∑n
i=1 ct(z, i)

ct(z, i) =
∑i

j=1 zj .pThe instantiation of terms in GS-theory is similar to that of Shortest Path:
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, s, ss) · ∃t ∈ x. ss = s++[t]
χ 7→ λ(z, p) · p = z
⊲ 7→ ?



However, attempting to derive a semi-ongruene relation in the same manner as we did forthe Shortest Path problem by omparing two shedules αa and αb will not work. This isbeause every task must be sheduled, so any extension ω that extends say αa must ontain
b but as eah task an be sheduled only one, suh an extension will not be feasible for αb.Suh situations are very ommon in sheduling and planning problems6. For suh problems,note that when R̂ is a sequene type, every possible way a (alled a hoie) of extendingsome sequene α ie. α++[a], written αa for oniseness, forms a subspae of α. A simpleexample is the problem of generating all bit strings. If the urrent spae is some bit stringsay [1,0,0,1℄ then the two subspaes are [1,0,0,1℄++[0℄ and [1,0,0,1℄++[1℄ , written 10010 and10011 resp. Another example ours in CSP. If α is the sequene of assignments to the �rst ivariables, then αv for every v in Di+1 is a subspae of α. The tati to try in suh situationsis to ompare two partial solutions that are permutations of eah other. This idea is bakedup by the following theorem.Theorem 4.1. Suppose it an be shown that any feasible extension of αa must eventually befollowed by some hoie b. That is, any feasible solution ontained in αa must be ontainedin αaβb for some β. Let αbβa be the partial solution obtained by exhanging a and b. If
R(α, a, b) is an expression for the semi-ongruene relation αbβa  αaβb and C(α,a,b)is an expression for c(αbβaγ) ≤ c(αaβbγ), for any α, β, then R(α, a, b) ∧ C(α, a, b) is adominane relation αb ⊲ αa.Proof. See [Ned12℄Example 6 Revisited. We now show how to derive a dominane relation for thisproblem. The tati above suggests the following: Suppose some partial shedule is extendedby piking task a to assign in the next position and this is followed subsequently by some task
b. When is this better than piking b for the next position and a subsequently? Let y = αaβband y′ = αbβa. It is not di�ult to show that y and y′ are unonditionally semi-ongruent.To apply Theorem 4.1 it is neessary to derive an expression for c(αbβaγ) ≤ c(αaβbγ).Let z = yγ and z′ = y′γ and let i be the position of a (b) in y (resp. y′) and j be theposition of b (a) in y (resp. y′). As shown in Fig. 4.2, the alulation is simple enough to beautomated. The derivation shows that for any feasible solution αbβaω extending αb thereis a heaper feasible solution αaβbω that extends αa provided a.p ≤ b.p. By Theorem 4.1,this onstitutes the dominane relation αa ⊲ αb. Finally, as ≤ is total order, there mustbe a hoie that dominates all other hoies, namely the task with the least proessingtime. Therefore the problem is in the SG lass. Following this greedy hoie at every steptherefore leads to the optimum solution. Instantiating the library shema derived from Alg.1 with suh a dominane relation (along with the other parameters ) immediately results ina greedy algorithm for this problem. The result orresponds to the Shortest Proessing Time(SPT) rule, disovered by W.E. Smith in 1956. We have shown how it an be systematiallyderived.We have applied the tati above to derive other sheduling algorithms, for example analgorithm for the sheduling problem 1//Lm in whih the goal is to minimize the maximumlateness of any job (amount by whih it misses its due date), as well as variant of it to derivedominane relations for planning problems [Ned12℄.6 In planning, ations that must our after another ation to ahieve a feasible plan are alledation landmarks



c(z) ≤ c(z′)
= {unfold defn of c}

c(α) + ct(z, i) + c(β) + ct(z, j) + c(γ) ≤ c(α) + ct(z, j) + c(β) + ct(z, i) + c(γ)

= {unfold defn of ct. Realize that c(α) = ∑‖α‖
i=1

∑i

j=1
αj .p and let pt(α) = ∑‖α‖

j=1
αj .p}

c(α) + pt(α) + a.p+ c(β) + pt(α) + a.p+ pt(β) + b.p

≤
ct(α) + pt(α) + b.p+ c(β) + pt(α) + b.p+ pt(β) + a.p

= {algebra}
2(a.p) + b.p ≤ 2(b.p) + a.p

= {algebra}
a.p ≤ b.p Fig. 4.2. Calulation of ost omparison relation for 1 mah. sheduling4.2 Tehnique 2: General DominaneThere are situations in whih the above tati will fail. Consider the following problem from[CLRS01℄ and [Cur03℄:Example 7. Professor Midas's Driving ProblemProfessor Midas wishes to plan a ar journey along a �xed route. There are agiven number of gas stations along the route, and the professor's gas tank when fullan over a given number of miles. Derive an algorithm that minimizes the numberof refueling stops the professor must make.The input data is assumed to be a sequene of umulative distanes of gas stations from thestarting point (cds) along with the ar's tank apaity (cap, measured in terms of distane).The variables will represent the gas stations along the route, that is variable i will be the ithgas station. A stop at a gas station is indiated in the result by assigning the orrespondingvariable true, and false otherwise. The start and �nish are onsidered mandatory stops(that is z1 and zn are required to be true). Finally, the ost of a solution is a simple ountof the number of variables assigned true. An obvious requirement on the input is that thedistane between any two stations not exeed the tank apaity of the ar. These ideas areaptured in the following spei�ation (in the ost funtion false is interpreted as 0 and trueas 1). Note that a type 〈. . . | P 〉 denotes a prediate subtype in whih the type membersmust satisfy the prediate P .
D 7→ 〈cds : [Nat], cap : Nat | ∀x ∈ D · ∀i < ‖x.cds‖ · x.cds[i + 1]− x.cds[i] ≤ x.cap〉
R 7→ [Boolean]
o 7→ ‖z‖ = ‖x.cds‖ ∧ fsok (x, z)

fsok(x, z) = ∀i, j · i ≤ j · didntStop(z, i, j) ⇒ span(x, i, j) ≤ x.cap
didntStop(z, a, b) = ∀i · a ≤ i ≤ b · ¬zi
span(x, i, j) = x.cds[j + 1]− x.cds[i− 1]

c 7→ λx, z ·
∑‖z‖

i=1 ziThe instantiation of GS-theory, with the exeption of ⊲, is as it was for the mahinesheduline example (Eg. 6). Attempting to apply the Exhange tati desribed above andderive a semi-ongruene relation between αTβF and αFβT (T is true and F is false) thatdoes not depend on β will fail. The ounter-example of Fig 4.3 shows why (boxes represent



variables, shading means the variable was set true): it is possible that there is some extension
e to αT whih delays a stop but whih is too long a span for αF . In suh situations, wehave found it useful to try to establish general dominane (Def. 2.2).As before, it is useful to identify any distributive laws. In this ase, the ombination ofpartial solutions r and s satis�es fsok provided eah partial solution independently satis�es
fsok and where they abut satis�es fsok . Expressing the law formally requires broadening thede�nition of fsok somewhat to take into aount the o�set t of a partiular sequene fromthe start, that is: fsok (x, z, t) = ∀i, j · i ≤ j∧didntStop(z, i, j) ⇒ span(x, i+t, j+t) ≤ x.cap.Then:

fsok(x, y ⊕ e, 0) = fsok (x, y, 0) ∧ fsok (x, e, ‖y‖) ∧ fs2ok (x, y, e)where fs2ok deals with the boundary between y and e and an be shown to be
fs2ok (x, y, e) = fsok (x, lfs(y)++ffs(e), ‖y − lfs(y)‖)where �s ( resp. lfs) denotes the initial (resp. last) false span of a segment, if any.Now onsider the two possible solutions after a split again, namely αT and αF . Todemonstrate o(x, αFe) for some e, the usual bakwards inferene proedure an be applied,assuming αTe′ for some e′ (for brevity, the input x to fsok has been dropped)

o(x, αFe)
= {defn }
fsok (αFe, 0)
= {defn }
fsok (α, 0) ∧ fsok (F, ‖α‖) ∧ fs2ok (α, F ) ∧ fsok (e, ‖α‖ + 1) ∧ fs2ok (αF, e)
= {fsok(α, 0) beause o(x, αTe′), fsok(F,−) beause of restrition on D}
fs2ok(α, F ) ∧ fsok(e, ‖α‖+ 1)) ∧ fs2ok(αF, e)
= {see below}
fs2ok(α, F )

Partial soln 1 after split

Partial soln 2 after split

extension

<= x.cap

> x.capFig. 4.3. Counter-example: extension works forthe 1st partial soln but not for the 2nd

To demonstrate both fsok (e, ‖α‖ + 1)and fs2ok (αF, e), let e = e′[1 = T ] (e′ withthe �rst variable assigned true). Clearly
fsok (e, ‖α‖ + 1) if fsok(e′, ‖α‖ + 1) and
fs2ok (αF, e) if fs2ok (α, F ) beause ffs(e) isempty. As αF has one stop less than αTand e has at most one extra, it follows that
c(x, αFe) ≤ c(x, αTe′). Therefore αF dom-inates αT provided there is su�ient fuel tomake it to the next stop. As there are onlytwo branhes following a split, the greedyhoie is lear. Informally this rule is totravel as far as possible without stopping.Other algorithms we have derived by ap-plying general dominane have been a SGalgorithm for Shortest Path similar to Di-jkstra's algorithm, and SG algorithms similar to Prim and Kruskal for Minimum SpanningTrees [NSC12℄.



4.3 Tehnique 3: Feasibility ProblemsFinally, we show that the notion of greediness applies not only to optimality problems, butalso feasibility problems. By letting the �ost� of a solution be its orretness and using thestandard ordering on Booleans, namely that false<true, we an derive a feasibility dominaneriterion for y ⊲F y′, namely o(x, y′) ⇒ o(x, y) [Ned12℄. One way to use this onstraint isderive onditions under whih o(x, y′) is false, ensuring y′ is dominated. An example of thisfollows.Example 8. Searhing for a key in an ordered sequene. A ombined problem spei�ationand GS-theory instantiation is:
D 7→ 〈seq : [Int], key : Int | unique(key, seq)∧ ordered(seq)〉
R 7→ Nat
o 7→ λ(x, z) · x.seq[z] = x.key

R̂ 7→ (Nat,Nat)
⋔ 7→ λ(x, (i, j), (k, l)) · (k = i ∧ l = ⌊(i+ j)/2)⌋)∨

(k = ⌊(i + j)/2)⌋+ 1 ∧ l = j)
χ 7→ λ(y, z) · z = yThe input D provides the sequene and the key, requiring that the sequene be orderedand the key our uniquely in the sequene. The result is the index of the desired key.The two subspaes after a split are the sequene from the start i of the parent sequeneto the midway point and from some point immediately after the midway to the end j ofthe parent sequene. (This split relation is derived in [Smi10℄). In general, there ould bean n-way split, or a split at any hosen point in the range but for simpliity, only thebinary midpoint ase is illustrated. There are only two subspaes after a split denoted Land R. Fig 4.4 derives the ondition under whih o(x, αL) holds. Negating this ondition,ie. x.key > x.seq[(i+ j)/2] determines when o(x, αL) is false and αL is dominated, leavingat most one undominated hild, αR. Completing the instantiation of GS-theory with thisdominane ondition provides the bindings for the parameters of the program shema ofAlg. 1. Sine the depth of the searh is O(log n), the result is an O(log n) greedy algorithmthat implements Binary Searh.4.4 HSG problems

o(x, αL)
= {defn. of o}
∃z ∈ αL · o(x, z)
= {defn. of o}∨(i+j)/2

p=i x.seq[p] = x.key

⇒ {ordered elements}
x.key ≤ x.seq[(i + j)/2]Fig. 4.4. Derivation of greedy dominane relationfor binary searh

The problems illustrated so far have all beenStritly Greedy (SG). This was intentional.For one thing, many problems have a greedysolution (or a greedy approximation). Ad-ditionally, as one moves down an algorithmhierarhy, the narrower lass generally hasa more e�ient algorithm. The prie to bepaid is that it is usually more di�ult toestablish the onditions neessary for mem-bership in a tighter lass. The tehniques wehave demonstrated for establishing mem-bership in SG apply equally well to thebroader ategory of HSG and indeed the



ath-all one of EBFS. Although problemsin the broader ategories are seemingly sparser, we have arried out derivations for severalproblems that are in the HSG lass. For example, we demonstrated membership in the HSGlass for 2-SAT (Boolean satis�ability in whih there are at most 2 variables per lause)[Ned12℄ as well as for a family of Segment Sum problems [NC09℄. The dominane relationswe derived for the Segment Sum problems resulted in very e�ient linear-time algorithms forall the problems. Noteworthy is that the run-time performane of the solutions we derivedonsistently exeeded those obtained by program transformation [SHT00,SHT01,SOH05℄.Geneti algorithms in whih the desendant population is maintained at a onstant level areanother example of HSG algorithms.5 Related WorkGulwani et al. [SGF10,GJTV11℄ desribe a powerful program synthesis approah alledtemplate-based synthesis. A user supplies a template or outline of the intended programstruture, and the tool �lls in the details. A number of interesting programs have been syn-thesized using this approah, inluding Bresenham's line drawing algorithm and various bitvetor manipulation routines. A related method is indutive synthesis [IGIS10℄ in whih thetool synthesizes a program from examples. The latter has been used for inferring spread-sheet formulae from examples. All the tools rely on powerful SMT solvers. The Skethingapproah of Solar-Lezama et al [PBS11℄ also relies on indutive synthesis. A sketh, similarin intent to a template, is supplied by the user and the tool �lls in suh aspets as loopbounds and array indexing. Skething relies on e�ient SAT solvers. To quote Gulwani etal. the bene�t of the template approah is that �the programmer only need write the stru-ture of the ode and the tool �lls out the details� [SGF10℄.Rather than the programmersupplying an arbitrary template, though, we suggest the use of a program shema from theappropriate algorithm lass (refer to Step 2 of the proess in Se. 2.1). We believe that theadvantage of suh an approah is that, based on a sound theory, muh an already be in-ferred at the abstrat level and this is aptured in the theory assoiated with the algorithmlass. Furthermore, knowledge of properties at the abstrat level allows speialization of theprogram shema with information that would otherwise have to either be guessed at by theprogrammer devising a template or inferred automatially by the tool (e.g. tail reursiveimplementation or e�ient implementation of dominane testing with hashing). We believethis will allow semi-automated synthesis to sale up to larger problems suh as onstraintsolvers (SAT, CSP, LP, MIP, et.), planning and sheduling, and O/S level programs suhas garbage olletors [PPS10℄.Program veri�ation is another �eld that shares ommon goals with program synthesis -namely a orret e�ient program. The di�erene lies in approah - we prefer to onstrutthe program in a way that is guaranteed to be orret, as opposed to verifying its orret-ness after the fat. Certainly some reent tools suh as Dafny [Lei10℄ provide very usefulfeedbak in an IDE during program onstrution. But even suh tools requires signi�antprogram annotations in the form of invariants to be able to automatially verify non-trivialexamples suh as the Shorr-Waite algorithm [Lei10℄. Nevertheless, we do not see veri�a-tion and synthesis as being neessarily opposed. For example, ensuring the orretness ofthe instantiation of several of the operators in the program shema whih is usually doneby inspetion is a veri�ation task, as is ensuring orretness of the shema that goes in thelass library. We also feel that reent advanes in veri�ation via SMT solvers will also helpguided synthesis by inreasing the degree of automation.



Re�nement is generally viewed as an alternative to synthesis. A spei�ation is graduallyre�ned into an e�ient exeutable program. Re�nement methods suh as Z and B haveproved to be very popular. In ontrast to re�nement, guided program synthesis alreadyhas the program struture in plae, and the main body of work onsists of instantiatingthe shema parameters followed by various program transformations many of whih anbe mehanially applied. Both re�nement and synthesis rely extensively on tool support,partiularly in the form of provers.We expet that advanes in both synthesis and re�nementwill bene�t the other �eld.Curtis [Cur03℄ presents a lassi�ation sheme for greedy algorithms. Eah lass hassome onditions that must be met for a given algorithm to belong to that lass. The greedyalgorithm is then automatially orret and optimal. Unlike Curtis, our results extend be-yond stritly greedy algorithms. We also rely extensively on alulational proofs for probleminstanes.Another approah has been taken by Bird and de Moor [BM93℄ who show that underertain onditions a dynami programming algorithm simpli�es into a greedy algorithm.Our haraterization in an be onsidered an analogous speialization of (a form of) branh-and-bound. The di�erene is that we do not require alulation of the entire program, butspei� operators, whih is a less onerous task.6 Summary and Future WorkWe have shown how Breadth-First Searh an be arried out e�iently by relying on domi-nane relations. This is an important result as Breadth-First Searh has several advantagesover Depth-First Searh. Seondly, we demonstrated some tehniques by whih dominanerelations an be derived and illustrated them on several problems. We hope to identifyand ollet more tehniques over time and atalogue then in the style of design patterns[GHJV95℄.Nearly all the derivations shown in this paper have been arried out by hand. However,they are simple enough to be automated. We plan on building a prover that inorporatesthe ideas mentioned in here. We are enouraged by the suess of a similar prover that waspart of KIDS, a predeessor to Speware.We are urrently applying some of these ideas to the problem of synthesizing fast plannersthat produe good quality plans. We hope to report on this work in the near future.Referenes[BM93℄ R. S. Bird and O. De Moor. From dynami programming to greedy algorithms. In FormalProgram Development, volume 755 of Leture Notes in Computer Siene, pages 43�61.Springer-Verlag, 1993.[BZ92℄ Anders Bjï¾÷rner and Gï¾÷nter M. Ziegler. Introdution to greedoids. In Neil White,editor, Matroid Appliations. Cambridge University Press, 1992.[CLRS01℄ T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introdution to Algorithms. MITPress, 2nd edition, 2001.[Cur03℄ S. A. Curtis. The lassi�ation of greedy algorithms. Si. Comput. Program., 49(1-3):125�157, 2003.[De03℄ R Dehter. Constraint Proessing. Morgan Kau�man, 2003.[GHJV95℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusableobjet-oriented software. Addison-Wesley Professional, 1995.
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